
Table of Contents

 Cosmos DB Documentation
 Overview

 About Azure Cosmos DB
 Welcome DocumentDB customers

 Quickstarts
 DocumentDB

 .NET
 Java
 Node.js
 Python
 Xamarin

 MongoDB
 Node.js
 .NET
 Java

 Graph
 .NET
 Gremlin console
 Java
 Node.js

 Table
 .NET

 Tutorials
 1 - Create

 DocumentDB
 MongoDB
 Table
 Graph

 2 - Import

file:///W:/g5yd-o-4f255326/azure/.tmp/cosmos-db/index.yml
https://azure.microsoft.com/blog/dear-documentdb-customers-welcome-to-azure-cosmos-db/

 DocumentDB
 MongoDB

 3 - Query
 DocumentDB
 MongoDB
 Table
 Graph

 4 - Distribute globally
 DocumentDB
 MongoDB
 Table
 Graph

 5 - Develop locally
 Use the emulator
 Export certificates

 Samples
 Azure CLI 2.0
 Azure PowerShell

 Concepts
 Global distribution
 Partitioning
 Consistency
 Throughput

 Request units per minute
 Multi-model APIs

 DocumentDB
 MongoDB
 Table
 Graph

 Security
 TCO
 Use cases

https://aka.ms/documentdb-tco-paper

 Social media apps
 How To Guides

 Develop
 DocumentDB API
 MongoDB API
 Graph API
 Table API
 Change feed
 Geospatial
 Indexing

 Manage
 Cost-effective reads and writes
 Expire data automatically
 Back up and restore
 Regional failover
 Set throughput
 Monitor SLAs
 Manage keys and consistency
 Security

 Integrate
 Connect to Spark
 Connect to Spark GraphX
 Deploy a website with Azure App Service
 Application logging with Logic Apps
 Bind to Azure Functions
 Analyze data with Hadoop
 Integrate with Azure Search
 Move data with Azure Data Factory
 Analyze real-time data with Azure Stream Analytics
 Get changed HL7 FHIR record using Logic Apps
 Process sensor data in real time
 Visualize your data with Power BI

 Leverage the ODBC driver for data visualization
 Reference

 DocumentDB APIs
 Java
 .NET
 .NET Core
 Node.js
 Python
 REST
 REST Resource Provider

 Table APIs
 .NET

 Graph APIs
 .NET

 Resources
 Pricing
 FAQ
 Stack Overflow
 Data consistency explained through baseball

https://docs.microsoft.com/rest/api/documentdb/
https://docs.microsoft.com/rest/api/documentdbresourceprovider/
https://azure.microsoft.com/pricing/details/cosmos-db/
http://stackoverflow.com/questions/tagged/azure-cosmosdb
http://research.microsoft.com/apps/pubs/default.aspx

Welcome to Azure Cosmos DB
6/1/2017 • 9 min to read • Edit Online

Capability comparison

CAPABILITIES RELATIONAL DBS
NON-RELATIONAL (NOSQL)
DBS AZURE COSMOS DB

Global distribution x x � Turnkey, 30+ regions,
multi-homing

Azure Cosmos DB is Microsoft's globally distributed, multi-model database. With the click of a button, Azure
Cosmos DB enables you to elastically and independently scale throughput and storage across any number of
Azure's geographic regions. It offers throughput, latency, availability, and consistency guarantees with
comprehensive service level agreements (SLAs), something no other database service can offer.

Azure Cosmos DB contains a write optimized, resource governed, schema-agnostic database engine that natively
supports multiple data models: key-value, documents, graphs, and columnar. It also supports many APIs for
accessing data including MongoDB, DocumentDB SQL, Gremlin (preview), and Azure Tables (preview), in an
extensible manner.

Azure Cosmos DB started in late 2010 to address developer pain-points that are faced by large scale applications
inside Microsoft. Since building globally distributed applications is not a problem unique to just to Microsoft, we
made the service available externally to all Azure Developers in the form of Azure DocumentDB. Azure Cosmos DB
is the next big leap in the evolution of DocumentDB and we are now making it available for you to use. As a part
of this release of Azure Cosmos DB, DocumentDB customers (with their data) are automatically Azure Cosmos DB
customers. The transition is seamless and they now have access to a broader range of new capabilities offered by
Azure Cosmos DB.

Azure Cosmos DB provides the best capabilities of relational and non-relational databases.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/introduction.md
https://aka.ms/acdbsla

Horizontal scale x � � Independently scale
storage and throughput

Latency guarantees x � � <10 ms for reads, <15 ms
for writes at p99

High availability x � � Always on, PACELC
tradeoffs, automatic &
manual failover

Data model + API Relational + SQL Multi-model + OSS API Multi-model + SQL + OSS
API (more coming soon)

SLAs � x � Comprehensive SLAs for
latency, throughput,
consistency, availability

CAPABILITIES RELATIONAL DBS
NON-RELATIONAL (NOSQL)
DBS AZURE COSMOS DB

Key capabilities
As a globally distributed database service, Azure Cosmos DB provides the following capabilities to help you build
scalable, globally distributed, highly responsive applications:

Turnkey global distribution

Your application is instantly available to your users, everywhere. Now your data can be too.
Don't worry about hardware, adding nodes, VMs or cores. Just point and click, and your data is there.

Multiple data models and popular APIs for accessing and querying data

Support for multiple data models including key-value, document, graph, and columnar.
Extensible APIs for Node.js, Java, .NET, .NET Core, Python, and MongoDB.
SQL and Gremlin for queries.

Elastically scale throughput and storage on demand, worldwide

Easily scale throughput at second and minute granularities, and change it anytime you want.
Scale storage transparently and automatically to cover your size requirements now and forever.

Build highly responsive and mission-critical applications

Get access to your data with single digit millisecond latencies at the 99th percentile, anywhere in the
world.

Ensure "always on" availability

99.99% availability within a single region.
Deploy to any number of Azure regions for higher availability.
Simulate a failure of one or more regions with zero-data loss guarantees.

Write globally distributed applications, the right way

Five consistency models models offer strong SQL-like consistency to NoSQL-like eventual consistency,
and every thing in between.

Money back guarantees

Your data gets there fast, or your money back.
Service level agreements for availability, latency, throughput, and consistency.

https://aka.ms/acdbrupm
https://azure.microsoft.com/regions
https://aka.ms/acdbsla

Global distribution

No database schema/index management

Stop worrying about keeping your database schema and indexes in-sync with your application’s
schema. We're schema-free.

Low cost of ownership

Five to ten times more cost effective than a non-managed solution.
Three times cheaper than DynamoDB.

Azure Cosmos DB containers are distributed along two dimensions:

1. Within a given region, all resources are horizontally partitioned using resource partitions (local distribution).
2. Each resource partition is also replicated across geographical regions (global distribution).

When your storage and throughput needs to be scaled, Cosmos DB transparently performs partition management
operations across all the regions. Independent of the scale, distribution, or failures, Cosmos DB continues to
provide a single system image of the globally distributed resources.

Global distribution of resources in Cosmos DB is turn-key. At any time with a few button clicks (or
programmatically with a single API call), you can associate any number of geographical regions with your
database account.

Regardless of the amount of data or the number of regions, Cosmos DB guarantees each newly associated region
to start processing client requests under an hour at the 99th percentile. This is done by parallelizing the seeding
and copying data from all the source resource partitions to the newly associated region. Customers can also

https://aka.ms/documentdb-tco-paper

Multi-model, multi-API support

Horizontal scaling of storage and throughput

remove an existing region or take a region that was previously associated with their database account offline.

Azure Cosmos DB natively supports multiple data models including documents, key-value, graph, and column-
family. The core content-model of Cosmos DB’s database engine is based on atom-record-sequence (ARS). Atoms
consist of a small set of primitive types like string, bool, and number. Records are structs composed of these
types. Sequences are arrays consisting of atoms, records, or sequences.

The database engine can efficiently translate and project different data models onto the ARS-based data model.
The core data model of Cosmos DB is natively accessible from dynamically typed programming languages and
can be exposed as-is as JSON.

The service also supports popular database APIs for data access and querying. Cosmos DB’s database engine
currently supports DocumentDB SQL, MongoDB, Azure Tables (preview), and Gremlin (preview). You can continue
to build applications using popular OSS APIs and get all the benefits of a battle-tested and fully managed, globally
distributed database service.

All the data within a Cosmos DB container (for example, a document collection, table, or graph) is horizontally
partitioned and transparently managed by resource partitions. A resource partition is a consistent and highly
available container of data partitioned by a customer specified partition-key. It provides a single system image for
a set of resources it manages and is a fundamental unit of scalability and distribution. Cosmos DB is designed to
let you elastically scale throughput based on the application traffic patterns across different geographical regions
to support fluctuating workloads varying both by geography and time. The service manages the partitions
transparently without compromising the availability, consistency, latency, or throughput of a Cosmos DB
container.

You can elastically scale throughput of an Azure Cosmos DB container by programmatically provisioning
throughput using request units per second (RU/s). Internally, the service transparently manages resource
partitions to deliver the throughput on a given container. Cosmos DB ensures that the throughput is available for
use across all the regions associated with the container. The new throughput is effective within five seconds of the
change in the configured throughput value.

You can provision throughput on a Cosmos DB container at both, per-second and at per-minute (RU/m)
granularities. The provisioned throughput at per-minute granularity is used to manage unexpected spikes in the

Low latency guarantees at the 99th percentile

Transparent multi-homing and 99.99% high availability

Multiple, well-defined consistency models

workload occurring at a per-second granularity.

As part of its SLAs, Cosmos DB guarantees end-to-end low latency at the 99th percentile to its customers. For a
typical 1-KB item, Cosmos DB guarantees end-to-end latency of reads under 10 ms and indexed writes under 15
ms at the 99th percentile, within the same Azure region. The median latencies are significantly lower (under 5 ms).
With an upper bound of request processing on every database transaction, Cosmos DB allows clients to clearly
distinguish between transactions with high latency vs. a database being unavailable.

You can dynamically associate "priorities" to the regions associated with your Azure Cosmos DB database
account. Priorities are used to direct the requests to specific regions in the event of regional failures. In an unlikely
event of a regional disaster, Cosmos DB automatically failovers in the order of priority.

To test the end-to-end availability of the application, you can manually trigger failover (rate limited to two
operations within an hour). Cosmos DB guarantees zero data loss during manual regional failovers. In case a
regional disaster occurs, Cosmos DB guarantees an upper-bound on data loss during the system-initiated
automatic failover. You do not have to redeploy your application after a regional failover, and availability SLAs are
maintained by Azure Cosmos DB.

For this scenario, Cosmos DB allows you to interact with resources using either logical (region-agnostic) or
physical (region-specific) endpoints. The former ensures that the application can transparently be multi-homed in
case of failover. The latter provides fine-grained control to the application to redirect reads and writes to specific
regions. Cosmos DB guarantees 99.99% availability SLA for every database account. The availability guarantees
are agnostic of the scale (provisioned throughput and storage), number of regions, or geographical distance
between regions associated with a given database.

Commercial distributed databases fall into two categories: databases that do not offer well-defined, provable
consistency choices at all, and databases which offer two extreme programmability choices (strong vs. eventual
consistency). The former burdens application developers with minutia of their replication protocols and expects
them to make difficult tradeoffs between consistency, availability, latency, and throughput. The latter puts a
pressure to choose one of the two extremes. Despite the abundance of research and proposals for more than 50
consistency models, the distributed database community has not been able to commercialize consistency levels
beyond strong and eventual consistency.

Cosmos DB allows you to choose between five well-defined consistency models along the consistency spectrum –
strong, bounded staleness, session, consistent prefix, and eventual.

The following table illustrates the specific guarantees each consistency level provides.

Consistency Levels and guarantees

http://dl.acm.org/citation.cfm?id=383631

CONSISTENCY LEVEL GUARANTEES

Strong Linearizability

Bounded Staleness Consistent Prefix. Reads lag behind writes by k prefixes or t
interval

Session Consistent Prefix. Monotonic reads, monotonic writes, read-
your-writes, write-follows-reads

Consistent Prefix Updates returned are some prefix of all the updates, with no
gaps

Eventual Out of order reads

Guaranteed service level agreements

Schema-free

Low cost of ownership

Next steps

You can configure the default consistency level on your Cosmos DB account (and later override the consistency on
a specific read request). Internally, the default consistency level applies to data within the partition sets which may
be span regions.

Cosmos DB is the first managed database service to offer 99.99% SLA guarantees for availability, throughput, low
latency, and consistency.

Availability: 99.99% uptime availability SLA for each of the data and control plane operations.
Throughput: 99.99% of requests complete successfully
Latency: 99.99% of <10 ms latencies at the 99th percentile
Consistency: 100% of read requests will meet the consistency guarantee for the consistency level requested by
you.

Both relational and NoSQL databases force you to deal with schema & index management, versioning and
migration – all of this is extremely challenging in a globally distributed setup. But don’t worry -- Cosmos DB
makes this problem go away! With Cosmos DB, you do not have to manage schemas and indexes, deal with
schema versioning or worry about application downtime while migrating schemas. Cosmos DB’s database engine
is fully schema-agnostic – it automatically indexes all the data it ingests without requiring any schema or indexes
and serves blazing fast queries.

When all total cost of ownership (TCO) considerations taken into account, managed cloud services like Azure
Cosmos DB can be five to ten times more cost effective than their OSS counter-parts running on-premises or
virtual machines. And Azure Cosmos DB is up to two to three times cheaper than DynamoDB for high volume
workloads. Learn more in the TCO whitepaper.

Get started with Azure Cosmos DB with one of our quickstarts:

Get started with Azure Cosmos DB's DocumentDB API
Get started with Azure Cosmos DB's MongoDB API
Get started with Azure Cosmos DB's Graph API

https://aka.ms/acdbsla
https://aka.ms/documentdb-tco-paper

Get started with Azure Cosmos DB's Table API

Azure Cosmos DB: Build a DocumentDB API web
app with .NET and the Azure portal
6/1/2017 • 7 min to read • Edit Online

Prerequisites

Create a database account

Azure Cosmos DB is Microsoft’s globally distributed multi-model database service. You can quickly create and
query document, key/value, and graph databases, all of which benefit from the global distribution and horizontal
scale capabilities at the core of Azure Cosmos DB.

This quick start demonstrates how to create an Azure Cosmos DB account, document database, and collection
using the Azure portal. You'll then build and deploy a todo list web app built on the DocumentDB .NET API, as
shown in the following screenshot.

If you don’t already have Visual Studio 2017 installed, you can download and use the free Visual Studio 2017
Community Edition. Make sure that you enable Azure development during the Visual Studio setup.

If you don't have an Azure subscription, create a free account before you begin.

1. In a new window, sign in to the Azure portal.
2. In the left pane, click New, click Databases, and then click Azure Cosmos DB.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/create-documentdb-dotnet.md
https://www.visualstudio.com/downloads/
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://portal.azure.com/

3. On the New account blade, specify the configuration that you want for the Azure Cosmos DB account.

With Azure Cosmos DB, you can choose one of four programming models: Gremlin (graph), MongoDB, SQL
(DocumentDB), and Table (key-value).

In this quick-start article we program against the DocumentDB API, so choose SQL (DocumentDB) as you
fill out the form. But if you have graph data for a social media app, or key/value (table) data, or data
migrated from a MongoDB app, realize that Azure Cosmos DB can provide a highly available, globally
distributed database service platform for all your mission-critical applications.

Complete the fields on the New account blade, using the information in the following screenshot as a
guide. When you set up your account, choose unique values that do not match those in the screenshot.

SETTING SUGGESTED VALUE DESCRIPTION

ID Unique value A unique name that identifies your
Azure Cosmos DB account. The
string documents.azure.com is
appended to the ID you provide to
create your URI, so use a unique but
identifiable ID. The ID can contain
only lowercase letters, numbers, and
the hyphen (-) character, and it must
contain from 3 through 50
characters.

API SQL (DocumentDB) We program against the
DocumentDB API later in this article.

Subscription Your subscription The Azure subscription that you want
to use for your Azure Cosmos DB
account.

Resource Group The same value as ID The new resource-group name for
your account. For simplicity, you can
use the same name as your ID.

Location The region closest to your users The geographic location in which to
host your Azure Cosmos DB account.
Choose the location that's closest to
your users to give them the fastest
access to the data.

4. Click Create to create the account.
5. On the top toolbar, click Notifications to monitor the deployment process.

6. When the deployment is complete, open the new account from the All Resources tile.

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-introduction

Add a collection

You can now use Data Explorer to create a collection and add data to your database.

1. In the Azure portal, in the left pane, click Data Explorer.

2. On the Data Explorer blade, click New Collection, and then provide the following information:

Add sample data

SETTING SUGGESTED VALUE DESCRIPTION

Database id Items The ID for your new database.
Database names must contain from
1 through 255 characters, and they
cannot contain /, \, #, ?, or a trailing
space.

Collection id ToDoList The ID for your new collection.
Collection names have the same
character requirements as database
IDs.

Storage capacity Fixed (10 GB) Use the default value. This is the
storage capacity of the database.

Throughput 400 RU Use the default value. If you want to
reduce latency, you can scale up the
throughput later.

Partition key /userid A partition key that distributes data
evenly to each partition. Selecting the
correct partition key is important in
creating a performant collection. To
learn more, see Designing for
partitioning.

3. After you've completed the form, click OK.

You can now add data to your new collection using Data Explorer.

1. In Data Explorer, the new database appears in the Collections pane. Expand the Items database, expand the
ToDoList collection, click Documents, and then click New Documents.

Clone the sample application

Review the code

{
 "id": "1",
 "category": "personal",
 "name": "groceries",
 "description": "Pick up apples and strawberries."
}

2. Now add a few documents to the collection with the following structure, where you insert unique values for
id in each document and change the other properties as you see fit. Your new documents can have any
structure you want as Azure Cosmos DB doesn't impose any schema on your data.

You can now use queries in Data Explorer to retrieve your data. By default, Data Explorer uses
SELECT * FROM c to retrieve all documents in the collection, but you can change that to
SELECT * FROM c ORDER BY c.name ASC , to return all the documents in alphabetic ascending order of the name

property.

You can also use Data Explorer to create stored procedures, UDFs, and triggers to perform server-side
business logic as well as scale throughput. Data Explorer exposes all of the built-in programmatic data
access available in the APIs, but provides easy access to your data in the Azure portal.

Now let's clone a DocumentDB API app from github, set the connection string, and run it. You'll see how easy it is
to work with data programmatically.

git clone https://github.com/Azure-Samples/documentdb-dotnet-todo-app.git

1. Open a git terminal window, such as git bash, and CD to a working directory.

2. Run the following command to clone the sample repository.

3. Then open the solution file in Visual Studio.

Let's make a quick review of what's happening in the app. Open the DocumentDBRepository.cs file and you'll find
that these lines of code create the Azure Cosmos DB resources.

client = new DocumentClient(new Uri(ConfigurationManager.AppSettings["endpoint"]),
ConfigurationManager.AppSettings["authKey"]);`

await client.CreateDatabaseAsync(new Database { Id = DatabaseId });

await client.CreateDocumentCollectionAsync(
 UriFactory.CreateDatabaseUri(DatabaseId),
 new DocumentCollection { Id = CollectionId },
 new RequestOptions { OfferThroughput = 1000 });

The DocumentClient is initialized.

A new database is created.

A new collection is created.

Update your connection string

Run the web app

Now go back to the Azure portal to get your connection string information and copy it into the app.

1. In the Azure portal, in your Azure Cosmos DB account, in the left navigation click Keys, and then click Read-
write Keys. You'll use the copy buttons on the right side of the screen to copy the URI and Primary Key into
the web.config file in the next step.

2. In Visual Studio 2017, open the web.config file.

3. Copy your URI value from the portal (using the copy button) and make it the value of the endpoint key in
web.config.

<add key="endpoint" value="FILLME" />

4. Then copy your PRIMARY KEY value from the portal and make it the value of the authKey in web.config.
You've now updated your app with all the info it needs to communicate with Azure Cosmos DB.

<add key="authKey" value="FILLME" />

1. In Visual Studio, right-click on the project in Solution Explorer and then click Manage NuGet Packages.

2. In the NuGet Browse box, type DocumentDB.

3. From the results, install the Microsoft.Azure.DocumentDB library. This installs the
Microsoft.Azure.DocumentDB package as well as all dependencies.

4. Click CTRL + F5 to run the application. Your app displays in your browser.

5. Click Create New in the browser and create a few new tasks in your to-do app.

http://portal.azure.com/

Review SLAs in the Azure portal

You can now go back to Data Explorer and see query, modify, and work with this new data.

Now that your app is up and running, you'll want to ensure business continuity and watch user access to ensure
high availability. You can use the Azure portal to review the availability, latency, throughput, and consistency of
your collection.

Each graph that's associated with the Azure Cosmos DB Service Level Agreements (SLAs) provides a line that
shows the quota required to meet the SLA and your actual usage, giving you a clear view into your database
performance. Additional metrics, such as storage usage and number of requests per minute, are also included in
the portal.

In the Azure portal, in the left pane, under Monitoring, click Metrics.

https://azure.microsoft.com/support/legal/sla/documentdb/

Clean up resources

Next steps

If you're not going to continue to use this app, delete all resources created by this quickstart in the Azure portal
with the following steps:

1. From the left-hand menu in the Azure portal, click Resource groups and then click the name of the resource
you created.

2. On your resource group page, click Delete, type the name of the resource to delete in the text box, and then
click Delete.

In this quickstart, you've learned how to create an Azure Cosmos DB account, create a collection using the Data
Explorer, and run a web app. You can now import additional data to your Cosmos DB account.

Import data into Azure Cosmos DB

Azure Cosmos DB: Build a DocumentDB API app with
Java and the Azure portal
6/1/2017 • 6 min to read • Edit Online

Prerequisites

Create a database account

Azure Cosmos DB is Microsoft’s globally distributed multi-model database service. You can quickly create and
query document, key/value, and graph databases, all of which benefit from the global distribution and horizontal
scale capabilities at the core of Azure Cosmos DB.

This quick start demonstrates how to create an Azure Cosmos DB account, document database, and collection using
the Azure portal. You'll then build and run a console app built on the DocumentDB Java API.

Before you can run this sample, you must have the following prerequisites:
JDK 1.7+ (Run apt-get install default-jdk if you don't have JDK)
Maven (Run apt-get install maven if you don't have Maven)

If you don't have an Azure subscription, create a free account before you begin.

1. In a new window, sign in to the Azure portal.
2. In the left pane, click New, click Databases, and then click Azure Cosmos DB.

3. On the New account blade, specify the configuration that you want for the Azure Cosmos DB account.

With Azure Cosmos DB, you can choose one of four programming models: Gremlin (graph), MongoDB, SQL
(DocumentDB), and Table (key-value).

In this quick-start article we program against the DocumentDB API, so choose SQL (DocumentDB) as you

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/create-documentdb-java.md
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://portal.azure.com/

SETTING SUGGESTED VALUE DESCRIPTION

ID Unique value A unique name that identifies your
Azure Cosmos DB account. The string
documents.azure.com is appended to
the ID you provide to create your
URI, so use a unique but identifiable
ID. The ID can contain only lowercase
letters, numbers, and the hyphen (-)
character, and it must contain from 3
through 50 characters.

API SQL (DocumentDB) We program against the
DocumentDB API later in this article.

Subscription Your subscription The Azure subscription that you want
to use for your Azure Cosmos DB
account.

Resource Group The same value as ID The new resource-group name for
your account. For simplicity, you can
use the same name as your ID.

Location The region closest to your users The geographic location in which to
host your Azure Cosmos DB account.
Choose the location that's closest to
your users to give them the fastest
access to the data.

4. Click Create to create the account.

fill out the form. But if you have graph data for a social media app, or key/value (table) data, or data
migrated from a MongoDB app, realize that Azure Cosmos DB can provide a highly available, globally
distributed database service platform for all your mission-critical applications.

Complete the fields on the New account blade, using the information in the following screenshot as a
guide. When you set up your account, choose unique values that do not match those in the screenshot.

5. On the top toolbar, click Notifications to monitor the deployment process.

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-introduction

Add a collection

6. When the deployment is complete, open the new account from the All Resources tile.

You can now use Data Explorer to create a collection and add data to your database.

1. In the Azure portal, in the left pane, click Data Explorer.

2. On the Data Explorer blade, click New Collection, and then provide the following information:

Clone the sample application

SETTING SUGGESTED VALUE DESCRIPTION

Database id Items The ID for your new database.
Database names must contain from 1
through 255 characters, and they
cannot contain /, \, #, ?, or a trailing
space.

Collection id ToDoList The ID for your new collection.
Collection names have the same
character requirements as database
IDs.

Storage capacity Fixed (10 GB) Use the default value. This is the
storage capacity of the database.

Throughput 400 RU Use the default value. If you want to
reduce latency, you can scale up the
throughput later.

Partition key /userid A partition key that distributes data
evenly to each partition. Selecting the
correct partition key is important in
creating a performant collection. To
learn more, see Designing for
partitioning.

3. After you've completed the form, click OK.

Now let's clone a DocumentDB API app from github, set the connection string, and run it. You see how easy it is to

Review the code

work with data programmatically.

git clone https://github.com/Azure-Samples/azure-cosmos-db-java-getting-started.git

1. Open a git terminal window, such as git bash, and CD to a working directory.

2. Run the following command to clone the sample repository.

Let's make a quick review of what's happening in the app. Open the app.js file and you find that these lines of code
create the Azure Cosmos DB resources.

this.client = new DocumentClient("https://FILLME.documents.azure.com",
 "FILLME",
 new ConnectionPolicy(),
 ConsistencyLevel.Session);

Database database = new Database();
database.setId(databaseName);

this.client.createDatabase(database, null);

DocumentCollection collectionInfo = new DocumentCollection();
collectionInfo.setId(collectionName);

// DocumentDB collections can be reserved with throughput
// specified in request units/second. 1 RU is a normalized
// request equivalent to the read of a 1KB document. Here we
// create a collection with 400 RU/s.
RequestOptions requestOptions = new RequestOptions();
requestOptions.setOfferThroughput(400);

this.client.createCollection(databaseLink, collectionInfo, requestOptions);

// Any Java object within your code can be serialized into JSON and written to Azure Cosmos DB
Family andersenFamily = new Family();
andersenFamily.setId("Andersen.1");
andersenFamily.setLastName("Andersen");
// More properties

String collectionLink = String.format("/dbs/%s/colls/%s", databaseName, collectionName);
this.client.createDocument(collectionLink, family, new RequestOptions(), true);

The DocumentClient is initialized.

A new database is created.

A new collection is created.

Some documents are created.

A SQL query over JSON is performed.

Update your connection string

FeedOptions queryOptions = new FeedOptions();
queryOptions.setPageSize(-1);
queryOptions.setEnableCrossPartitionQuery(true);

String collectionLink = String.format("/dbs/%s/colls/%s", databaseName, collectionName);
FeedResponse<Document> queryResults = this.client.queryDocuments(
 collectionLink,
 "SELECT * FROM Family WHERE Family.lastName = 'Andersen'", queryOptions);

System.out.println("Running SQL query...");
for (Document family : queryResults.getQueryIterable()) {
 System.out.println(String.format("\tRead %s", family));
}

Now go back to the Azure portal to get your connection string information and copy it into the app.

1. In the Azure portal, in your Azure Cosmos DB account, in the left navigation click Keys, and then click Read-
write Keys. You'll use the copy buttons on the right side of the screen to copy the URI and Primary Key into
the Program.java file in the next step.

2. In Open the Program.java file.

3. Copy your URI value from the portal (using the copy button) and make it the value of the endpoint to the
DocumentClient constructor in Program.java .

"https://FILLME.documents.azure.com"

4. Then copy your PRIMARY KEY value from the portal and make it the value of the master key to the
DocumentClient constructor in `Program.java'. You've now updated your app with all the info it needs to
communicate with Azure Cosmos DB.

http://portal.azure.com/

Run the app

Review SLAs in the Azure portal

Clean up resources

config.primaryKey "FILLME"

1. Run mvn package in a terminal to install required npm modules

2. Run mvn exec:java -D exec.mainClass=GetStarted.Program in a terminal to start your Java application.

You can now go back to Data Explorer and see query, modify, and work with this new data.

Now that your app is up and running, you'll want to ensure business continuity and watch user access to ensure
high availability. You can use the Azure portal to review the availability, latency, throughput, and consistency of
your collection.

Each graph that's associated with the Azure Cosmos DB Service Level Agreements (SLAs) provides a line that shows
the quota required to meet the SLA and your actual usage, giving you a clear view into your database performance.
Additional metrics, such as storage usage and number of requests per minute, are also included in the portal.

In the Azure portal, in the left pane, under Monitoring, click Metrics.

If you're not going to continue to use this app, delete all resources created by this quickstart in the Azure portal

https://azure.microsoft.com/support/legal/sla/documentdb/

Next steps

with the following steps:

1. From the left-hand menu in the Azure portal, click Resource groups and then click the name of the resource
you created.

2. On your resource group page, click Delete, type the name of the resource to delete in the text box, and then
click Delete.

In this quickstart, you've learned how to create an Azure Cosmos DB account, create a collection using the Data
Explorer, and run an app. You can now import additional data to your Cosmos DB account.

Import data into Azure Cosmos DB

Azure Cosmos DB: Build a DocumentDB API app with
Node.js and the Azure portal
6/1/2017 • 6 min to read • Edit Online

Prerequisites

Create a database account

Azure Cosmos DB is Microsoft’s globally distributed multi-model database service. You can quickly create and
query document, key/value, and graph databases, all of which benefit from the global distribution and horizontal
scale capabilities at the core of Azure Cosmos DB.

This quick start demonstrates how to create an Azure Cosmos DB account, document database, and collection using
the Azure portal. You then build and run a console app built on the DocumentDB Node.js API.

Before you can run this sample, you must have the following prerequisites:
Node.js version v0.10.29 or higher
Git

If you don't have an Azure subscription, create a free account before you begin.

1. In a new window, sign in to the Azure portal.
2. In the left pane, click New, click Databases, and then click Azure Cosmos DB.

3. On the New account blade, specify the configuration that you want for the Azure Cosmos DB account.

With Azure Cosmos DB, you can choose one of four programming models: Gremlin (graph), MongoDB, SQL
(DocumentDB), and Table (key-value).

In this quick-start article we program against the DocumentDB API, so choose SQL (DocumentDB) as you

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/create-documentdb-nodejs.md
https://nodejs.org/en/
http://git-scm.com/
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://portal.azure.com/

SETTING SUGGESTED VALUE DESCRIPTION

ID Unique value A unique name that identifies your
Azure Cosmos DB account. The string
documents.azure.com is appended to
the ID you provide to create your
URI, so use a unique but identifiable
ID. The ID can contain only lowercase
letters, numbers, and the hyphen (-)
character, and it must contain from 3
through 50 characters.

API SQL (DocumentDB) We program against the
DocumentDB API later in this article.

Subscription Your subscription The Azure subscription that you want
to use for your Azure Cosmos DB
account.

Resource Group The same value as ID The new resource-group name for
your account. For simplicity, you can
use the same name as your ID.

Location The region closest to your users The geographic location in which to
host your Azure Cosmos DB account.
Choose the location that's closest to
your users to give them the fastest
access to the data.

4. Click Create to create the account.

fill out the form. But if you have graph data for a social media app, or key/value (table) data, or data
migrated from a MongoDB app, realize that Azure Cosmos DB can provide a highly available, globally
distributed database service platform for all your mission-critical applications.

Complete the fields on the New account blade, using the information in the following screenshot as a
guide. When you set up your account, choose unique values that do not match those in the screenshot.

5. On the top toolbar, click Notifications to monitor the deployment process.

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-introduction

Add a collection

6. When the deployment is complete, open the new account from the All Resources tile.

You can now use Data Explorer to create a collection and add data to your database.

1. In the Azure portal, in the left pane, click Data Explorer.

2. On the Data Explorer blade, click New Collection, and then provide the following information:

Clone the sample application

SETTING SUGGESTED VALUE DESCRIPTION

Database id Items The ID for your new database.
Database names must contain from 1
through 255 characters, and they
cannot contain /, \, #, ?, or a trailing
space.

Collection id ToDoList The ID for your new collection.
Collection names have the same
character requirements as database
IDs.

Storage capacity Fixed (10 GB) Use the default value. This is the
storage capacity of the database.

Throughput 400 RU Use the default value. If you want to
reduce latency, you can scale up the
throughput later.

Partition key /userid A partition key that distributes data
evenly to each partition. Selecting the
correct partition key is important in
creating a performant collection. To
learn more, see Designing for
partitioning.

3. After you've completed the form, click OK.

Now let's clone a DocumentDB API app from github, set the connection string, and run it. You see how easy it is to

Review the code

work with data programmatically.

git clone https://github.com/Azure-Samples/azure-cosmos-db-documentdb-nodejs-getting-started.git

1. Open a git terminal window, such as git bash, and CD to a working directory.

2. Run the following command to clone the sample repository.

Let's make a quick review of what's happening in the app. Open the app.js file and you find that these lines of code
create the Azure Cosmos DB resources.

var client = new documentClient(config.endpoint, { "masterKey": config.primaryKey });

client.createDatabase(config.database, (err, created) => {
 if (err) reject(err)
 else resolve(created);
});

client.createCollection(databaseUrl, config.collection, { offerThroughput: 400 }, (err, created) => {
 if (err) reject(err)
 else resolve(created);
});

client.createDocument(collectionUrl, document, (err, created) => {
 if (err) reject(err)
 else resolve(created);
});

client.queryDocuments(
 collectionUrl,
 'SELECT VALUE r.children FROM root r WHERE r.lastName = "Andersen"'
).toArray((err, results) => {
 if (err) reject(err)
 else {
 for (var queryResult of results) {
 let resultString = JSON.stringify(queryResult);
 console.log(`\tQuery returned ${resultString}`);
 }
 console.log();
 resolve(results);
 }
});

The documentClient is initialized.

A new database is created.

A new collection is created.

Some documents are created.

A SQL query over JSON is performed.

Update your connection string

Run the app

Review SLAs in the Azure portal

Now go back to the Azure portal to get your connection string information and copy it into the app.

1. In the Azure portal, in your Azure Cosmos DB account, in the left navigation click Keys, and then click Read-
write Keys. You'll use the copy buttons on the right side of the screen to copy the URI and Primary Key into
the config.js file in the next step.

2. In Open the config.js file.

3. Copy your URI value from the portal (using the copy button) and make it the value of the endpoint key in
config.js .

config.endpoint = "https://FILLME.documents.azure.com"

4. Then copy your PRIMARY KEY value from the portal and make it the value of the config.primaryKey in config.js .
You've now updated your app with all the info it needs to communicate with Azure Cosmos DB.

config.primaryKey "FILLME"

1. Run npm install in a terminal to install required npm modules

2. Run node app.js in a terminal to start your node application.

You can now go back to Data Explorer and see query, modify, and work with this new data.

Now that your app is up and running, you'll want to ensure business continuity and watch user access to ensure
high availability. You can use the Azure portal to review the availability, latency, throughput, and consistency of
your collection.

http://portal.azure.com/

Clean up resources

Next steps

Each graph that's associated with the Azure Cosmos DB Service Level Agreements (SLAs) provides a line that shows
the quota required to meet the SLA and your actual usage, giving you a clear view into your database performance.
Additional metrics, such as storage usage and number of requests per minute, are also included in the portal.

In the Azure portal, in the left pane, under Monitoring, click Metrics.

If you're not going to continue to use this app, delete all resources created by this quickstart in the Azure portal
with the following steps:

1. From the left-hand menu in the Azure portal, click Resource groups and then click the name of the resource
you created.

2. On your resource group page, click Delete, type the name of the resource to delete in the text box, and then
click Delete.

In this quickstart, you've learned how to create an Azure Cosmos DB account, create a collection using the Data
Explorer, and run an app. You can now import additional data to your Cosmos DB account.

Import data into Azure Cosmos DB

https://azure.microsoft.com/support/legal/sla/documentdb/

Azure Cosmos DB: Build a DocumentDB API app with
Python and the Azure portal
6/1/2017 • 6 min to read • Edit Online

Prerequisites

Create a database account

Azure Cosmos DB is Microsoft’s globally distributed multi-model database service. You can quickly create and
query document, key/value, and graph databases, all of which benefit from the global distribution and horizontal
scale capabilities at the core of Azure Cosmos DB.

This quick start demonstrates how to create an Azure Cosmos DB account, document database, and collection using
the Azure portal. You then build and run a console app built on the DocumentDB Python API.

Before you can run this sample, you must have the following prerequisites:
Visual Studio 2015 or higher.
Python Tools for Visual Studio from GitHub. This tutorial uses Python Tools for VS 2015.
Python 2.7 from python.org

If you don't have an Azure subscription, create a free account before you begin.

1. In a new window, sign in to the Azure portal.
2. In the left pane, click New, click Databases, and then click Azure Cosmos DB.

3. On the New account blade, specify the configuration that you want for the Azure Cosmos DB account.

With Azure Cosmos DB, you can choose one of four programming models: Gremlin (graph), MongoDB, SQL
(DocumentDB), and Table (key-value).

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/create-documentdb-python.md
http://www.visualstudio.com/
http://microsoft.github.io/PTVS/
https://www.python.org/downloads/release/python-2712/
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://portal.azure.com/

SETTING SUGGESTED VALUE DESCRIPTION

ID Unique value A unique name that identifies your
Azure Cosmos DB account. The string
documents.azure.com is appended to
the ID you provide to create your
URI, so use a unique but identifiable
ID. The ID can contain only lowercase
letters, numbers, and the hyphen (-)
character, and it must contain from 3
through 50 characters.

API SQL (DocumentDB) We program against the
DocumentDB API later in this article.

Subscription Your subscription The Azure subscription that you want
to use for your Azure Cosmos DB
account.

Resource Group The same value as ID The new resource-group name for
your account. For simplicity, you can
use the same name as your ID.

Location The region closest to your users The geographic location in which to
host your Azure Cosmos DB account.
Choose the location that's closest to
your users to give them the fastest
access to the data.

4. Click Create to create the account.

In this quick-start article we program against the DocumentDB API, so choose SQL (DocumentDB) as you
fill out the form. But if you have graph data for a social media app, or key/value (table) data, or data
migrated from a MongoDB app, realize that Azure Cosmos DB can provide a highly available, globally
distributed database service platform for all your mission-critical applications.

Complete the fields on the New account blade, using the information in the following screenshot as a
guide. When you set up your account, choose unique values that do not match those in the screenshot.

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-introduction

Add a collection

5. On the top toolbar, click Notifications to monitor the deployment process.

6. When the deployment is complete, open the new account from the All Resources tile.

You can now use Data Explorer to create a collection and add data to your database.

1. In the Azure portal, in the left pane, click Data Explorer.

2. On the Data Explorer blade, click New Collection, and then provide the following information:

Clone the sample application

SETTING SUGGESTED VALUE DESCRIPTION

Database id Items The ID for your new database.
Database names must contain from 1
through 255 characters, and they
cannot contain /, \, #, ?, or a trailing
space.

Collection id ToDoList The ID for your new collection.
Collection names have the same
character requirements as database
IDs.

Storage capacity Fixed (10 GB) Use the default value. This is the
storage capacity of the database.

Throughput 400 RU Use the default value. If you want to
reduce latency, you can scale up the
throughput later.

Partition key /userid A partition key that distributes data
evenly to each partition. Selecting the
correct partition key is important in
creating a performant collection. To
learn more, see Designing for
partitioning.

3. After you've completed the form, click OK.

Now let's clone a DocumentDB API app from github, set the connection string, and run it. You see how easy it is to

work with data programmatically.

git clone https://github.com/Azure-Samples/azure-cosmos-db-documentdb-python-getting-started.git

Review the code

1. Open a git terminal window, such as git bash, and cd to a working directory.

2. Run the following command to clone the sample repository.

Let's make a quick review of what's happening in the app. Open the DocumentDBGetStarted.py file and you'll find
that these lines of code create the Azure Cosmos DB resources.

Initialize the Python DocumentDB client
client = document_client.DocumentClient(config['ENDPOINT'], {'masterKey': config['MASTERKEY']})

Create a database
db = client.CreateDatabase({ 'id': config['DOCUMENTDB_DATABASE'] })

Create collection options
options = {
 'offerEnableRUPerMinuteThroughput': True,
 'offerVersion': "V2",
 'offerThroughput': 400
}

Create a collection
collection = client.CreateCollection(db['_self'], { 'id': config['DOCUMENTDB_COLLECTION'] }, options)

Create some documents
document1 = client.CreateDocument(collection['_self'],
 {
 'id': 'server1',
 'Web Site': 0,
 'Cloud Service': 0,
 'Virtual Machine': 0,
 'name': 'some'
 })

The DocumentClient is initialized.

A new database is created.

A new collection is created.

Some documents are created.

A query is performed using SQL

Update your connection string

Query them in SQL
query = { 'query': 'SELECT * FROM server s' }

options = {}
options['enableCrossPartitionQuery'] = True
options['maxItemCount'] = 2

result_iterable = client.QueryDocuments(collection['_self'], query, options)
results = list(result_iterable);

print(results)

Now go back to the Azure portal to get your connection string information and copy it into the app.

1. In the Azure portal, in your Azure Cosmos DB account, in the left navigation click Keys, and then click Read-
write Keys. You'll use the copy buttons on the right side of the screen to copy the URI and Primary Key into
the DocumentDBGetStarted.py file in the next step.

2. In Open the DocumentDBGetStarted.py file.

3. Copy your URI value from the portal (using the copy button) and make it the value of the endpoint key in
DocumentDBGetStarted.py .

config.ENDPOINT : "https://FILLME.documents.azure.com"

4. Then copy your PRIMARY KEY value from the portal and make it the value of the config.MASTERKEY in
DocumentDBGetStarted.py . You've now updated your app with all the info it needs to communicate with Azure

Cosmos DB.

config.MASTERKEY : "FILLME"

http://portal.azure.com/

Run the app

Review SLAs in the Azure portal

Clean up resources

1. In Visual Studio, right-click on the project in Solution Explorer, select the current Python environment, then
right click.

2. Select Install Python Package, then type in pydocumentdb

3. Run F5 to run the application. Your app displays in your browser.

You can now go back to Data Explorer and see query, modify, and work with this new data.

Now that your app is up and running, you'll want to ensure business continuity and watch user access to ensure
high availability. You can use the Azure portal to review the availability, latency, throughput, and consistency of
your collection.

Each graph that's associated with the Azure Cosmos DB Service Level Agreements (SLAs) provides a line that shows
the quota required to meet the SLA and your actual usage, giving you a clear view into your database performance.
Additional metrics, such as storage usage and number of requests per minute, are also included in the portal.

In the Azure portal, in the left pane, under Monitoring, click Metrics.

If you're not going to continue to use this app, delete all resources created by this quickstart in the Azure portal

https://azure.microsoft.com/support/legal/sla/documentdb/

Next steps

with the following steps:

1. From the left-hand menu in the Azure portal, click Resource groups and then click the name of the resource
you created.

2. On your resource group page, click Delete, type the name of the resource to delete in the text box, and then
click Delete.

In this quickstart, you've learned how to create an Azure Cosmos DB account, create a collection using the Data
Explorer, and run an app. You can now import additional data to your Cosmos DB account.

Import data into Azure Cosmos DB for the DocumentDB API

Azure Cosmos DB: Build a web app with .NET,
Xamarin, and Facebook authentication
6/1/2017 • 7 min to read • Edit Online

Prerequisites

Create a database account

Azure Cosmos DB is Microsoft’s globally distributed multi-model database service. You can quickly create and
query document, key/value, and graph databases, all of which benefit from the global distribution and horizontal
scale capabilities at the core of Azure Cosmos DB.

This quick start demonstrates how to create an Azure Cosmos DB account, document database, and collection using
the Azure portal. You'll then build and deploy a todo list web app built on the DocumentDB .NET API, Xamarin, and
the Azure Cosmos DB authorization engine. The todo list web app implements a per-user data pattern that enables
users to login using Facebook Auth and manage their own to do items.

If you don’t already have Visual Studio 2017 installed, you can download and use the free Visual Studio 2017
Community Edition. Make sure that you enable Azure development during the Visual Studio setup.

If you don't have an Azure subscription, create a free account before you begin.

1. In a new window, sign in to the Azure portal.
2. In the left pane, click New, click Databases, and then click Azure Cosmos DB.

3. On the New account blade, specify the configuration that you want for the Azure Cosmos DB account.

With Azure Cosmos DB, you can choose one of four programming models: Gremlin (graph), MongoDB, SQL
(DocumentDB), and Table (key-value).

In this quick-start article we program against the DocumentDB API, so choose SQL (DocumentDB) as you

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/create-documentdb-xamarin-dotnet.md
https://www.xamarin.com/
https://www.visualstudio.com/downloads/
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://portal.azure.com/

SETTING SUGGESTED VALUE DESCRIPTION

ID Unique value A unique name that identifies your
Azure Cosmos DB account. The string
documents.azure.com is appended to
the ID you provide to create your
URI, so use a unique but identifiable
ID. The ID can contain only lowercase
letters, numbers, and the hyphen (-)
character, and it must contain from 3
through 50 characters.

API SQL (DocumentDB) We program against the
DocumentDB API later in this article.

Subscription Your subscription The Azure subscription that you want
to use for your Azure Cosmos DB
account.

Resource Group The same value as ID The new resource-group name for
your account. For simplicity, you can
use the same name as your ID.

Location The region closest to your users The geographic location in which to
host your Azure Cosmos DB account.
Choose the location that's closest to
your users to give them the fastest
access to the data.

4. Click Create to create the account.

fill out the form. But if you have graph data for a social media app, or key/value (table) data, or data
migrated from a MongoDB app, realize that Azure Cosmos DB can provide a highly available, globally
distributed database service platform for all your mission-critical applications.

Complete the fields on the New account blade, using the information in the following screenshot as a
guide. When you set up your account, choose unique values that do not match those in the screenshot.

5. On the top toolbar, click Notifications to monitor the deployment process.

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-introduction

Add a collection

6. When the deployment is complete, open the new account from the All Resources tile.

You can now use Data Explorer to create a collection and add data to your database.

1. In the Azure portal, in the left pane, click Data Explorer.

2. On the Data Explorer blade, click New Collection, and then provide the following information:

Clone the sample application

SETTING SUGGESTED VALUE DESCRIPTION

Database id Items The ID for your new database.
Database names must contain from 1
through 255 characters, and they
cannot contain /, \, #, ?, or a trailing
space.

Collection id ToDoList The ID for your new collection.
Collection names have the same
character requirements as database
IDs.

Storage capacity Fixed (10 GB) Use the default value. This is the
storage capacity of the database.

Throughput 400 RU Use the default value. If you want to
reduce latency, you can scale up the
throughput later.

Partition key /userid A partition key that distributes data
evenly to each partition. Selecting the
correct partition key is important in
creating a performant collection. To
learn more, see Designing for
partitioning.

3. After you've completed the form, click OK.

Now let's clone a DocumentDB API app from github, set the connection string, and run it. You'll see how easy it is to

Review the code

work with data programmatically.

git clone https://github.com/Azure/azure-documentdb-dotnet.git

1. Open a git terminal window, such as git bash, and cd to a working directory.

2. Run the following command to clone the sample repository.

3. Then open the DocumentDBTodo.sln file from the samples/xamarin/UserItems/xamarin.forms folder in
Visual Studio.

The code in the Xamarin folder contains:

Xamarin app. The app stores the user's todo items in a partitioned collection named UserItems.
Resource token broker API. A simple ASP.NET Web API to broker Azure Cosmos DB resource tokens to the
logged in users of the app. Resource tokens are short-lived access tokens that provide the app with the access to
the logged in user's data.

The authentication and data flow is illustrated in the diagram below.

The UserItems collection is created with the partition key '/userid'. Specifying a partition key for a collection
allows Azure Cosmos DB to scale infinitely as the number of users and items grows.
The Xamarin app allows users to login with Facebook credentials.
The Xamarin app uses Facebook access token to authenticate with ResourceTokenBroker API
The resource token broker API authenticates the request using App Service Auth feature, and requests an Azure
Cosmos DB resource token with read/write access to all documents sharing the authenticated user's partition
key.
Resource token broker returns the resource token to the client app.
The app accesses the user's todo items using the resource token.

Update your connection string

Build and deploy the web app

Now go back to the Azure portal to get your connection string information and copy it into the app.

1. In the Azure portal, in your Azure Cosmos DB account, in the left navigation click Keys, and then click Read-
write Keys. You'll use the copy buttons on the right side of the screen to copy the URI and Primary Key into
the Web.config file in the next step.

2. In Visual Studio 2017, open the Web.config file in the azure-documentdb-
dotnet/samples/xamarin/UserItems/ResourceTokenBroker/ResourceTokenBroker folder.

3. Copy your URI value from the portal (using the copy button) and make it the value of the accountUrl in
Web.config.

<add key="accountUrl" value="{Azure Cosmos DB account URL}"/>

4. Then copy your PRIMARY KEY value from the portal and make it the value of the accountKey in Web.congif.

<add key="accountKey" value="{Azure Cosmos DB secret}"/>

You've now updated your app with all the info it needs to communicate with Azure Cosmos DB.

1. In the Azure portal, create an App Service website to host the Resource token broker API.
2. In the Azure portal, open the App Settings blade of the Resource token broker API website. Fill in the

following app settings:

accountUrl - The Azure Cosmos DB account URL from the Keys tab of your Azure Cosmos DB account.
accountKey - The Azure Cosmos DB account master key from the Keys tab of your Azure Cosmos DB
account.
databaseId and collectionId of your created database and collection

http://portal.azure.com/

Review SLAs in the Azure portal

Clean up resources

3. Publish the ResourceTokenBroker solution to your created website.

4. Open the Xamarin project, and navigate to TodoItemManager.cs. Fill in the values for accountURL,
collectionId, databaseId, as well as resourceTokenBrokerURL as the base https url for the resource token
broker website.

5. Complete the How to configure your App Service application to use Facebook login tutorial to setup
Facebook authentication and configure the ResourceTokenBroker website.

Run the Xamarin app.

Now that your app is up and running, you'll want to ensure business continuity and watch user access to ensure
high availability. You can use the Azure portal to review the availability, latency, throughput, and consistency of
your collection.

Each graph that's associated with the Azure Cosmos DB Service Level Agreements (SLAs) provides a line that shows
the quota required to meet the SLA and your actual usage, giving you a clear view into your database performance.
Additional metrics, such as storage usage and number of requests per minute, are also included in the portal.

In the Azure portal, in the left pane, under Monitoring, click Metrics.

If you're not going to continue to use this app, delete all resources created by this quickstart in the Azure portal

https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-how-to-configure-facebook-authentication
https://azure.microsoft.com/support/legal/sla/documentdb/

Next steps

with the following steps:

1. From the left-hand menu in the Azure portal, click Resource groups and then click the name of the resource
you just created.

2. On your resource group page, click Delete, type the name of the resource to delete in the text box, and then
click Delete.

In this quickstart, you've learned how to create an Azure Cosmos DB account, create a collection using the Data
Explorer, and build and deploy a Xamarin app. You can now import additional data to your Cosmos DB account.

Import data into Azure Cosmos DB

Azure Cosmos DB: Migrate an existing Node.js
MongoDB web app
6/6/2017 • 6 min to read • Edit Online

Prerequisites

Azure Cosmos DB is Microsoft’s globally distributed multi-model database service. You can quickly create and
query document, key/value, and graph databases, all of which benefit from the global distribution and horizontal
scale capabilities at the core of Azure Cosmos DB.

This quickstart demonstrates how to use an existing MongoDB app written in Node.js and connect it to your Azure
Cosmos DB database, which supports MongoDB client connections. In other words, your Node.js application only
knows that it's connecting to a database using MongoDB APIs. It is transparent to the application that the data is
stored in Azure Cosmos DB.

When you are done, you will have a MEAN application (MongoDB, Express, AngularJS, and Node.js) running on
Azure Cosmos DB.

This quickstart requires Azure CLI 2.0. You may use the Azure Cloud Shell in the browser, or Install Azure CLI 2.0 on
your own computer to run the code blocks in this tutorial.

The Azure Cloud Shell (in public preview) is a web-based shell that is preconfigured to simplify using Azure tools.
With Cloud Shell, you always have the most up-to-date version of the tools available and you don’t have to install,
update or separately log in. Click the Try It button at the top right of an Azure CLI code block to launch the Cloud
Shell. Then, use the Copy button to copy and paste the sample code into the Cloud Shell.

You can also open the Cloud Shell from the Azure portal by clicking the button on the menu in the upper-right
of the portal.

In addition to Azure CLI, you need Node.js and Git. You will run az , npm , and git commands.

You should have working knowledge of Node.js. This quickstart is not intended to help you with developing
Node.js applications in general.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/create-mongodb-nodejs.md
https://azure.microsoft.com/services/cosmos-db/
https://docs.microsoft.com/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/azure/cloud-shell/quickstart
https://nodejs.org/
http://www.git-scm.com/downloads

Clone the sample application

git clone https://github.com/prashanthmadi/mean

Run the application

cd mean
npm install
npm start

Log in to Azure

az login

Add the Azure Cosmos DB module

Create a resource group

az group create --name myResourceGroup --location "West Europe"

Create an Azure Cosmos DB account

Open a git terminal window, such as git bash, and cd to a working directory.

Run the following commands to clone the sample repository. This sample repository contains the default MEAN.js
application.

Install the required packages and start the application.

If you are using the Azure Cloud Shell, click Try It in the code block below, follow the on-screen prompts to log in,
then proceed to the next command. If you are using an installed Azure CLI, log in to your Azure subscription with
the az login command and follow the on-screen directions.

If you are using an installed Azure CLI, check to see if the cosmosdb component is already installed by running the
az command. If cosmosdb is in the list of base commands, proceed to the next command.

If cosmosdb is not in the list of base commands, reinstall Azure CLI 2.0.

Create a resource group with the az group create. An Azure resource group is a logical container into which Azure
resources like web apps, databases and storage accounts are deployed and managed.

The following example creates a resource group in the West Europe region. Choose a unique name for the
resource group.

Create an Azure Cosmos DB account with the az cosmosdb create command.

In the following command, please substitute your own unique Azure Cosmos DB account name where you see the
<cosmosdb_name> placeholder. This unique name will be used as part of your Azure Cosmos DB endpoint (
https://<cosmosdb_name>.documents.azure.com/), so the name needs to be unique across all Azure Cosmos DB accounts in

Azure.

http://meanjs.org/
https://docs.microsoft.com/cli/azure/#login
https://docs.microsoft.com/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/cli/azure/group#create
https://docs.microsoft.com/cli/azure/cosmosdb#create

az cosmosdb create --name <cosmosdb_name> --resource-group myResourceGroup --kind MongoDB

{
 "databaseAccountOfferType": "Standard",
 "documentEndpoint": "https://<cosmosdb_name>.documents.azure.com:443/",
 "id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/myResourceGroup/providers/Microsoft.Document
DB/databaseAccounts/<cosmosdb_name>",
 "kind": "MongoDB",
 "location": "West Europe",
 "name": "<cosmosdb_name>",
 "readLocations": [
 {
 "documentEndpoint": "https://<cosmosdb_name>-westeurope.documents.azure.com:443/",
 "failoverPriority": 0,
 "id": "<cosmosdb_name>-westeurope",
 "locationName": "West Europe",
 "provisioningState": "Succeeded"
 }
],
 "resourceGroup": "myResourceGroup",
 "type": "Microsoft.DocumentDB/databaseAccounts",
 "writeLocations": [
 {
 "documentEndpoint": "https://<cosmosdb_name>-westeurope.documents.azure.com:443/",
 "failoverPriority": 0,
 "id": "<cosmosdb_name>-westeurope",
 "locationName": "West Europe",
 "provisioningState": "Succeeded"
 }
]
}

Connect your Node.js application to the database

Retrieve the key

az cosmosdb list-keys --name <cosmosdb_name> --resource-group myResourceGroup

{
 "primaryMasterKey": "RUayjYjixJDWG5xTqIiXjC...",
 "primaryReadonlyMasterKey": "...",
 "secondaryMasterKey": "...",
 "secondaryReadonlyMasterKey": "..."
}

The --kind MongoDB parameter enables MongoDB client connections.

When the Azure Cosmos DB account is created, the Azure CLI shows information similar to the following example.

In this step, you connect your MEAN.js sample application to an Azure Cosmos DB database you just created, using
a MongoDB connection string.

In order to connect to an Azure Cosmos DB database, you need the database key. Use the az cosmosdb list-keys
command to retrieve the primary key.

The Azure CLI outputs information similar to the following example.

Copy the value of primaryMasterKey to a text editor. You need this information in the next step.

https://docs.microsoft.com/cli/azure/cosmosdb#list-keys

Configure the connection string in your Node.js application

'use strict';

module.exports = {
 db: {
 uri: 'mongodb://<cosmosdb_name>:<primary_master_key>@<cosmosdb_name>.documents.azure.com:10250/mean-dev?
ssl=true&sslverifycertificate=false'
 }
};

NOTE

Run the application again.

npm start

View data in Data Explorer

In your MEAN.js repository, open config/env/local-development.js .

Replace the content of this file with the following code. Be sure to also replace the two <cosmosdb_name>

placeholders with your Azure Cosmos DB account name, and the <primary_master_key> placeholder with the key you
copied in the previous step.

The ssl=true option is important because Azure Cosmos DB requires SSL.

Save your changes.

Run npm start again.

A console message should now tell you that the development environment is up and running.

Navigate to http://localhost:3000 in a browser. Click Sign Up in the top menu and try to create two dummy users.

The MEAN.js sample application stores user data in the database. If you are successful and MEAN.js automatically
signs into the created user, then your Azure Cosmos DB connection is working.

Data stored by an Azure Cosmos DB is available to view, query, and run business-logic on in the Azure portal.

Deploy the Node.js application to Azure

'mongodb://<cosmosdb_name>:<primary_master_key>@<cosmosdb_name>.documents.azure.com:10250/mean?
ssl=true&sslverifycertificate=false',

git add .
git commit -m "configured MongoDB connection string"

Clean up resources

To view, query, and work with the user data created in the previous step, login to the Azure portal in your web
browser.

In the top Search box, type Azure Cosmos DB. When your Cosmos DB account blade opens, select your Cosmos DB
account. In the left navigation, click Data Explorer. Expand your collection in the Collections pane, and then you can
view the documents in the collection, query the data, and even create and run stored procedures, triggers, and
UDFs.

In this step, you deploy your MongoDB-connected Node.js application to Azure Cosmos DB.

You may have noticed that the configuration file that you changed earlier is for the development environment (
/config/env/local-development.js). When you deploy your application to App Service, it will run in the production

environment by default. So now, you need to make the same change to the respective configuration file.

In your MEAN.js repository, open config/env/production.js .

In the db object, replace the value of uri as show in the following example. Be sure to replace the placeholders as
before.

In the terminal, commit all your changes into Git. You can copy both commands to run them together.

If you're not going to continue to use this app, delete all resources created by this quickstart in the Azure portal
with the following steps:

1. From the left-hand menu in the Azure portal, click Resource groups and then click the name of the resource

https://portal.azure.com

Next steps

you created.
2. On your resource group page, click Delete, type the name of the resource to delete in the text box, and then

click Delete.

In this quickstart, you've learned how to create an Azure Cosmos DB account and create a MongoDB collection
using the Data Explorer. You can now migrate your MongoDB data to Azure Cosmos DB.

Import MongoDB data into Azure Cosmos DB

Azure Cosmos DB: Build a MongoDB API web app
with .NET and the Azure portal
6/1/2017 • 5 min to read • Edit Online

Prerequisites

Create a database account

Azure Cosmos DB is Microsoft’s globally distributed multi-model database service. You can quickly create and
query document, key/value, and graph databases, all of which benefit from the global distribution and horizontal
scale capabilities at the core of Azure Cosmos DB.

This quick start demonstrates how to create an Azure Cosmos DB account, document database, and collection
using the Azure portal. You'll then build and deploy a tasks list web app built on the MongoDB .NET driver.

If you don’t already have Visual Studio 2017 installed, you can download and use the free Visual Studio 2017
Community Edition. Make sure that you enable Azure development during the Visual Studio setup.

If you don't have an Azure subscription, create a free account before you begin.

1. In a new window, sign in to the Azure portal.
2. In the left menu, click New, click Databases, and then click Azure Cosmos DB.

3. In the New account blade, specify the desired configuration for the Azure Cosmos DB account.

With Azure Cosmos DB, you can choose one of four programming models: Gremlin (graph), MongoDB, SQL
(DocumentDB), and Table (key-value).

In this quick start we'll be programming against the MongoDB API so you'll choose MongoDB as you fill
out the form. But if you have graph data for a social media app, document data from a catalog app, or
key/value (table) data, realize that Azure Cosmos DB can provide a highly available, globally-distributed

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/create-mongodb-dotnet.md
https://docs.mongodb.com/ecosystem/drivers/csharp/
https://www.visualstudio.com/downloads/
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://portal.azure.com/

SETTING SUGGESTED VALUE DESCRIPTION

ID Unique value A unique name you choose to
identify the Azure Cosmos DB
account. documents.azure.com is
appended to the ID you provide to
create your URI, so use a unique but
identifiable ID. The ID may contain
only lowercase letters, numbers, and
the '-' character, and must be
between 3 and 50 characters.

API MongoDB We'll be programming against the
MongoDB API later in this article.

Subscription Your subscription The Azure subscription that you want
to use for the Azure Cosmos DB
account.

Resource Group The same value as ID The new resource group name for
your account. For simplicity, you can
use the same name as your ID.

Location The region closest to your users The geographic location in which to
host your Azure Cosmos DB account.
Choose the location closest to your
users to give them the fastest access
to the data.

database service platform for all your mission-critical applications.

Fill out the New account blade using the information in the screenshot as a guide . You will choose unique
values as you set up your account so your values will not match the screenshot exactly

4. Click Create to create the account.

5. On the toolbar, click Notifications to monitor the deployment process.

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-protocol-mongodb

Clone the sample application

6. When the deployment is complete, open the new account from the All Resources tile.

Now let's clone a MongoDB API app from github, set the connection string, and run it. You'll see how easy it is to
work with data programmatically.

git clone https://github.com/Azure-Samples/azure-cosmos-db-mongodb-dotnet-getting-started.git

1. Open a git terminal window, such as git bash, and cd to a working directory.

2. Run the following command to clone the sample repository.

Review the code

Update your connection string

Run the web app

3. Then open the solution file in Visual Studio.

Let's make a quick review of what's happening in the app. Open the Dal.cs file under the DAL directory and you'll
find that these lines of code create the Azure Cosmos DB resources.

 MongoClientSettings settings = new MongoClientSettings();
 settings.Server = new MongoServerAddress(host, 10255);
 settings.UseSsl = true;
 settings.SslSettings = new SslSettings();
 settings.SslSettings.EnabledSslProtocols = SslProtocols.Tls12;

 MongoIdentity identity = new MongoInternalIdentity(dbName, userName);
 MongoIdentityEvidence evidence = new PasswordEvidence(password);

 settings.Credentials = new List<MongoCredential>()
 {
 new MongoCredential("SCRAM-SHA-1", identity, evidence)
 };

 MongoClient client = new MongoClient(settings);

private string dbName = "Tasks";
private string collectionName = "TasksList";

var database = client.GetDatabase(dbName);
var todoTaskCollection = database.GetCollection<MyTask>(collectionName);

collection.Find(new BsonDocument()).ToList();

Initialize the Mongo Client.

Retrieve the database and the collection.

Retrieve all documents.

Now go back to the Azure portal to get your connection string information and copy it into the app.

1. In the Azure portal, in your Azure Cosmos DB account, in the left navigation click Connection String, and
then click Read-write Keys. You'll use the copy buttons on the right side of the screen to copy the
Username, Password, and Host into the Dal.cs file in the next step.

2. Open the Dal.cs file in the DAL directory.

3. Copy your username value from the portal (using the copy button) and make it the value of the username
in your Dal.cs file.

4. Then copy your host value from the portal and make it the value of the host in your Dal.cs file.

5. Finally copy your password value from the portal and make it the value of the password in your Dal.cs file.

You've now updated your app with all the info it needs to communicate with Azure Cosmos DB.

http://portal.azure.com/

Review SLAs in the Azure portal

Clean up resources

1. In Visual Studio, right-click on the project in Solution Explorer and then click Manage NuGet Packages.

2. In the NuGet Browse box, type MongoDB.Driver.

3. From the results, install the MongoDB.Driver library. This installs the MongoDB.Driver package as well as
all dependencies.

4. Click CTRL + F5 to run the application. Your app displays in your browser.

5. Click Create in the browser and create a few new tasks in your task list app.

Now that your app is up and running, you'll want to ensure business continuity and watch user access to ensure
high availability. You can use the Azure portal to review the availability, latency, throughput, and consistency of
your collection.

Each graph that's associated with the Azure Cosmos DB Service Level Agreements (SLAs) provides a line that
shows the quota required to meet the SLA and your actual usage, giving you a clear view into your database
performance. Additional metrics, such as storage usage and number of requests per minute, are also included in
the portal.

In the Azure portal, in the left pane, under Monitoring, click Metrics.

https://azure.microsoft.com/support/legal/sla/documentdb/

Next steps

If you're not going to continue to use this app, delete all resources created by this quickstart in the Azure portal
with the following steps:

1. From the left-hand menu in the Azure portal, click Resource groups and then click the name of the resource
you created.

2. On your resource group page, click Delete, type the name of the resource to delete in the text box, and then
click Delete.

In this quickstart, you've learned how to create an Azure Cosmos DB account and run a web app using the API for
MongoDB. You can now import additional data to your Cosmos DB account.

Import data into Azure Cosmos DB for the MongoDB API

Azure Cosmos DB: Build a MongoDB API console
app with Java and the Azure portal
6/1/2017 • 5 min to read • Edit Online

Prerequisites

Create a database account

Azure Cosmos DB is Microsoft’s globally distributed multi-model database service. You can quickly create and
query document, key/value, and graph databases, all of which benefit from the global distribution and horizontal
scale capabilities at the core of Azure Cosmos DB.

This quick start demonstrates how to create an Azure Cosmos DB account, document database, and collection using
the Azure portal. You'll then build and deploy a console app built on the MongoDB Java driver.

Before you can run this sample, you must have the following prerequisites:
JDK 1.7+ (Run apt-get install default-jdk if you don't have JDK)
Maven (Run apt-get install maven if you don't have Maven)

If you don't have an Azure subscription, create a free account before you begin.

1. In a new window, sign in to the Azure portal.
2. In the left menu, click New, click Databases, and then click Azure Cosmos DB.

3. In the New account blade, specify the desired configuration for the Azure Cosmos DB account.

With Azure Cosmos DB, you can choose one of four programming models: Gremlin (graph), MongoDB, SQL
(DocumentDB), and Table (key-value).

In this quick start we'll be programming against the MongoDB API so you'll choose MongoDB as you fill

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/create-mongodb-java.md
https://docs.mongodb.com/ecosystem/drivers/java/
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://portal.azure.com/

SETTING SUGGESTED VALUE DESCRIPTION

ID Unique value A unique name you choose to
identify the Azure Cosmos DB
account. documents.azure.com is
appended to the ID you provide to
create your URI, so use a unique but
identifiable ID. The ID may contain
only lowercase letters, numbers, and
the '-' character, and must be
between 3 and 50 characters.

API MongoDB We'll be programming against the
MongoDB API later in this article.

Subscription Your subscription The Azure subscription that you want
to use for the Azure Cosmos DB
account.

Resource Group The same value as ID The new resource group name for
your account. For simplicity, you can
use the same name as your ID.

Location The region closest to your users The geographic location in which to
host your Azure Cosmos DB account.
Choose the location closest to your
users to give them the fastest access
to the data.

out the form. But if you have graph data for a social media app, document data from a catalog app, or
key/value (table) data, realize that Azure Cosmos DB can provide a highly available, globally-distributed
database service platform for all your mission-critical applications.

Fill out the New account blade using the information in the screenshot as a guide . You will choose unique
values as you set up your account so your values will not match the screenshot exactly

4. Click Create to create the account.

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-protocol-mongodb

Add a collection

5. On the toolbar, click Notifications to monitor the deployment process.

6. When the deployment is complete, open the new account from the All Resources tile.

Name your new database, db, and your new collection, coll.

You can now use Data Explorer to create a collection and add data to your database.

1. In the Azure portal, in the left pane, click Data Explorer.

2. On the Data Explorer blade, click New Collection, and then provide the following information:

Clone the sample application

SETTING SUGGESTED VALUE DESCRIPTION

Database id Items The ID for your new database.
Database names must contain from 1
through 255 characters, and they
cannot contain /, \, #, ?, or a trailing
space.

Collection id ToDoList The ID for your new collection.
Collection names have the same
character requirements as database
IDs.

Storage capacity Fixed (10 GB) Use the default value. This is the
storage capacity of the database.

Throughput 400 RU Use the default value. If you want to
reduce latency, you can scale up the
throughput later.

Partition key /userid A partition key that distributes data
evenly to each partition. Selecting the
correct partition key is important in
creating a performant collection. To
learn more, see Designing for
partitioning.

3. After you've completed the form, click OK.

Now let's clone a MongoDB API app from github, set the connection string, and run it. You'll see how easy it is to

Review the code

Update your connection string

Run the console app

work with data programmatically.

git clone https://github.com/Azure-Samples/azure-cosmos-db-mongodb-java-getting-started.git

1. Open a git terminal window, such as git bash, and cd to a working directory.

2. Run the following command to clone the sample repository.

3. Then open the solution file in Visual Studio.

Let's make a quick review of what's happening in the app. Open the Program.cs file and you'll find that these lines of
code create the Azure Cosmos DB resources.

MongoClientURI uri = new MongoClientURI("FILLME");`

MongoClient mongoClient = new MongoClient(uri);

MongoDatabase database = mongoClient.getDatabase("db");

MongoCollection<Document> collection = database.getCollection("coll");

Document document = new Document("fruit", "apple")
collection.insertOne(document);

Document queryResult = collection.find(Filters.eq("fruit", "apple")).first();
System.out.println(queryResult.toJson());

The DocumentClient is initialized.

A new database and collection are created.

Some documents are inserted using MongoCollection.insertOne

Some queries are performed using MongoCollection.find

Now go back to the Azure portal to get your connection string information and copy it into the app.

1. From the Account, select Quick Start, select Java, then copy the connection string to your clipboard

2. Open the Program.java file, replace the argument to the MongoClientURI constructor with the connection
string. You've now updated your app with all the info it needs to communicate with Azure Cosmos DB.

1. Run mvn package in a terminal to install required npm modules

2. Run mvn exec:java -D exec.mainClass=GetStarted.Program in a terminal to start your Java application.

You can now use Robomongo / Studio 3T to query, modify, and work with this new data.

Review SLAs in the Azure portal

Clean up resources

Next steps

Now that your app is up and running, you'll want to ensure business continuity and watch user access to ensure
high availability. You can use the Azure portal to review the availability, latency, throughput, and consistency of
your collection.

Each graph that's associated with the Azure Cosmos DB Service Level Agreements (SLAs) provides a line that
shows the quota required to meet the SLA and your actual usage, giving you a clear view into your database
performance. Additional metrics, such as storage usage and number of requests per minute, are also included in
the portal.

In the Azure portal, in the left pane, under Monitoring, click Metrics.

If you're not going to continue to use this app, delete all resources created by this quickstart in the Azure portal
with the following steps:

1. From the left-hand menu in the Azure portal, click Resource groups and then click the name of the resource
you created.

2. On your resource group page, click Delete, type the name of the resource to delete in the text box, and then
click Delete.

https://azure.microsoft.com/support/legal/sla/documentdb/

In this quickstart, you've learned how to create an Azure Cosmos DB account, create a collection using the Data
Explorer, and run a console app. You can now import additional data to your Cosmos DB account.

Import MongoDB data into Azure Cosmos DB

Azure Cosmos DB: Build a .NET application using the
Graph API
6/6/2017 • 7 min to read • Edit Online

Prerequisites

Create a database account

Azure Cosmos DB is Microsoft’s globally distributed multi-model database service. You can quickly create and
query document, key/value, and graph databases, all of which benefit from the global distribution and horizontal
scale capabilities at the core of Azure Cosmos DB.

This quick start demonstrates how to create an Azure Cosmos DB account, database, and graph (container) using
the Azure portal. You then build and run a console app built on the Graph API (preview).

If you don’t already have Visual Studio 2017 installed, you can download and use the free Visual Studio 2017
Community Edition. Make sure that you enable Azure development during the Visual Studio setup.

If you don't have an Azure subscription, create a free account before you begin.

1. In a new window, sign in to the Azure portal.
2. In the left pane, click New, click Databases, and then click Azure Cosmos DB.

3. In the New account blade, specify the desired configuration for the Azure Cosmos DB account.

With Azure Cosmos DB, you can choose one of four programming models: Gremlin (graph), MongoDB, SQL
(DocumentDB), and Table (key-value).

In this quick-start article, we program against the Graph API, so choose Gremlin (graph) as you fill out the
form. If you have document data from a catalog app, key/value (table) data, or data that's migrated from a
MongoDB app, realize that Azure Cosmos DB can provide a highly available, globally distributed database

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/create-graph-dotnet.md
https://www.visualstudio.com/downloads/
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://portal.azure.com/

SETTING SUGGESTED VALUE DESCRIPTION

ID Unique value A unique name that you choose to
identify the Azure Cosmos DB
account. Because
documents.azure.com is appended to
the ID that you provide to create
your URI, use a unique but
identifiable ID. The ID must contain
only lowercase letters, numbers, and
the hyphen (-) character, and it must
contain from 3 to 50 characters.

API Gremlin (graph) We program against the Graph API
later in this article.

Subscription Your subscription The Azure subscription that you want
to use for the Azure Cosmos DB
account.

Resource Group The same value as ID The new resource group name for
your account. For simplicity, you can
use the same name as your ID.

Location The region closest to your users The geographic location in which to
host your Azure Cosmos DB account.
Choose the location closest to your
users to give them the fastest access
to the data.

service platform for all your mission-critical applications.

On the New account blade, complete the fields with the information in the following screenshot as a guide
only. Because your own values will not match those in the screenshot, be sure to choose unique values as
you set up your account.

4. Click Create to create the account.

5. On the toolbar, click Notifications to monitor the deployment process.

Add a graph

6. When the deployment is complete, open the new account from the All Resources tile.

You can now use Data Explorer to create a graph container and add data to your database.

1. In the Azure portal, in the navigation menu, click Data Explorer.
2. In the Data Explorer blade, click New Graph, then fill in the page using the following information.

Clone the sample application

SETTING SUGGESTED VALUE DESCRIPTION

Database id sample-database The ID for your new database.
Database names must be between 1
and 255 characters, and cannot
contain / \ # ? or a trailing space.

Graph id sample-graph The ID for your new graph. Graph
names have the same character
requirements as database ids.

Storage Capacity 10 GB Leave the default value. This is the
storage capacity of the database.

Throughput 400 RUs Leave the default value. You can
scale up the throughput later if you
want to reduce latency.

Partition key /userid A partition key that will distribute
data evenly to each partition.
Selecting the correct partition key is
important in creating a performant
graph, read more about it in
Designing for partitioning.

3. Once the form is filled out, click OK.

Now let's clone a Graph API app from github, set the connection string, and run it. You'll see how easy it is to work
with data programmatically.

Review the code

Update your connection string

git clone https://github.com/Azure-Samples/azure-cosmos-db-graph-dotnet-getting-started.git

1. Open a git terminal window, such as git bash, and cd to a working directory.

2. Run the following command to clone the sample repository.

3. Then open the solution file in Visual Studio.

Let's make a quick review of what's happening in the app. Open the Program.cs file and you'll find that these lines
of code create the Azure Cosmos DB resources.

using (DocumentClient client = new DocumentClient(
 new Uri(endpoint),
 authKey,
 new ConnectionPolicy { ConnectionMode = ConnectionMode.Direct, ConnectionProtocol = Protocol.Tcp }))

Database database = await client.CreateDatabaseIfNotExistsAsync(new Database { Id = "graphdb" });

DocumentCollection graph = await client.CreateDocumentCollectionIfNotExistsAsync(
 UriFactory.CreateDatabaseUri("graphdb"),
 new DocumentCollection { Id = "graph" },
 new RequestOptions { OfferThroughput = 1000 });

// The CreateGremlinQuery method extensions allow you to execute Gremlin queries and iterate
// results asychronously
IDocumentQuery<dynamic> query = client.CreateGremlinQuery<dynamic>(graph, "g.V().count()");
while (query.HasMoreResults)
{
 foreach (dynamic result in await query.ExecuteNextAsync())
 {
 Console.WriteLine($"\t {JsonConvert.SerializeObject(result)}");
 }
}

The DocumentClient is initialized. In the preview, we added a graph extension API on the Azure Cosmos DB
client. We are working on a standalone graph client decoupled from the Azure Cosmos DB client and
resources.

A new database is created.

A new graph is created.

A series of Gremlin steps are executed using the CreateGremlinQuery method.

Now go back to the Azure portal to get your connection string information and copy it into the app.

1. In the Azure portal, in your Azure Cosmos DB account, in the left navigation click Keys, and then click Read-
write Keys. You'll use the copy buttons on the right side of the screen to copy the URI and Primary Key into
the App.config file in the next step.

http://portal.azure.com/

Run the console app

Browse using the Data Explorer

2. In Visual Studio 2017, open the App.config file.

3. Copy your URI value from the portal (using the copy button) and make it the value of the endpoint key in
App.config .

<add key="Endpoint" value="FILLME.documents.azure.com:443" />

4. Then copy your PRIMARY KEY value from the portal and make it the value of the authKey in App.config .

<add key="AuthKey" value="FILLME" />

You've now updated your app with all the info it needs to communicate with Azure Cosmos DB.

1. In Visual Studio, right-click on the GraphGetStarted project in Solution Explorer and then click Manage
NuGet Packages.

2. In the NuGet Browse box, type Microsoft.Azure.Graphs and check the Includes prerelease box.

3. From the results, install the Microsoft.Azure.Graphs library. This installs the Azure Cosmos DB graph
extension library package and all dependencies.

4. Click CTRL + F5 to run the application.

The console window displays the vertexes and edges being added to the graph. When the script completes,
press ENTER twice to close the console window.

You can now go back to Data Explorer in the Azure portal and browse and query your new graph data.

In Data Explorer, the new database appears in the Collections pane. Expand graphdb, graphcoll, and then
click Graph.

Review SLAs in the Azure portal

Clean up resources

The data generated by the sample app is displayed in the Graphs pane.

Now that your app is up and running, you'll want to ensure business continuity and watch user access to ensure
high availability. You can use the Azure portal to review the availability, latency, throughput, and consistency of
your collection.

Each graph that's associated with the Azure Cosmos DB Service Level Agreements (SLAs) provides a line that
shows the quota required to meet the SLA and your actual usage, giving you a clear view into your database
performance. Additional metrics, such as storage usage and number of requests per minute, are also included in
the portal.

In the Azure portal, in the left pane, under Monitoring, click Metrics.

If you're not going to continue to use this app, delete all resources created by this quickstart in the Azure portal
with the following steps:

1. From the left-hand menu in the Azure portal, click Resource groups and then click the name of the resource
you created.

2. On your resource group page, click Delete, type the name of the resource to delete in the text box, and then
click Delete.

https://azure.microsoft.com/support/legal/sla/documentdb/

Next steps
In this quickstart, you've learned how to create an Azure Cosmos DB account, create a graph using the Data
Explorer, and run an app. You can now build more complex queries and implement powerful graph traversal logic
using Gremlin.

Query using Gremlin

Azure Cosmos DB: Create, query, and traverse a
graph in the Gremlin console
6/12/2017 • 7 min to read • Edit Online

Prerequisites

Create a database account

Azure Cosmos DB is Microsoft’s globally distributed multi-model database service. You can quickly create and
query document, key/value, and graph databases, all of which benefit from the global distribution and horizontal
scale capabilities at the core of Azure Cosmos DB.

This quick start demonstrates how to create an Azure Cosmos DB account, database, and graph (container) using
the Azure portal and then use the Gremlin Console from Apache TinkerPop to work with Graph API (preview) data.
In this tutorial, you'll create and query vertices and edges, updating a vertex property, query vertices, traverse the
graph, and drop a vertex.

The Gremlin console is Groovy/Java based and runs on Linux, Mac, and Windows. You can download it from the
Apache TinkerPop site.

You need to have an Azure subscription to create an Azure Cosmos DB account for this quickstart.

If you don't have an Azure subscription, create a free account before you begin.

You also need to install the Gremlin Console. Use version 3.2.4 or above.

1. In a new window, sign in to the Azure portal.
2. In the left pane, click New, click Databases, and then click Azure Cosmos DB.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/create-graph-gremlin-console.md
https://tinkerpop.apache.org/docs/current/reference/#gremlin-console
http://tinkerpop.apache.org
https://www.apache.org/dyn/closer.lua/tinkerpop/3.2.4/apache-tinkerpop-gremlin-console-3.2.4-bin.zip
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
http://tinkerpop.apache.org/
https://portal.azure.com/

3. In the New account blade, specify the desired configuration for the Azure Cosmos DB account.

With Azure Cosmos DB, you can choose one of four programming models: Gremlin (graph), MongoDB, SQL
(DocumentDB), and Table (key-value).

In this quick-start article, we program against the Graph API, so choose Gremlin (graph) as you fill out the
form. If you have document data from a catalog app, key/value (table) data, or data that's migrated from a
MongoDB app, realize that Azure Cosmos DB can provide a highly available, globally distributed database
service platform for all your mission-critical applications.

On the New account blade, complete the fields with the information in the following screenshot as a guide
only. Because your own values will not match those in the screenshot, be sure to choose unique values as
you set up your account.

SETTING SUGGESTED VALUE DESCRIPTION

ID Unique value A unique name that you choose to
identify the Azure Cosmos DB
account. Because
documents.azure.com is appended to
the ID that you provide to create
your URI, use a unique but
identifiable ID. The ID must contain
only lowercase letters, numbers, and
the hyphen (-) character, and it must
contain from 3 to 50 characters.

API Gremlin (graph) We program against the Graph API
later in this article.

Subscription Your subscription The Azure subscription that you want
to use for the Azure Cosmos DB
account.

Resource Group The same value as ID The new resource group name for
your account. For simplicity, you can
use the same name as your ID.

Location The region closest to your users The geographic location in which to
host your Azure Cosmos DB account.
Choose the location closest to your
users to give them the fastest access
to the data.

4. Click Create to create the account.

5. On the toolbar, click Notifications to monitor the deployment process.

6. When the deployment is complete, open the new account from the All Resources tile.

Add a graph
You can now use Data Explorer to create a graph container and add data to your database.

1. In the Azure portal, in the navigation menu, click Data Explorer.
2. In the Data Explorer blade, click New Graph, then fill in the page using the following information.

 Connect to your app service

SETTING SUGGESTED VALUE DESCRIPTION

Database id sample-database The ID for your new database.
Database names must be between 1
and 255 characters, and cannot
contain / \ # ? or a trailing space.

Graph id sample-graph The ID for your new graph. Graph
names have the same character
requirements as database ids.

Storage Capacity 10 GB Leave the default value. This is the
storage capacity of the database.

Throughput 400 RUs Leave the default value. You can scale
up the throughput later if you want
to reduce latency.

Partition key /userid A partition key that will distribute
data evenly to each partition.
Selecting the correct partition key is
important in creating a performant
graph, read more about it in
Designing for partitioning.

3. Once the form is filled out, click OK.

1. Before starting the Gremlin Console, create or modify your remote-secure.yaml configuration file in your
apache-tinkerpop-gremlin-console-3.2.4/conf directory.

SETTING SUGGESTED VALUE DESCRIPTION

Hosts ***.graphs.azure.com Your graph service URI, which you
can retrieve from the Azure portal

Port 443 Set to 443

Username Your username The resource of the form
/dbs/<db>/colls/<coll> .

Password Your primary master key Your primary master key for the
Azure Cosmos DB

ConnectionPool {enableSsl: true} Your connection pool setting for SSL

Serializer {
className:org.apache.tinkerpop.gre
mlin.
driver.ser.GraphSONMessageSerialize
rV1d0,
config: { serializeResultToString: true
}}

Set to this value

2. Fill in your host, port, username, password, connectionPool, and serializer configurations:

:> g.V().count()

TIP

Create vertices and edges

:> g.addV('person').property('firstName', 'Thomas').property('lastName', 'Andersen').property('age', 44).property('userid', 1)

==>[id:796cdccc-2acd-4e58-a324-91d6f6f5ed6d,label:person,type:vertex,properties:[firstName:[[id:f02a749f-b67c-4016-850e-
910242d68953,value:Thomas]],lastName:[[id:f5fa3126-8818-4fda-88b0-9bb55145ce5c,value:Andersen]],age:[[id:f6390f9c-e563-433e-acbf-
25627628016e,value:44]],userid:[[id:796cdccc-2acd-4e58-a324-91d6f6f5ed6d|userid,value:1]]]]

:> g.addV('person').property('firstName', 'Mary Kay').property('lastName', 'Andersen').property('age', 39).property('userid', 2)

==>[id:0ac9be25-a476-4a30-8da8-e79f0119ea5e,label:person,type:vertex,properties:[firstName:[[id:ea0604f8-14ee-4513-a48a-
1734a1f28dc0,value:Mary Kay]],lastName:[[id:86d3bba5-fd60-4856-9396-c195ef7d7f4b,value:Andersen]],age:[[id:bc81b78d-30c4-4e03-8f40-
50f72eb5f6da,value:39]],userid:[[id:0ac9be25-a476-4a30-8da8-e79f0119ea5e|userid,value:2]]]]

:> g.addV('person').property('firstName', 'Robin').property('lastName', 'Wakefield').property('userid', 3)

4. In your terminal, run :remote connect tinkerpop.server conf/remote-secure.yaml to connect to your app service.

3. In your terminal, run bin/gremlin.bat or bin/gremlin.sh to start the Gremlin Console.

Great! Now that we finished the setup, let's start running some console commands.

Let's try a simple count() command. Type the following in to the console at the prompt:

Notice the :> that precedes the g.V().count() text?

This is part of the command you need to type. It is important when using the Gremlin console, with Azure Cosmos DB.

Omitting this :> prefix instructs the console to execute the command locally, often against an in-memory graph. Using this :>
tells the console to execute a remote command, in this case against Cosmos DB (either the localhost emulator, or an > Azure
instance).

Let's begin by adding five person vertices for Thomas, Mary Kay, Robin, Ben, and Jack.

Input (Thomas):

Output:

Input (Mary Kay):

Output:

Input (Robin):

Output:

http://tinkerpop.apache.org/docs/3.2.4/tutorials/getting-started/

==>[id:8dc14d6a-8683-4a54-8d74-7eef1fb43a3e,label:person,type:vertex,properties:[firstName:[[id:ec65f078-7a43-4cbe-bc06-
e50f2640dc4e,value:Robin]],lastName:[[id:a3937d07-0e88-45d3-a442-26fcdfb042ce,value:Wakefield]],userid:[[id:8dc14d6a-8683-4a54-8d74-
7eef1fb43a3e|userid,value:3]]]]

:> g.addV('person').property('firstName', 'Ben').property('lastName', 'Miller').property('userid', 4)

==>[id:ee86b670-4d24-4966-9a39-30529284b66f,label:person,type:vertex,properties:[firstName:[[id:a632469b-30fc-4157-840c-
b80260871e9a,value:Ben]],lastName:[[id:4a08d307-0719-47c6-84ae-1b0b06630928,value:Miller]],userid:[[id:ee86b670-4d24-4966-9a39-
30529284b66f|userid,value:4]]]]

:> g.addV('person').property('firstName', 'Jack').property('lastName', 'Connor').property('userid', 5)

==>[id:4c835f2a-ea5b-43bb-9b6b-215488ad8469,label:person,type:vertex,properties:[firstName:[[id:4250824e-4b72-417f-af98-
8034aa15559f,value:Jack]],lastName:[[id:44c1d5e1-a831-480a-bf94-5167d133549e,value:Connor]],userid:[[id:4c835f2a-ea5b-43bb-9b6b-
215488ad8469|userid,value:5]]]]

:> g.V().hasLabel('person').has('firstName', 'Thomas').addE('knows').to(g.V().hasLabel('person').has('firstName', 'Mary Kay'))

==>[id:c12bf9fb-96a1-4cb7-a3f8-431e196e702f,label:knows,type:edge,inVLabel:person,outVLabel:person,inV:0d1fa428-780c-49a5-bd3a-
a68d96391d5c,outV:1ce821c6-aa3d-4170-a0b7-d14d2a4d18c3]

:> g.V().hasLabel('person').has('firstName', 'Thomas').addE('knows').to(g.V().hasLabel('person').has('firstName', 'Robin'))

==>[id:58319bdd-1d3e-4f17-a106-0ddf18719d15,label:knows,type:edge,inVLabel:person,outVLabel:person,inV:3e324073-ccfc-4ae1-8675-
d450858ca116,outV:1ce821c6-aa3d-4170-a0b7-d14d2a4d18c3]

:> g.V().hasLabel('person').has('firstName', 'Robin').addE('knows').to(g.V().hasLabel('person').has('firstName', 'Ben'))

Input (Ben):

Output:

Input (Jack):

Output:

Next, let's add edges for relationships between our people.

Input (Thomas -> Mary Kay):

Output:

Input (Thomas -> Robin):

Output:

Input (Robin -> Ben):

Output:

==>[id:889c4d3c-549e-4d35-bc21-a3d1bfa11e00,label:knows,type:edge,inVLabel:person,outVLabel:person,inV:40fd641d-546e-412a-abcc-
58fe53891aab,outV:3e324073-ccfc-4ae1-8675-d450858ca116]

Update a vertex

:> g.V().hasLabel('person').has('firstName', 'Thomas').property('age', 45)

==>[id:ae36f938-210e-445a-92df-519f2b64c8ec,label:person,type:vertex,properties:[firstName:[[id:872090b6-6a77-456a-9a55-
a59141d4ebc2,value:Thomas]],lastName:[[id:7ee7a39a-a414-4127-89b4-870bc4ef99f3,value:Andersen]],age:[[id:a2a75d5a-ae70-4095-806d-
a35abcbfe71d,value:45]]]]

Query your graph

:> g.V().hasLabel('person').has('age', gt(40))

==>[id:ae36f938-210e-445a-92df-519f2b64c8ec,label:person,type:vertex,properties:[firstName:[[id:872090b6-6a77-456a-9a55-
a59141d4ebc2,value:Thomas]],lastName:[[id:7ee7a39a-a414-4127-89b4-870bc4ef99f3,value:Andersen]],age:[[id:a2a75d5a-ae70-4095-806d-
a35abcbfe71d,value:45]]]]

:> g.V().hasLabel('person').has('age', gt(40)).values('firstName')

==>Thomas

Traverse your graph

:> g.V().hasLabel('person').has('firstName', 'Thomas').outE('knows').inV().hasLabel('person')

Let's update the Thomas vertex with a new age of 45.

Input:

Output:

Now, let's run a variety of queries against your graph.

First, let's try a query with a filter to return only people who are older than 40 years old.

Input (filter query):

Output:

Next, let's project the first name for the people who are older than 40 years old.

Input (filter + projection query):

Output:

Let's traverse the graph to return all of Thomas's friends.

Input (friends of Thomas):

==>[id:f04bc00b-cb56-46c4-a3bb-a5870c42f7ff,label:person,type:vertex,properties:[firstName:[[id:14feedec-b070-444e-b544-
62be15c7167c,value:Mary Kay]],lastName:[[id:107ab421-7208-45d4-b969-bbc54481992a,value:Andersen]],age:[[id:4b08d6e4-58f5-45df-8e69-
6b790b692e0a,value:39]]]]
==>[id:91605c63-4988-4b60-9a30-5144719ae326,label:person,type:vertex,properties:[firstName:[[id:f760e0e6-652a-481a-92b0-
1767d9bf372e,value:Robin]],lastName:[[id:352a4caa-bad6-47e3-a7dc-90ff342cf870,value:Wakefield]]]]

:> g.V().hasLabel('person').has('firstName', 'Thomas').outE('knows').inV().hasLabel('person').outE('knows').inV().hasLabel('person')

==>[id:a801a0cb-ee85-44ee-a502-271685ef212e,label:person,type:vertex,properties:[firstName:[[id:b9489902-d29a-4673-8c09-
c2b3fe7f8b94,value:Ben]],lastName:[[id:e084f933-9a4b-4dbc-8273-f0171265cf1d,value:Miller]]]]

Drop a vertex

:> g.V().hasLabel('person').has('firstName', 'Jack').drop()

Clear your graph

:> g.E().drop()
:> g.V().drop()

Review SLAs in the Azure portal

Output:

Next, let's get the next layer of vertices. Traverse the graph to return all the friends of Thomas's friends.

Input (friends of friends of Thomas):

Output:

Let's now delete a vertex from the graph database.

Input (drop Jack vertex):

Finally, let's clear the database of all vertices and edges.

Input:

Congratulations! You've completed this Azure Cosmos DB: Graph API tutorial!

Now that your app is up and running, you'll want to ensure business continuity and watch user access to ensure
high availability. You can use the Azure portal to review the availability, latency, throughput, and consistency of
your collection.

Each graph that's associated with the Azure Cosmos DB Service Level Agreements (SLAs) provides a line that shows
the quota required to meet the SLA and your actual usage, giving you a clear view into your database performance.
Additional metrics, such as storage usage and number of requests per minute, are also included in the portal.

In the Azure portal, in the left pane, under Monitoring, click Metrics.

https://azure.microsoft.com/support/legal/sla/documentdb/

Clean up resources

Next steps

If you're not going to continue to use this app, delete all resources created by this quickstart in the Azure portal
with the following steps:

1. From the left-hand menu in the Azure portal, click Resource groups and then click the name of the resource
you created.

2. On your resource group page, click Delete, type the name of the resource to delete in the text box, and then
click Delete.

In this quickstart, you've learned how to create an Azure Cosmos DB account, create a graph using the Data
Explorer, create vertices and edges, and traverse your graph using the Gremlin console. You can now build more
complex queries and implement powerful graph traversal logic using Gremlin.

Query using Gremlin

Azure Cosmos DB: Build a Java application using the
Graph API
6/6/2017 • 6 min to read • Edit Online

Prerequisites

Create a database account

Azure Cosmos DB is Microsoft’s globally distributed multi-model database service. You can quickly create and
query document, key/value, and graph databases, all of which benefit from the global distribution and horizontal
scale capabilities at the core of Azure Cosmos DB.

This quick start demonstrates how to create an Azure Cosmos DB account for Graph API (preview), database, and
graph using the Azure portal. You then build and run a console app using the OSS Gremlin Java driver.

Before you can run this sample, you must have the following prerequisites:
JDK 1.7+ (Run apt-get install default-jdk if you don't have JDK), and set environment variables like
JAVA_HOME

Maven (Run apt-get install maven if you don't have Maven)

If you don't have an Azure subscription, create a free account before you begin.

1. In a new window, sign in to the Azure portal.
2. In the left pane, click New, click Databases, and then click Azure Cosmos DB.

3. In the New account blade, specify the desired configuration for the Azure Cosmos DB account.

With Azure Cosmos DB, you can choose one of four programming models: Gremlin (graph), MongoDB, SQL
(DocumentDB), and Table (key-value).

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/create-graph-java.md
https://mvnrepository.com/artifact/org.apache.tinkerpop/gremlin-driver
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://portal.azure.com/

SETTING SUGGESTED VALUE DESCRIPTION

ID Unique value A unique name that you choose to
identify the Azure Cosmos DB
account. Because
documents.azure.com is appended to
the ID that you provide to create
your URI, use a unique but
identifiable ID. The ID must contain
only lowercase letters, numbers, and
the hyphen (-) character, and it must
contain from 3 to 50 characters.

API Gremlin (graph) We program against the Graph API
later in this article.

Subscription Your subscription The Azure subscription that you want
to use for the Azure Cosmos DB
account.

Resource Group The same value as ID The new resource group name for
your account. For simplicity, you can
use the same name as your ID.

Location The region closest to your users The geographic location in which to
host your Azure Cosmos DB account.
Choose the location closest to your
users to give them the fastest access
to the data.

In this quick-start article, we program against the Graph API, so choose Gremlin (graph) as you fill out the
form. If you have document data from a catalog app, key/value (table) data, or data that's migrated from a
MongoDB app, realize that Azure Cosmos DB can provide a highly available, globally distributed database
service platform for all your mission-critical applications.

On the New account blade, complete the fields with the information in the following screenshot as a guide
only. Because your own values will not match those in the screenshot, be sure to choose unique values as
you set up your account.

SETTING SUGGESTED VALUE DESCRIPTION

4. Click Create to create the account.

5. On the toolbar, click Notifications to monitor the deployment process.

6. When the deployment is complete, open the new account from the All Resources tile.

Add a graph
You can now use Data Explorer to create a graph container and add data to your database.

1. In the Azure portal, in the navigation menu, click Data Explorer.

SETTING SUGGESTED VALUE DESCRIPTION

Database id sample-database The ID for your new database.
Database names must be between 1
and 255 characters, and cannot
contain / \ # ? or a trailing space.

Graph id sample-graph The ID for your new graph. Graph
names have the same character
requirements as database ids.

Storage Capacity 10 GB Leave the default value. This is the
storage capacity of the database.

Throughput 400 RUs Leave the default value. You can scale
up the throughput later if you want
to reduce latency.

Partition key /userid A partition key that will distribute
data evenly to each partition.
Selecting the correct partition key is
important in creating a performant
graph, read more about it in
Designing for partitioning.

2. In the Data Explorer blade, click New Graph, then fill in the page using the following information.

Clone the sample application

Review the code

3. Once the form is filled out, click OK.

Now let's clone a Graph API (preview) app from github, set the connection string, and run it. You see how easy it is
to work with data programmatically.

git clone https://github.com/Azure-Samples/azure-cosmos-db-graph-java-getting-started.git

1. Open a git terminal window, such as git bash, and cd to a working directory.

2. Run the following command to clone the sample repository.

Let's make a quick review of what's happening in the app. Open the Program.java file and you find that these lines of
code.

Cluster cluster = Cluster.build(new File("src/remote.yaml")).create();

Client client = cluster.connect();

ResultSet results = client.submit("g.V()");

CompletableFuture<List<Result>> completableFutureResults = results.all();
List<Result> resultList = completableFutureResults.get();

for (Result result : resultList) {
 System.out.println(result.toString());
}

Update your connection string

The Gremlin Client is initialized from the configuration in src/remote-secure.yaml that you set earlier.

A series of Gremlin steps are executed using the client.submit method.

Now go back to the Azure portal to get your connection string information and copy it into the app.

1. In the Azure portal, in your Azure Cosmos DB account, in the left navigation click Keys, and then click Read-
write Keys. You use the copy buttons on the right side of the screen to copy the URI and Primary Key into
the Program.java file in the next step.

http://portal.azure.com/

Run the console app

SETTING SUGGESTED VALUE DESCRIPTION

Hosts ***.graphs.azure.com Your graph service URI, which you
can retrieve from the Azure portal

Port 443 Set to 443

Username Your username The resource of the form
/dbs/<db>/colls/<coll> .

Password Your primary master key Your primary master key for the
Azure Cosmos DB

ConnectionPool {enableSsl: true} Your connection pool setting for SSL

Serializer {
className:org.apache.tinkerpop.gre
mlin.
driver.ser.GraphSONMessageSerialize
rV1d0,
config: { serializeResultToString: true
}}

Set to this value

2. In Open the src/remote-secure.yaml file.

3. Fill in your host, port, username, password, connectionPool, and serializer configurations in the
src/remote-secure.yaml file:

1. Run mvn package in a terminal to install required npm modules

Browse using the Data Explorer

Review SLAs in the Azure portal

2. Run mvn exec:java -D exec.mainClass=GetStarted.Program in a terminal to start your Java application.

You can now go back to Data Explorer and see query, modify, and work with this new data.

You can now go back to Data Explorer in the Azure portal and browse and query your new graph data.

In Data Explorer, the new database appears in the Collections pane. Expand graphdb, graphcoll, and then
click Graph.

The data generated by the sample app is displayed in the Graphs pane.

Now that your app is up and running, you'll want to ensure business continuity and watch user access to ensure
high availability. You can use the Azure portal to review the availability, latency, throughput, and consistency of
your collection.

Each graph that's associated with the Azure Cosmos DB Service Level Agreements (SLAs) provides a line that shows
the quota required to meet the SLA and your actual usage, giving you a clear view into your database performance.
Additional metrics, such as storage usage and number of requests per minute, are also included in the portal.

In the Azure portal, in the left pane, under Monitoring, click Metrics.

https://azure.microsoft.com/support/legal/sla/documentdb/

Clean up resources

Next steps

If you're not going to continue to use this app, delete all resources created by this quickstart in the Azure portal
with the following steps:

1. From the left-hand menu in the Azure portal, click Resource groups and then click the name of the resource
you created.

2. On your resource group page, click Delete, type the name of the resource to delete in the text box, and then
click Delete.

In this quickstart, you've learned how to create an Azure Cosmos DB account, create a graph using the Data
Explorer, and run an app. You can now build more complex queries and implement powerful graph traversal logic
using Gremlin.

Query using Gremlin

Azure Cosmos DB: Build a Node.js application by
using Graph API
6/6/2017 • 6 min to read • Edit Online

NOTE

Prerequisites

Create a database account

Azure Cosmos DB is the globally distributed multi-model database service from Microsoft. You can quickly create
and query document, key/value, and graph databases, all of which benefit from the global distribution and
horizontal scale capabilities at the core of Azure Cosmos DB.

This quick-start article demonstrates how to create an Azure Cosmos DB account for Graph API (preview), database,
and graph by using the Azure portal. You then build and run a console app by using the open-source Gremlin
Node.js driver.

The npm module gremlin-secure is a modified version of gremlin module, with support for SSL and SASL required for
connecting with Azure Cosmos DB. Source code is available on GitHub.

Before you can run this sample, you must have the following prerequisites:

Node.js version v0.10.29 or later
Git

If you don't have an Azure subscription, create a free account before you begin.

1. In a new window, sign in to the Azure portal.
2. In the left pane, click New, click Databases, and then click Azure Cosmos DB.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/create-graph-nodejs.md
https://www.npmjs.com/package/gremlin-secure
https://github.com/CosmosDB/gremlin-javascript
https://nodejs.org/en/
http://git-scm.com/
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://portal.azure.com/

3. In the New account blade, specify the desired configuration for the Azure Cosmos DB account.

With Azure Cosmos DB, you can choose one of four programming models: Gremlin (graph), MongoDB, SQL
(DocumentDB), and Table (key-value).

In this quick-start article, we program against the Graph API, so choose Gremlin (graph) as you fill out the
form. If you have document data from a catalog app, key/value (table) data, or data that's migrated from a
MongoDB app, realize that Azure Cosmos DB can provide a highly available, globally distributed database
service platform for all your mission-critical applications.

On the New account blade, complete the fields with the information in the following screenshot as a guide
only. Because your own values will not match those in the screenshot, be sure to choose unique values as
you set up your account.

SETTING SUGGESTED VALUE DESCRIPTION

ID Unique value A unique name that you choose to
identify the Azure Cosmos DB
account. Because
documents.azure.com is appended to
the ID that you provide to create
your URI, use a unique but
identifiable ID. The ID must contain
only lowercase letters, numbers, and
the hyphen (-) character, and it must
contain from 3 to 50 characters.

API Gremlin (graph) We program against the Graph API
later in this article.

Subscription Your subscription The Azure subscription that you want
to use for the Azure Cosmos DB
account.

Resource Group The same value as ID The new resource group name for
your account. For simplicity, you can
use the same name as your ID.

Location The region closest to your users The geographic location in which to
host your Azure Cosmos DB account.
Choose the location closest to your
users to give them the fastest access
to the data.

4. Click Create to create the account.

5. On the toolbar, click Notifications to monitor the deployment process.

6. When the deployment is complete, open the new account from the All Resources tile.

Add a graph
You can now use Data Explorer to create a graph container and add data to your database.

1. In the Azure portal, in the navigation menu, click Data Explorer.
2. In the Data Explorer blade, click New Graph, then fill in the page using the following information.

Clone the sample application

Review the code

SETTING SUGGESTED VALUE DESCRIPTION

Database id sample-database The ID for your new database.
Database names must be between 1
and 255 characters, and cannot
contain / \ # ? or a trailing space.

Graph id sample-graph The ID for your new graph. Graph
names have the same character
requirements as database ids.

Storage Capacity 10 GB Leave the default value. This is the
storage capacity of the database.

Throughput 400 RUs Leave the default value. You can scale
up the throughput later if you want
to reduce latency.

Partition key /userid A partition key that will distribute
data evenly to each partition.
Selecting the correct partition key is
important in creating a performant
graph, read more about it in
Designing for partitioning.

3. Once the form is filled out, click OK.

Now let's clone a Graph API app from GitHub, set the connection string, and run it. You'll see how easy it is to work
with data programmatically.

git clone https://github.com/Azure-Samples/azure-cosmos-db-graph-nodejs-getting-started.git

1. Open a Git terminal window, such as Git Bash, and change (via cd command) to a working directory.

2. Run the following command to clone the sample repository.

3. Open the solution file in Visual Studio.

Let's make a quick review of what's happening in the app. Open the app.js file, and you'll find the following lines of
code.

const client = Gremlin.createClient(
 443,
 config.endpoint,
 {
 "session": false,
 "ssl": true,
 "user": `/dbs/${config.database}/colls/${config.collection}`,
 "password": config.primaryKey
 });

The Gremlin client is created.

Update your connection string

console.log('Running Count');
client.execute("g.V().count()", { }, (err, results) => {
 if (err) return console.error(err);
 console.log(JSON.stringify(results));
 console.log();
});

The configurations are all in config.js , which we edit in the following section.

A series of Gremlin steps are executed with the client.execute method.

Now go back to the Azure portal to get your connection string information, and copy it into the app.

1. In the Azure portal, in your Azure Cosmos DB account, on the left navigation menu, click Keys, and then click
Read-write Keys. You use the copy buttons at the right to copy the URI and primary key into the app.js file
in the next step.

2. Copy your Gremlin URI value from the portal (using the copy button) and make it the value of config.endpoint

key in config.js. The Gremlin endpoint must be only the host name without the protocol/port number, like
mygraphdb.graphs.azure.com (not https://mygraphdb.graphs.azure.com or mygraphdb.graphs.azure.com:433).

config.endpoint = "GRAPHENDPOINT";

3. Copy your primary key value from the portal and make it the value of config.primaryKey in config.js. You've
now updated your app with all the info it needs to communicate with Azure Cosmos DB.

config.primaryKey = "PRIMARYKEY";

4. Enter the database name, and graph (container) name for the value of config.database and config.collection.

Here is an example of what your completed config.js file should look like:

http://portal.azure.com/

var config = {}

// Note that this must not have HTTPS or the port number
config.endpoint = "mygraphdb.graphs.azure.com";
config.primaryKey = "OjlhK6tjxfSXyKtrmCiM9O6gQQgu5DmgAoauzD1PdPIq1LZJmILTarHvrolyUYOB0whGQ4j21rdAFwoYep7Kkw==";
config.database = "graphdb"
config.collection = "Persons"

module.exports = config;

Run the console app

Browse with Data Explorer

Review SLAs in the Azure portal

1. Open a terminal window and change (via cd command) to the installation directory for the package.json file
that's included in the project.

2. Run npm install to install the required npm modules, including gremlin-secure .

3. Run node app.js in a terminal to start your node application.

You can now go back to Data Explorer in the Azure portal to view, query, modify, and work with your new graph
data.

In Data Explorer, the new database appears in the Collections pane. Expand graphdb, graphcoll, and then click
Graph.

The data generated by the sample app is displayed in the Graphs pane.

Now that your app is up and running, you'll want to ensure business continuity and watch user access to ensure
high availability. You can use the Azure portal to review the availability, latency, throughput, and consistency of
your collection.

Each graph that's associated with the Azure Cosmos DB Service Level Agreements (SLAs) provides a line that shows
the quota required to meet the SLA and your actual usage, giving you a clear view into your database performance.
Additional metrics, such as storage usage and number of requests per minute, are also included in the portal.

In the Azure portal, in the left pane, under Monitoring, click Metrics.

https://azure.microsoft.com/support/legal/sla/documentdb/

Clean up your resources

Next steps

If you do not plan to continue using this app, delete all resources that you created in this article by doing the
following:

1. In the Azure portal, on the left navigation menu, click Resource groups, and then click the name of the resource
that you created.

2. On your resource group page, click Delete, type the name of the resource to be deleted, and then click Delete.

In this article, you've learned how to create an Azure Cosmos DB account, create a graph by using Data Explorer,
and run an app. You can now build more complex queries and implement powerful graph traversal logic by using
Gremlin.

Query using Gremlin

Azure Cosmos DB: Build a .NET application using the Table
API
6/7/2017 • 7 min to read • Edit Online

Prerequisites

Create a database account

Azure Cosmos DB is Microsoft’s globally distributed multi-model database service. You can quickly create and query
document, key/value, and graph databases, all of which benefit from the global distribution and horizontal scale capabilities at
the core of Azure Cosmos DB.

This quick start demonstrates how to create an Azure Cosmos DB account, and create a table within that account using the
Azure portal. You'll then write code to insert, update, and delete entities, and run some queries using the new Windows Azure
Storage Premium Table (preview) package from NuGet. This library has the same classes and method signatures as the public
Windows Azure Storage SDK, but also has the ability to connect to Azure Cosmos DB accounts using the Table API (preview).

If you don’t already have Visual Studio 2017 installed, you can download and use the free Visual Studio 2017 Community
Edition. Make sure that you enable Azure development during the Visual Studio setup.

If you don't have an Azure subscription, create a free account before you begin.

1. In a new window, sign in to the Azure portal.
2. In the left menu, click New, click Databases, and then click Azure Cosmos DB.

3. In the New account blade, specify the desired configuration for the Azure Cosmos DB account.

With Azure Cosmos DB, you can choose one of four programming models: Gremlin (graph), MongoDB, SQL
(DocumentDB), and Table (key-value).

In this quick start we'll be programming against the Table API so you'll choose Table (key-value) as you fill out the
form. But if you have graph data for a social media app, document data from a catalog app, or data migrated from a
MongoDB app, realize that Azure Cosmos DB can provide a highly available, globally-distributed database service
platform for all your mission-critical applications.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/create-table-dotnet.md
https://aka.ms/premiumtablenuget
https://www.nuget.org/packages/WindowsAzure.Storage
https://www.visualstudio.com/downloads/
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://portal.azure.com/

SETTING SUGGESTED VALUE DESCRIPTION

ID Unique value A unique name you choose to identify
the Azure Cosmos DB account.
documents.azure.com is appended to the
ID you provide to create your URI, so use
a unique but identifiable ID. The ID may
contain only lowercase letters, numbers,
and the '-' character, and must be
between 3 and 50 characters.

API Table (key-value) We'll be programming against the Table
API later in this article.

Subscription Your subscription The Azure subscription that you want to
use for the Azure Cosmos DB account.

Resource Group The same value as ID The new resource group name for your
account. For simplicity, you can use the
same name as your ID.

Location The region closest to your users The geographic location in which to host
your Azure Cosmos DB account. Choose
the location closest to your users to give
them the fastest access to the data.

Fill out the New account blade using the information in the screenshot as a guide. You will choose unique values as you
set up your account so your values will not match the screenshot exactly.

4. Click Create to create the account.

5. On the toolbar, click Notifications to monitor the deployment process.

Add a table

6. When the deployment is complete, open the new account from the All Resources tile.

You can now use Data Explorer to create a graph container and add data to your database.

1. In the Azure portal, in the navigation menu, click Data Explorer.
2. In the Data Explorer blade, click New Table, then fill in the page using the following information.

Add sample data

SETTING SUGGESTED VALUE DESCRIPTION

Database id sample-database The ID for your new database. Database
names must be between 1 and 255
characters, and cannot contain / \ # ?

or a trailing space.

Table id sample-table The ID for your new table. Table names
have the same character requirements as
database ids.

Storage Capacity 10 GB Leave the default value. This is the
storage capacity of the database.

Throughput 400 RUs Leave the default value. You can scale up
the throughput later if you want to
reduce latency.

3. Once the form is filled out, click OK.

You can now add data to your new table using Data Explorer.

1. In Data Explorer, expand sample-database, sample-table, click Entities, and then click Add Entity.
2. Now add data to the PartitionKey value box and RowKey value box, and click Add Entity.

Clone the sample application

Review the code

You can now add more entities to your table, edit your entities, or query your data in Data Explorer. Data Explorer is
also where you can scale your throughput and add stored procedures, user defined functions, and triggers to your
table.

Now let's clone a DocumentDB API app from github, set the connection string, and run it. You'll see how easy it is to work with
data programmatically.

git clone https://github.com/Azure-Samples/azure-cosmos-db-table-dotnet-getting-started.git

1. Open a git terminal window, such as git bash, and cd to a working directory.

2. Run the following command to clone the sample repository.

3. Then open the solution file in Visual Studio.

Let's make a quick review of what's happening in the app. Open the Program.cs file and you'll find that these lines of code
create the Azure Cosmos DB resources.

CloudStorageAccount storageAccount = CloudStorageAccount.Parse(connectionString);
CloudTableClient tableClient = storageAccount.CreateCloudTableClient();

CloudTable table = tableClient.GetTableReference("people");
table.CreateIfNotExists();

The CloudTableClient is initialized.

A new table is created if it does not exist.

A new Table container is created. You will notice this code very similar to regular Azure Table storage SDK

Update your connection string

CustomerEntity item = new CustomerEntity()
 {
 PartitionKey = Guid.NewGuid().ToString(),
 RowKey = Guid.NewGuid().ToString(),
 Email = $"{GetRandomString(6)}@contoso.com",
 PhoneNumber = "425-555-0102",
 Bio = GetRandomString(1000)
 };

Now go back to the Azure portal to get your connection string information and copy it into the app.

1. In the Azure portal, in your Azure Cosmos DB account, in the left navigation click Keys, and then click Read-write Keys.
You'll use the copy buttons on the right side of the screen to copy the URI and Primary Key into the app.config file in
the next step.

2. In Visual Studio, open the app.config file.

3. Copy your Azure Cosmos DB account name from the portal and make it the value of the AccountName in the
PremiumStorageConnection string value in app.config. In the screenshot above, the account name is cosmos-db-
quickstart. Your account name is in displayed at the top of the portal.

<add key="PremiumStorageConnectionString"
value="DefaultEndpointsProtocol=https;AccountName=MYSTORAGEACCOUNT;AccountKey=AUTHKEY;TableEndpoint=https://COSMOSDB.documents.azure.com"
/>

4. Then copy your PRIMARY KEY value from the portal and make it the value of the AccountKey in
PremiumStorageConnectionString.

AccountKey=AUTHKEY

5. Finally, copy your URI value from the Keys page of the portal (using the copy button) and make it the value of the
TableEndpoint of the PremiumStorageConnectionString.

TableEndpoint=https://COSMOSDB.documents.azure.com

http://portal.azure.com/

Run the web app

Review SLAs in the Azure portal

You can leave the StandardStorageConnectionString as is.

You've now updated your app with all the info it needs to communicate with Azure Cosmos DB.

1. In Visual Studio, right-click on the project in Solution Explorer and then click Manage NuGet Packages.

2. In the NuGet Browse box, type WindowsAzure.Storage and check the Include prerelease box.

3. From the results, install the Windows Azure Storage Premium Table library. This installs the preview Azure Cosmos
DB Table API package as well as all dependencies. Note that this is a different NuGet package than the Windows Azure
Storage package used by Azure Table storage.

4. Click CTRL + F5 to run the application.

The console window displays the data being added to the table. When the script completes, close the console window.

You can now go back to Data Explorer and see query, modify, and work with this new data.

Now that your app is up and running, you'll want to ensure business continuity and watch user access to ensure high
availability. You can use the Azure portal to review the availability, latency, throughput, and consistency of your collection.

Each graph that's associated with the Azure Cosmos DB Service Level Agreements (SLAs) provides a line that shows the quota
required to meet the SLA and your actual usage, giving you a clear view into your database performance. Additional metrics,
such as storage usage and number of requests per minute, are also included in the portal.

In the Azure portal, in the left pane, under Monitoring, click Metrics.

https://azure.microsoft.com/support/legal/sla/documentdb/

Clean up resources

Next steps

If you're not going to continue to use this app, delete all resources created by this quickstart in the Azure portal with the
following steps:

1. From the left-hand menu in the Azure portal, click Resource groups and then click the name of the resource you created.
2. On your resource group page, click Delete, type the name of the resource to delete in the text box, and then click Delete.

In this quickstart, you've learned how to create an Azure Cosmos DB account, create a table using the Data Explorer, and run
an app. Now you can query your data using the Table API.

Query using the Table API

Azure CosmosDB: Develop with the DocumentDB
API in .NET
6/1/2017 • 11 min to read • Edit Online

Prerequisites

Create an Azure Cosmos DB account

TIP

Azure Cosmos DB is Microsoft’s globally distributed multi-model database service. You can quickly create and
query document, key/value, and graph databases, all of which benefit from the global distribution and horizontal
scale capabilities at the core of Azure Cosmos DB.

This tutorial demonstrates how to create an Azure Cosmos DB account using the Azure portal, and then create a
document database and collection with a partition key using the DocumentDB .NET API. By defining a partition key
when you create a collection, your application is prepared to scale effortlessly as your data grows.

This tutorial covers the following tasks by using the DocumentDB .NET API:

Create an Azure Cosmos DB account
Create a database and collection with a partition key
Create JSON documents
Update a document
Query partitioned collections
Run stored procedures
Delete a document
Delete a database

Please make sure you have the following:

An active Azure account. If you don't have one, you can sign up for a free account.

Visual Studio.

Alternatively, you can use the Azure Cosmos DB Emulator for this tutorial if you'd like to use a local
environment that emulates the Azure DocumentDB service for development purposes.

Let's start by creating an Azure Cosmos DB account in the Azure portal.

Already have an Azure Cosmos DB account? If so, skip ahead to Set up your Visual Studio solution
Did you have an Azure DocumentDB account? If so, your account is now an Azure Cosmos DB account and you can skip
ahead to Set up your Visual Studio solution.
If you are using the Azure Cosmos DB Emulator, please follow the steps at Azure Cosmos DB Emulator to setup the
emulator and skip ahead to Set up your Visual Studio Solution.

1. In a new window, sign in to the Azure portal.
2. In the left pane, click New, click Databases, and then click Azure Cosmos DB.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/tutorial-develop-documentdb-dotnet.md
https://azure.microsoft.com/free/
http://www.visualstudio.com/
https://portal.azure.com/

3. On the New account blade, specify the configuration that you want for the Azure Cosmos DB account.

With Azure Cosmos DB, you can choose one of four programming models: Gremlin (graph), MongoDB, SQL
(DocumentDB), and Table (key-value).

In this quick-start article we program against the DocumentDB API, so choose SQL (DocumentDB) as you
fill out the form. But if you have graph data for a social media app, or key/value (table) data, or data
migrated from a MongoDB app, realize that Azure Cosmos DB can provide a highly available, globally
distributed database service platform for all your mission-critical applications.

Complete the fields on the New account blade, using the information in the following screenshot as a
guide. When you set up your account, choose unique values that do not match those in the screenshot.

SETTING SUGGESTED VALUE DESCRIPTION

ID Unique value A unique name that identifies your
Azure Cosmos DB account. The string
documents.azure.com is appended to
the ID you provide to create your
URI, so use a unique but identifiable
ID. The ID can contain only lowercase
letters, numbers, and the hyphen (-)
character, and it must contain from 3
through 50 characters.

API SQL (DocumentDB) We program against the
DocumentDB API later in this article.

Subscription Your subscription The Azure subscription that you want
to use for your Azure Cosmos DB
account.

Resource Group The same value as ID The new resource-group name for
your account. For simplicity, you can
use the same name as your ID.

Location The region closest to your users The geographic location in which to
host your Azure Cosmos DB account.
Choose the location that's closest to
your users to give them the fastest
access to the data.

4. Click Create to create the account.
5. On the top toolbar, click Notifications to monitor the deployment process.

6. When the deployment is complete, open the new account from the All Resources tile.

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-introduction

 Set up your Visual Studio solution
1. Open Visual Studio on your computer.
2. On the File menu, select New, and then choose Project.
3. In the New Project dialog, select Templates / Visual C# / Console App (.NET Framework), name your

project, and then click OK.

4. In the Solution Explorer, right click on your new console application, which is under your Visual Studio
solution, and then click Manage NuGet Packages...

 Add references to your project

using System.Net;
using Microsoft.Azure.Documents;
using Microsoft.Azure.Documents.Client;
using Newtonsoft.Json;

5. In the NuGet tab, click Browse, and type documentdb in the search box.
6. Within the results, find Microsoft.Azure.DocumentDB and click Install. The package ID for the Azure

Cosmos DB Client Library is Microsoft.Azure.DocumentDB.

If you get a message about reviewing changes to the solution, click OK. If you get a message about license
acceptance, click I accept.

The remaining steps in this tutorial provide the DocumentDB API code snippets required to create and update
Azure Cosmos DB resources in your project.

First, add these references to your application.

https://www.nuget.org/packages/Microsoft.Azure.DocumentDB

Connect your app

private const string EndpointUrl = "<your endpoint URL>";
private const string PrimaryKey = "<your primary key>";
private DocumentClient client;

Instantiate the DocumentClient

DocumentClient client = new DocumentClient(new Uri(endpoint), authKey);

Create a database

await client.CreateDatabaseAsync(new Database { Id = "db" });

Decide on a partition key

Next, add these two constants and your client variable in your application.

Then, head back to the Azure portal to retrieve your endpoint URL and primary key. The endpoint URL and primary
key are necessary for your application to understand where to connect to, and for Azure Cosmos DB to trust your
application's connection.

In the Azure portal, navigate to your Azure Cosmos DB account, click Keys, and then click Read-write Keys.

Copy the URI from the portal and paste it over <your endpoint URL> in the program.cs file. Then copy the PRIMARY
KEY from the portal and paste it over <your primary key> . Be sure to remove the < and > from your values.

![Screen shot of the Azure portal used by the NoSQL tutorial to create a C# console application. Shows an Azure
Cosmos DB account, with the KEYS highlighted on the Azure Cosmos DB account blade, and the URI and PRIMARY
KEY values highlighted on the Keys blade][keys]

Now, create a new instance of the DocumentClient.

Next, create an Azure Cosmos DB database by using the CreateDatabaseAsync method or
CreateDatabaseIfNotExistsAsync method of the DocumentClient class from the DocumentDB .NET SDK. A
database is the logical container of JSON document storage partitioned across collections.

Collections are containers for storing documents. They are logical resources and can span one or more physical
partitions. A partition key is a property (or path) within your documents that is used to distribute your data among
the servers or partitions. All documents with the same partition key are stored in the same partition.

Determining a partition key is an important decision to make before you create a collection. Partition keys are a
property (or path) within your documents that can be used by Azure Cosmos DB to distribute your data among
multiple servers or partitions. Cosmos DB hashes the partition key value and uses the hashed result to determine
the partition in which to store the document. All documents with the same partition key are stored in the same
partition, and partition keys cannot be changed once a collection is created.

For this tutorial, we're going to set the partition key to /deviceId so that the all the data for a single device is stored
in a single partition. You want to choose a partition key that has a large number of values, each of which are used at
about the same frequency to ensure Cosmos DB can load balance as your data grows and achieve the full
throughput of the collection.

For more information about partitioning, see How to partition and scale in Azure Cosmos DB?

https://portal.azure.com
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createdatabaseasync.aspx
https://msdn.microsoft.com/library/microsoft.azure.documents.client.documentclient.createdatabaseifnotexistsasync.aspx

Create a collection

WARNING

// Collection for device telemetry. Here the JSON property deviceId is used
// as the partition key to spread across partitions. Configured for 2500 RU/s
// throughput and an indexing policy that supports sorting against any
// number or string property. .
DocumentCollection myCollection = new DocumentCollection();
myCollection.Id = "coll";
myCollection.PartitionKey.Paths.Add("/deviceId");

await client.CreateDocumentCollectionAsync(
 UriFactory.CreateDatabaseUri("db"),
 myCollection,
 new RequestOptions { OfferThroughput = 2500 });

Create JSON documents

Now that we know our partition key, /deviceId , lets create a collection by using the CreateDocumentCollectionAsync
method or CreateDocumentCollectionIfNotExistsAsync method of the DocumentClient class. A collection is a
container of JSON documents and any associated JavaScript application logic.

Creating a collection has pricing implications, as you are reserving throughput for the application to communicate with Azure
Cosmos DB. For more details, please visit our pricing page

This method makes a REST API call to Azure Cosmos DB, and the service provisions a number of partitions based
on the requested throughput. You can change the throughput of a collection as your performance needs evolve
using the SDK or the Azure portal.

Let's insert some JSON documents into Azure Cosmos DB. A document can be created by using the
CreateDocumentAsync method of the DocumentClient class. Documents are user-defined (arbitrary) JSON
content. This sample class contains a device reading, and a call to CreateDocumentAsync to insert a new device
reading into a collection.

https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createdocumentcollectionasync.aspx
https://msdn.microsoft.com/library/microsoft.azure.documents.client.documentclient.createdocumentcollectionifnotexistsasync.aspx
https://azure.microsoft.com/pricing/details/cosmos-db/
https://msdn.microsoft.com/library/microsoft.azure.documents.client.documentclient.createdocumentasync.aspx

public class DeviceReading
{
 [JsonProperty("id")]
 public string Id;

 [JsonProperty("deviceId")]
 public string DeviceId;

 [JsonConverter(typeof(IsoDateTimeConverter))]
 [JsonProperty("readingTime")]
 public DateTime ReadingTime;

 [JsonProperty("metricType")]
 public string MetricType;

 [JsonProperty("unit")]
 public string Unit;

 [JsonProperty("metricValue")]
 public double MetricValue;
 }

// Create a document. Here the partition key is extracted
// as "XMS-0001" based on the collection definition
await client.CreateDocumentAsync(
 UriFactory.CreateDocumentCollectionUri("db", "coll"),
 new DeviceReading
 {
 Id = "XMS-001-FE24C",
 DeviceId = "XMS-0001",
 MetricType = "Temperature",
 MetricValue = 105.00,
 Unit = "Fahrenheit",
 ReadingTime = DateTime.UtcNow
 });

Read data

// Read document. Needs the partition key and the Id to be specified
Document result = await client.ReadDocumentAsync(
 UriFactory.CreateDocumentUri("db", "coll", "XMS-001-FE24C"),
 new RequestOptions { PartitionKey = new PartitionKey("XMS-0001") });

DeviceReading reading = (DeviceReading)(dynamic)result;

Update data

// Update the document. Partition key is not required, again extracted from the document
reading.MetricValue = 104;
reading.ReadingTime = DateTime.UtcNow;

await client.ReplaceDocumentAsync(
 UriFactory.CreateDocumentUri("db", "coll", "XMS-001-FE24C"),
 reading);

Let's read the document by its partition key and Id using the ReadDocumentAsync method. Note that the reads
include a PartitionKey value (corresponding to the x-ms-documentdb-partitionkey request header in the REST API).

Now let's update some data using the ReplaceDocumentAsync method.

Delete data

// Delete a document. The partition key is required.
await client.DeleteDocumentAsync(
 UriFactory.CreateDocumentUri("db", "coll", "XMS-001-FE24C"),
 new RequestOptions { PartitionKey = new PartitionKey("XMS-0001") });

Query partitioned collections

// Query using partition key
IQueryable<DeviceReading> query = client.CreateDocumentQuery<DeviceReading>(
 UriFactory.CreateDocumentCollectionUri("db", "coll"))
 .Where(m => m.MetricType == "Temperature" && m.DeviceId == "XMS-0001");

// Query across partition keys
IQueryable<DeviceReading> crossPartitionQuery = client.CreateDocumentQuery<DeviceReading>(
 UriFactory.CreateDocumentCollectionUri("db", "coll"),
 new FeedOptions { EnableCrossPartitionQuery = true })
 .Where(m => m.MetricType == "Temperature" && m.MetricValue > 100);

Parallel query execution

// Cross-partition Order By queries
IQueryable<DeviceReading> crossPartitionQuery = client.CreateDocumentQuery<DeviceReading>(
 UriFactory.CreateDocumentCollectionUri("db", "coll"),
 new FeedOptions { EnableCrossPartitionQuery = true, MaxDegreeOfParallelism = 10, MaxBufferedItemCount = 100})
 .Where(m => m.MetricType == "Temperature" && m.MetricValue > 100)
 .OrderBy(m => m.MetricValue);

Now lets delete a document by partition key and id by using the DeleteDocumentAsync method.

When you query data in partitioned collections, Azure Cosmos DB automatically routes the query to the partitions
corresponding to the partition key values specified in the filter (if there are any). For example, this query is routed to
just the partition containing the partition key "XMS-0001".

The following query does not have a filter on the partition key (DeviceId) and is fanned out to all partitions where it
is executed against the partition's index. Note that you have to specify the EnableCrossPartitionQuery (
x-ms-documentdb-query-enablecrosspartition in the REST API) to have the SDK to execute a query across partitions.

The Azure Cosmos DB DocumentDB SDKs 1.9.0 and above support parallel query execution options, which allow
you to perform low latency queries against partitioned collections, even when they need to touch a large number of
partitions. For example, the following query is configured to run in parallel across partitions.

You can manage parallel query execution by tuning the following parameters:

By setting MaxDegreeOfParallelism , you can control the degree of parallelism i.e., the maximum number of
simultaneous network connections to the collection's partitions. If you set this to -1, the degree of parallelism is
managed by the SDK. If the MaxDegreeOfParallelism is not specified or set to 0, which is the default value, there will
be a single network connection to the collection's partitions.
By setting MaxBufferedItemCount , you can trade off query latency and client-side memory utilization. If you omit
this parameter or set this to -1, the number of items buffered during parallel query execution is managed by the
SDK.

Given the same state of the collection, a parallel query will return results in the same order as in serial execution.

Execute stored procedures

await client.ExecuteStoredProcedureAsync<DeviceReading>(
 UriFactory.CreateStoredProcedureUri("db", "coll", "SetLatestStateAcrossReadings"),
 new RequestOptions { PartitionKey = new PartitionKey("XMS-001") },
 "XMS-001-FE24C");

Clean up resources

Next steps

When performing a cross-partition query that includes sorting (ORDER BY and/or TOP), the DocumentDB SDK
issues the query in parallel across partitions and merges partially sorted results in the client side to produce
globally ordered results.

Lastly, you can execute atomic transactions against documents with the same device ID, e.g. if you're maintaining
aggregates or the latest state of a device in a single document by adding the following code to your project.

And that's it! those are the main components of an Azure Cosmos DB application that uses a partition key to
efficiently scale data distribution across partitions.

If you're not going to continue to use this app, delete all resources created by this tutorial in the Azure portal with
the following steps:

1. From the left-hand menu in the Azure portal, click Resource groups and then click the unique name of the
resource you created.

2. On your resource group page, click Delete, type the name of the resource to delete in the text box, and then
click Delete.

In this tutorial, you've done the following:

Created an Azure Cosmos DB account
Created a database and collection with a partition key
Created JSON documents
Updated a document
Queried partitioned collections
Ran a stored procedure
Deleted a document
Deleted a database

You can now proceed to the next tutorial and import additional data to your Cosmos DB account.

Import data into Azure Cosmos DB

Azure Cosmos DB: Connect to a MongoDB app
using .NET
6/1/2017 • 5 min to read • Edit Online

Create a database account

TIP

Azure Cosmos DB is Microsoft’s globally distributed multi-model database service. You can quickly create and
query document, key/value, and graph databases, all of which benefit from the global distribution and horizontal
scale capabilities at the core of Azure Cosmos DB.

This tutorial demonstrates how to create an Azure Cosmos DB account using the Azure portal, and how to create a
database and collection to store data using the MongoDB API.

This tutorial covers the following tasks:

Create an Azure Cosmos DB account
Update your connection string
Create a MongoDB app on a virtual machine

Let's start by creating an Azure Cosmos DB account in the Azure portal.

Already have an Azure Cosmos DB account? If so, skip ahead to Set up your Visual Studio solution
Did you have an Azure DocumentDB account? If so, your account is now an Azure Cosmos DB account and you can skip
ahead to Set up your Visual Studio solution.
If you are using the Azure Cosmos DB Emulator, please follow the steps at Azure Cosmos DB Emulator to setup the
emulator and skip ahead to Set up your Visual Studio Solution.

1. In a new window, sign in to the Azure portal.
2. In the left menu, click New, click Databases, and then click Azure Cosmos DB.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/tutorial-develop-mongodb.md
https://portal.azure.com/

3. In the New account blade, specify the desired configuration for the Azure Cosmos DB account.

With Azure Cosmos DB, you can choose one of four programming models: Gremlin (graph), MongoDB, SQL
(DocumentDB), and Table (key-value).

In this quick start we'll be programming against the MongoDB API so you'll choose MongoDB as you fill
out the form. But if you have graph data for a social media app, document data from a catalog app, or
key/value (table) data, realize that Azure Cosmos DB can provide a highly available, globally-distributed
database service platform for all your mission-critical applications.

Fill out the New account blade using the information in the screenshot as a guide . You will choose unique
values as you set up your account so your values will not match the screenshot exactly

SETTING SUGGESTED VALUE DESCRIPTION

ID Unique value A unique name you choose to
identify the Azure Cosmos DB
account. documents.azure.com is
appended to the ID you provide to
create your URI, so use a unique but
identifiable ID. The ID may contain
only lowercase letters, numbers, and
the '-' character, and must be
between 3 and 50 characters.

API MongoDB We'll be programming against the
MongoDB API later in this article.

Subscription Your subscription The Azure subscription that you want
to use for the Azure Cosmos DB
account.

Resource Group The same value as ID The new resource group name for
your account. For simplicity, you can
use the same name as your ID.

Location The region closest to your users The geographic location in which to
host your Azure Cosmos DB account.
Choose the location closest to your
users to give them the fastest access
to the data.

4. Click Create to create the account.

5. On the toolbar, click Notifications to monitor the deployment process.

6. When the deployment is complete, open the new account from the All Resources tile.

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-protocol-mongodb

Update your connection string

Set up your MongoDB app

1. In the Azure portal, in the Azure Cosmos DB page, select the API for MongoDB account.
2. In the left bar of the account blade, click Quick start.
3. Choose your platform (.NET driver, Node.js driver, MongoDB Shell, Java driver, Python driver). If you don't see

your driver or tool listed, don't worry, we continuously document more connection code snippets.
4. Copy and paste the code snippet into your MongoDB app, and you are ready to go.

You can use the Create a web app in Azure that connects to MongoDB running on a virtual machine tutorial, with
minimal modification, to quickly setup a MongoDB application (either locally or published to an Azure web app)
that connects to an API for MongoDB account.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using MyTaskListApp.Models;
using MongoDB.Driver;
using MongoDB.Bson;
using System.Configuration;
using System.Security.Authentication;

namespace MyTaskListApp
{
 public class Dal : IDisposable
 {
 //private MongoServer mongoServer = null;
 private bool disposed = false;

 // To do: update the connection string with the DNS name
 // or IP address of your server.
 //For example, "mongodb://testlinux.cloudapp.net
 private string connectionString = "mongodb://localhost:27017";
 private string userName = "<your user name>";

1. Follow the tutorial, with one modification. Replace the Dal.cs code with this:

https://docs.microsoft.com/en-us/azure/app-service-web/web-sites-dotnet-store-data-mongodb-vm

 private string userName = "<your user name>";
 private string host = "<your host>";
 private string password = "<your password>";

 // This sample uses a database named "Tasks" and a
 //collection named "TasksList". The database and collection
 //will be automatically created if they don't already exist.
 private string dbName = "Tasks";
 private string collectionName = "TasksList";

 // Default constructor.
 public Dal()
 {
 }

 // Gets all Task items from the MongoDB server.
 public List<MyTask> GetAllTasks()
 {
 try
 {
 var collection = GetTasksCollection();
 return collection.Find(new BsonDocument()).ToList();
 }
 catch (MongoConnectionException)
 {
 return new List<MyTask>();
 }
 }

 // Creates a Task and inserts it into the collection in MongoDB.
 public void CreateTask(MyTask task)
 {
 var collection = GetTasksCollectionForEdit();
 try
 {
 collection.InsertOne(task);
 }
 catch (MongoCommandException ex)
 {
 string msg = ex.Message;
 }
 }

 private IMongoCollection<MyTask> GetTasksCollection()
 {
 MongoClientSettings settings = new MongoClientSettings();
 settings.Server = new MongoServerAddress(host, 10250);
 settings.UseSsl = true;
 settings.SslSettings = new SslSettings();
 settings.SslSettings.EnabledSslProtocols = SslProtocols.Tls12;

 MongoIdentity identity = new MongoInternalIdentity(dbName, userName);
 MongoIdentityEvidence evidence = new PasswordEvidence(password);

 settings.Credentials = new List<MongoCredential>()
 {
 new MongoCredential("SCRAM-SHA-1", identity, evidence)
 };

 MongoClient client = new MongoClient(settings);
 var database = client.GetDatabase(dbName);
 var todoTaskCollection = database.GetCollection<MyTask>(collectionName);
 return todoTaskCollection;
 }

 private IMongoCollection<MyTask> GetTasksCollectionForEdit()
 {
 MongoClientSettings settings = new MongoClientSettings();
 settings.Server = new MongoServerAddress(host, 10250);

Clean up resources

Next steps

 settings.UseSsl = true;
 settings.SslSettings = new SslSettings();
 settings.SslSettings.EnabledSslProtocols = SslProtocols.Tls12;

 MongoIdentity identity = new MongoInternalIdentity(dbName, userName);
 MongoIdentityEvidence evidence = new PasswordEvidence(password);

 settings.Credentials = new List<MongoCredential>()
 {
 new MongoCredential("SCRAM-SHA-1", identity, evidence)
 };
 MongoClient client = new MongoClient(settings);
 var database = client.GetDatabase(dbName);
 var todoTaskCollection = database.GetCollection<MyTask>(collectionName);
 return todoTaskCollection;
 }

 # region IDisposable

 public void Dispose()
 {
 this.Dispose(true);
 GC.SuppressFinalize(this);
 }

 protected virtual void Dispose(bool disposing)
 {
 if (!this.disposed)
 {
 if (disposing)
 {
 }
 }

 this.disposed = true;
 }

 # endregion
 }
}

private string userName = "<your user name>";
private string host = "<your host>";
private string password = "<your password>";

2. Modify the following variables in the Dal.cs file per your account settings from the Keys page in the Azure
portal:

3. Use the app!

If you're not going to continue to use this app, use the following steps to delete all resources created by this tutorial
in the Azure portal.

1. From the left-hand menu in the Azure portal, click Resource groups and then click the name of the resource
you created.

2. On your resource group page, click Delete, type the name of the resource to delete in the text box, and then
click Delete.

In this tutorial, you've done the following:

Create an Azure Cosmos DB account
Update your connection string
Create a MongoDB app on a virtual machine

You can proceed to the next tutorial and import your MongoDB data to Azure Cosmos DB.

Import MongoDB data into Azure Cosmos DB

Azure Cosmos DB: Develop with the Table API in
.NET
6/1/2017 • 15 min to read • Edit Online

Tables in Azure Cosmos DB

Azure Cosmos DB is Microsoft’s globally distributed multi-model database service. You can quickly create and
query document, key/value, and graph databases, all of which benefit from the global distribution and horizontal
scale capabilities at the core of Azure Cosmos DB.

This tutorial covers the following tasks:

Create an Azure Cosmos DB account
Enable functionality in the app.config file
Create a table using the Table API (preview)
Add an entity to a table
Insert a batch of entities
Retrieve a single entity
Query entities using automatic secondary indexes
Replace an entity
Delete an entity
Delete a table

Azure Cosmos DB provides the Table API (preview) for applications that need a key-value store with a schema-less
design. Azure Table storage SDKs and REST APIs can be used to work with Azure Cosmos DB. You can use Azure
Cosmos DB to create tables with high throughput requirements. Azure Cosmos DB supports throughput-optimized
tables (informally called "premium tables"), currently in public preview.

You can continue to use Azure Table storage for tables with high storage and lower throughput requirements.
Azure Cosmos DB will introduce support for storage-optimized tables in a future update, and existing and new
Azure Table storage accounts will be seamlessly upgraded to Azure Cosmos DB.

If you currently use Azure Table storage, you gain the following benefits with the "premium table" preview:

Turn-key global distribution with multi-homing and automatic and manual failovers
Support for automatic schema-agnostic indexing against all properties ("secondary indexes"), and fast queries
Support for independent scaling of storage and throughput, across any number of regions
Support for dedicated throughput per table that can be scaled from hundreds to millions of requests per second
Support for five tunable consistency levels to trade off availability, latency, and consistency based on your
application needs
99.99% availability within a single region, and ability to add more regions for higher availability, and industry-
leading comprehensive SLAs on general availability
Work with the existing Azure storage .NET SDK, and no code changes to your application

During the preview, Azure Cosmos DB supports the Table API using the .NET SDK. You can download the Azure
Storage Preview SDK from NuGet, that has the same classes and method signatures as the Azure Storage SDK, but
also can connect to Azure Cosmos DB accounts using the Table API.

To learn more about complex Azure Table storage tasks, see:

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/tutorial-develop-table-dotnet.md
https://docs.microsoft.com/en-us/azure/storage/storage-introduction
https://azure.microsoft.com/support/legal/sla/cosmos-db/
https://aka.ms/premiumtablenuget
https://www.nuget.org/packages/WindowsAzure.Storage

About this tutorial

Create a database account

TIP

Introduction to Azure Cosmos DB: Table API
The Table service reference documentation for complete details about available APIs Storage Client Library for
.NET reference

This tutorial is for developers who are familiar with the Azure Table storage SDK, and would like to use the
premium features available using Azure Cosmos DB. It is based on Get Started with Azure Table storage using .NET
and shows how to take advantage of additional capabilities like secondary indexes, provisioned throughput, and
multi-homing. We cover how to use the Azure portal to create an Azure Cosmos DB account, and then build and
deploy a Table application. We also walk through .NET examples for creating and deleting a table, and inserting,
updating, deleting, and querying table data.

If you don't already have Visual Studio 2017 installed, you can download and use the free Visual Studio 2017
Community Edition. Make sure that you enable Azure development during the Visual Studio setup.

If you don't have an Azure subscription, create a free account before you begin.

Let's start by creating an Azure Cosmos DB account in the Azure portal.

Already have an Azure Cosmos DB account? If so, skip ahead to Set up your Visual Studio solution.
Did you have an Azure DocumentDB account? If so, your account is now an Azure Cosmos DB account and you can skip
ahead to Set up your Visual Studio solution.
If you are using the Azure Cosmos DB Emulator, please follow the steps at Azure Cosmos DB Emulator to setup the
emulator and skip ahead to Set up your Visual Studio Solution.

1. In a new window, sign in to the Azure portal.
2. In the left menu, click New, click Databases, and then click Azure Cosmos DB.

3. In the New account blade, specify the desired configuration for the Azure Cosmos DB account.

http://go.microsoft.com/fwlink/?LinkID=390731&clcid=0x409
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables
https://www.visualstudio.com/downloads/
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://portal.azure.com/

SETTING SUGGESTED VALUE DESCRIPTION

ID Unique value A unique name you choose to
identify the Azure Cosmos DB
account. documents.azure.com is
appended to the ID you provide to
create your URI, so use a unique but
identifiable ID. The ID may contain
only lowercase letters, numbers, and
the '-' character, and must be
between 3 and 50 characters.

API Table (key-value) We'll be programming against the
Table API later in this article.

Subscription Your subscription The Azure subscription that you want
to use for the Azure Cosmos DB
account.

Resource Group The same value as ID The new resource group name for
your account. For simplicity, you can
use the same name as your ID.

With Azure Cosmos DB, you can choose one of four programming models: Gremlin (graph), MongoDB, SQL
(DocumentDB), and Table (key-value).

In this quick start we'll be programming against the Table API so you'll choose Table (key-value) as you fill
out the form. But if you have graph data for a social media app, document data from a catalog app, or data
migrated from a MongoDB app, realize that Azure Cosmos DB can provide a highly available, globally-
distributed database service platform for all your mission-critical applications.

Fill out the New account blade using the information in the screenshot as a guide. You will choose unique
values as you set up your account so your values will not match the screenshot exactly.

Location The region closest to your users The geographic location in which to
host your Azure Cosmos DB account.
Choose the location closest to your
users to give them the fastest access
to the data.

SETTING SUGGESTED VALUE DESCRIPTION

4. Click Create to create the account.

5. On the toolbar, click Notifications to monitor the deployment process.

6. When the deployment is complete, open the new account from the All Resources tile.

Clone the sample application

Update your connection string

<add key="StorageConnectionString" value="DefaultEndpointsProtocol=https;AccountName=account-name;AccountKey=account-
key;TableEndpoint=https://account-name.documents.azure.com" />

NOTE

Build and deploy the app

NOTE

Now let's clone a Table app from github, set the connection string, and run it.

git clone https://github.com/Azure-Samples/azure-cosmos-db-table-dotnet-getting-started

1. Open a git terminal window, such as git bash, and cd to a working directory.

2. Run the following command to clone the sample repository.

3. Then open the solution file in Visual Studio.

Now go back to the Azure portal to get your connection string information and copy it into the app.

1. In the Azure portal, in your Azure Cosmos DB account, in the left navigation click Keys, and then click Read-
write Keys. You'll use the copy buttons on the right side of the screen to copy the connection string into the
app.config file in the next step.

2. In Visual Studio, open the app.config file.

3. Copy your URI value from the portal (using the copy button) and make it the value of the account-key in
app.config. Use the account name created earlier for account-name in app.config.

To use this app with standard Azure Table Storage, you need to change the connection string in app.config file . Use the
account name as Table-account name and key as Azure Storage Primary key.
<add key="StorageConnectionString" value="DefaultEndpointsProtocol=https;AccountName=account-
name;AccountKey=account-key;EndpointSuffix=core.windows.net" />

1. In Visual Studio, right-click on the project in Solution Explorer and then click Manage NuGet Packages.

2. In the NuGet Browse box, type WindowsAzure.Storage-PremiumTable. Check Include prerelease
versions.

3. From the results, install the WindowsAzure.Storage-PremiumTable and choose the preview build
0.0.1-preview . This action installs the Azure Table storage package and all dependencies.

4. Click CTRL + F5 to run the application.

You can now go back to Data Explorer and see query, modify, and work with this table data.

To use this app with an Azure Cosmos DB Emulator, you just need to change the connection string in app.config file .
Use the below value for emulator.
<add key="StorageConnectionString" value=DefaultEndpointsProtocol=https;AccountName=localhost;AccountKey=
<insertkey>==;TableEndpoint=https://localhost -->

http://portal.azure.com/

 Azure Cosmos DB capabilities

KEY DESCRIPTION

TableConnectionMode Azure Cosmos DB supports two connectivity modes. In
Gateway mode, requests are always made to the Azure

Cosmos DB gateway, which forwards it to the corresponding
data partitions. In Direct connectivity mode, the client
fetches the mapping of tables to partitions, and requests are
made directly against data partitions. We recommend
Direct , the default.

TableConnectionProtocol Azure Cosmos DB supports two connection protocols -
Https and Tcp . Tcp is the default, and recommended

because it is more lightweight.

TablePreferredLocations Comma-separated list of preferred (multi-homing) locations
for reads. Each Azure Cosmos DB account can be associated
with 1-30+ regions. Each client instance can specify a subset
of these regions in the preferred order for low latency reads.
The regions must be named using their display names, for
example, West US . Also see Multi-homing APIs.

TableConsistencyLevel You can trade off between latency, consistency, and availability
by choosing between five well-defined consistency levels:
Strong , Session , Bounded-Staleness ,
ConsistentPrefix , and Eventual . Default is Session .

The choice of consistency level makes a significant
performance difference in multi-region setups. See
Consistency levels for details.

TableThroughput Reserved throughput for the table expressed in request units
(RU) per second. Single tables can support 100s-millions of
RU/s. See Request units. Default is 400

TableIndexingPolicy Consistent and automatic secondary indexing of all columns
within tables

TableQueryMaxItemCount Configure the maximum number of items returned per table
query in a single round trip. Default is -1 , which lets Azure
Cosmos DB dynamically determine the value at runtime.

TableQueryEnableScan If the query cannot use the index for any filter, then run it
anyway via a scan. Default is false .

TableQueryMaxDegreeOfParallelism The degree of parallelism for execution of a cross-partition
query. 0 is serial with no pre-fetching, 1 is serial with pre-
fetching, and higher values increase the rate of parallelism.
Default is -1 , which lets Azure Cosmos DB dynamically
determine the value at runtime.

Azure Cosmos DB supports a number of capabilities that are not available in the Azure Table storage API. The new
functionality can be enabled via the following appSettings configuration values. We did not introduce any new
signatures or overloads to the preview Azure Storage SDK. This allows you to connect to both standard and
premium tables, and work with other Azure Storage services like Blobs and Queues.

To change the default value, open the app.config file from Solution Explorer in Visual Studio. Add the contents of

https://msdn.microsoft.com/library/azure/gg441293.aspx

<configuration>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.5.2" />
 </startup>
 <appSettings>
 <!-- Client options -->
 <add key="StorageConnectionString" value="DefaultEndpointsProtocol=https;AccountName=account-name;AccountKey=account-key;
TableEndpoint=https://account-name.documents.azure.com" />
 <add key="TableConnectionMode" value="Direct"/>
 <add key="TableConnectionProtocol" value="Tcp"/>
 <add key="TablePreferredLocations" value="East US, West US, North Europe"/>
 <add key="TableConsistencyLevel" value="Eventual"/>

 <!--Table creation options -->
 <add key="TableThroughput" value="700"/>
 <add key="TableIndexingPolicy" value="{""indexingMode"": ""Consistent""}">

 <!-- Table query options -->
 <add key="TableQueryMaxItemCount" value="-1"/>
 <add key="TableQueryEnableScan" value="false"/>
 <add key="TableQueryMaxDegreeOfParallelism" value="-1"/>
 <add key="TableQueryContinuationTokenLimitInKb" value="16"/>

 </appSettings>
</configuration>

Create the table client

CloudTableClient tableClient = storageAccount.CreateCloudTableClient();

Create a table

CloudTable table = tableClient.GetTableReference("people");

table.CreateIfNotExists();

the <appSettings> element shown below. Replace account-name with the name of your storage account, and
account-key with your account access key.

Let's make a quick review of what's happening in the app. Open the Program.cs file and you find that these lines of
code create the Table resources.

You initialize a CloudTableClient to connect to the table account.

This client is initialized using the TableConnectionMode , TableConnectionProtocol , TableConsistencyLevel , and
TablePreferredLocations configuration values if specified in the app settings.

Then, you create a table using CloudTable . Tables in Azure Cosmos DB can scale independently in terms of storage
and throughput, and partitioning is handled automatically by the service. Azure Cosmos DB supports both fixed
size and unlimited tables. See Partitioning in Azure Cosmos DB for details.

There is an important difference in how tables are created. Azure Cosmos DB reserves throughput, unlike Azure
storage's consumption-based model for transactions. The reservation model has two key benefits:

Your throughput is dedicated/reserved, so you never get throttled if your request rate is at or below your
provisioned throughput
The reservation model is more cost effective for throughput-heavy workloads

NOTE

Add an entity to a table

public class CustomerEntity : TableEntity
{
 public CustomerEntity(string lastName, string firstName)
 {
 this.PartitionKey = lastName;
 this.RowKey = firstName;
 }

 public CustomerEntity() { }

 public string Email { get; set; }

 public string PhoneNumber { get; set; }
}

// Create a new customer entity.
CustomerEntity customer1 = new CustomerEntity("Harp", "Walter");
customer1.Email = "Walter@contoso.com";
customer1.PhoneNumber = "425-555-0101";

// Create the TableOperation object that inserts the customer entity.
TableOperation insertOperation = TableOperation.Insert(customer1);

// Execute the insert operation.
table.Execute(insertOperation);

Insert a batch of entities

You can configure the default throughput by configuring the setting for TableThroughput in terms of RU (request
units) per second.

A read of a 1-KB entity is normalized as 1 RU, and other operations are normalized to a fixed RU value based on
their CPU, memory, and IOPS consumption. Learn more about Request units in Azure Cosmos DB.

While Table storage SDK does not currently support modifying throughput, you can change the throughput instantaneously
at any time using the Azure portal or Azure CLI.

Next, we walk through the simple read and write (CRUD) operations using the Azure Table storage SDK. This
tutorial demonstrates predictable low single-digit millisecond latencies and fast queries provided by Azure Cosmos
DB.

Entities in Azure Table storage extend from the TableEntity class and must have PartitionKey and RowKey

properties. Here's a sample definition for a customer entity.

The following snippet shows how to insert an entity with the Azure storage SDK. Azure Cosmos DB is designed for
guaranteed low latency at any scale, across the world.

Writes complete <15 ms at p99 and ~6 ms at p50 for applications running in the same region as the Azure
Cosmos DB account. And this duration accounts for the fact that writes are acknowledged back to the client only
after they are synchronously replicated, durably committed, and all content is indexed.

The Table API for Azure Cosmos DB is in preview. At general availability, the p99 latency guarantees are backed by
SLAs like other Azure Cosmos DB APIs.

// Create the batch operation.
TableBatchOperation batchOperation = new TableBatchOperation();

// Create a customer entity and add it to the table.
CustomerEntity customer1 = new CustomerEntity("Smith", "Jeff");
customer1.Email = "Jeff@contoso.com";
customer1.PhoneNumber = "425-555-0104";

// Create another customer entity and add it to the table.
CustomerEntity customer2 = new CustomerEntity("Smith", "Ben");
customer2.Email = "Ben@contoso.com";
customer2.PhoneNumber = "425-555-0102";

// Add both customer entities to the batch insert operation.
batchOperation.Insert(customer1);
batchOperation.Insert(customer2);

// Execute the batch operation.
table.ExecuteBatch(batchOperation);

Retrieve a single entity

// Create a retrieve operation that takes a customer entity.
TableOperation retrieveOperation = TableOperation.Retrieve<CustomerEntity>("Smith", "Ben");

// Execute the retrieve operation.
TableResult retrievedResult = table.Execute(retrieveOperation);

TIP

Query entities using automatic secondary indexes

Azure Table storage supports a batch operation API, that lets you combine updates, deletes, and inserts in the same
single batch operation. Azure Cosmos DB does not have some of the limitations on the batch API as Azure Table
storage. For example, you can perform multiple reads within a batch, you can perform multiple writes to the same
entity within a batch, and there is no limit on 100 operations per batch.

Retrieves (GETs) in Azure Cosmos DB complete <10 ms at p99 and ~1 ms at p50 in the same Azure region. You
can add as many regions to your account for low latency reads, and deploy applications to read from their local
region ("multi-homed") by setting TablePreferredLocations .

You can retrieve a single entity using the following snippet:

Learn about multi-homing APIs at Developing with multiple regions

Tables can be queried using the TableQuery class. Azure Cosmos DB has a write-optimized database engine that
automatically indexes all columns within your table. Indexing in Azure Cosmos DB is agnostic to schema. Therefore,
even if your schema is different between rows, or if the schema evolves over time, it is automatically indexed. Since
Azure Cosmos DB supports automatic secondary indexes, queries against any property can use the index and be
served efficiently.

CloudTable table = tableClient.GetTableReference("people");

// Filter against a property that's not partition key or row key
TableQuery<CustomerEntity> emailQuery = new TableQuery<CustomerEntity>().Where(
 TableQuery.GenerateFilterCondition("Email", QueryComparisons.Equal, "Ben@contoso.com"));

foreach (CustomerEntity entity in table.ExecuteQuery(emailQuery))
{
 Console.WriteLine("{0}, {1}\t{2}\t{3}", entity.PartitionKey, entity.RowKey,
 entity.Email, entity.PhoneNumber);
}

Replace an entity

TableOperation updateOperation = TableOperation.Replace(updateEntity);
table.Execute(updateOperation);

Delete an entity

TableOperation deleteOperation = TableOperation.Delete(deleteEntity);
table.Execute(deleteOperation);

Delete a table

CloudTable table = tableClient.GetTableReference("people");
table.DeleteIfExists();

Clean up resources

In preview, Azure Cosmos DB supports the same query functionality as Azure Table storage for the Table API. Azure
Cosmos DB also supports sorting, aggregates, geospatial query, hierarchy, and a wide range of built-in functions.
The additional functionality will be provided in the Table API in a future service update. See Azure Cosmos DB
query for an overview of these capabilities.

To update an entity, retrieve it from the Table service, modify the entity object, and then save the changes back to
the Table service. The following code changes an existing customer's phone number.

Similarly, you can perform InsertOrMerge or Merge operations.

You can easily delete an entity after you have retrieved it by using the same pattern shown for updating an entity.
The following code retrieves and deletes a customer entity.

Finally, the following code example deletes a table from a storage account. You can delete and recreate a table
immediately with Azure Cosmos DB.

If you're not going to continue to use this app, use the following steps to delete all resources created by this tutorial
in the Azure portal.

1. From the left-hand menu in the Azure portal, click Resource groups and then click the name of the resource
you created.

2. On your resource group page, click Delete, type the name of the resource to delete in the text box, and then
click Delete.

Next steps
In this tutorial, we covered how to get started using Azure Cosmos DB with the Table API, and you've done the
following:

Created an Azure Cosmos DB account
Enabled functionality in the app.config file
Created a table
Added an entity to a table
Inserted a batch of entities
Retrieved a single entity
Queried entities using automatic secondary indexes
Replaced an entity
Deleted an entity
Deleted a table

You can now proceed to the next tutorial and learn more about querying table data.

Query with the Table API

Azure Cosmos DB: Develop with the Graph API in
.NET
6/1/2017 • 10 min to read • Edit Online

Graphs in Azure Cosmos DB

Prerequisites

Create database account

TIP

Azure Cosmos DB is Microsoft's globally distributed multi-model database service. You can quickly create and
query document, key/value, and graph databases, all of which benefit from the global distribution and horizontal
scale capabilities at the core of Azure Cosmos DB.

This tutorial demonstrates how to create an Azure Cosmos DB account using the Azure portal and how to create a
graph database and container. The application then creates a simple social network with four people using the
Graph API (preview), then traverses and queries the graph using Gremlin.

This tutorial covers the following tasks:

Create an Azure Cosmos DB account
Create a graph database and container
Serialize vertices and edges to .NET objects
Add vertices and edges
Query the graph using Gremlin

You can use Azure Cosmos DB to create, update, and query graphs using the Microsoft.Azure.Graphs library. The
Microsoft.Azure.Graph library provides a single extension method CreateGremlinQuery<T> on top of the DocumentClient

class to execute Gremlin queries.

Gremlin is a functional programming language that supports write operations (DML) and query and traversal
operations. We cover a few examples in this article to get your started with Gremlin. See Gremlin queries for a
detailed walkthrough of Gremlin capabilities available in Azure Cosmos DB.

Please make sure you have the following:

An active Azure account. If you don't have one, you can sign up for a free account.

Visual Studio.
Alternatively, you can use the Azure DocumentDB Emulator for this tutorial.

Let's start by creating an Azure Cosmos DB account in the Azure portal.

Already have an Azure Cosmos DB account? If so, skip ahead to Set up your Visual Studio solution
Did you have an Azure DocumentDB account? If so, your account is now an Azure Cosmos DB account and you can skip
ahead to Set up your Visual Studio solution.
If you are using the Azure Cosmos DB Emulator, please follow the steps at Azure Cosmos DB Emulator to setup the
emulator and skip ahead to Set up your Visual Studio Solution.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/tutorial-develop-graph-dotnet.md
https://azure.microsoft.com/free/
http://www.visualstudio.com/

1. In a new window, sign in to the Azure portal.
2. In the left pane, click New, click Databases, and then click Azure Cosmos DB.

3. In the New account blade, specify the desired configuration for the Azure Cosmos DB account.

With Azure Cosmos DB, you can choose one of four programming models: Gremlin (graph), MongoDB, SQL
(DocumentDB), and Table (key-value).

In this quick-start article, we program against the Graph API, so choose Gremlin (graph) as you fill out the
form. If you have document data from a catalog app, key/value (table) data, or data that's migrated from a
MongoDB app, realize that Azure Cosmos DB can provide a highly available, globally distributed database
service platform for all your mission-critical applications.

On the New account blade, complete the fields with the information in the following screenshot as a guide
only. Because your own values will not match those in the screenshot, be sure to choose unique values as
you set up your account.

https://portal.azure.com/

SETTING SUGGESTED VALUE DESCRIPTION

ID Unique value A unique name that you choose to
identify the Azure Cosmos DB
account. Because
documents.azure.com is appended to
the ID that you provide to create
your URI, use a unique but
identifiable ID. The ID must contain
only lowercase letters, numbers, and
the hyphen (-) character, and it must
contain from 3 to 50 characters.

API Gremlin (graph) We program against the Graph API
later in this article.

Subscription Your subscription The Azure subscription that you want
to use for the Azure Cosmos DB
account.

Resource Group The same value as ID The new resource group name for
your account. For simplicity, you can
use the same name as your ID.

Location The region closest to your users The geographic location in which to
host your Azure Cosmos DB account.
Choose the location closest to your
users to give them the fastest access
to the data.

4. Click Create to create the account.

5. On the toolbar, click Notifications to monitor the deployment process.

6. When the deployment is complete, open the new account from the All Resources tile.

Set up your Visual Studio solution

Connect your app

string endpoint = ConfigurationManager.AppSettings["Endpoint"];
string authKey = ConfigurationManager.AppSettings["AuthKey"];

1. Open Visual Studio on your computer.
2. On the File menu, select New, and then choose Project.
3. In the New Project dialog, select Templates / Visual C# / Console App (.NET Framework), name your

project, and then click OK.
4. In the Solution Explorer, right click on your new console application, which is under your Visual Studio

solution, and then click Manage NuGet Packages...
5. In the NuGet tab, click Browse, and type Microsoft.Azure.Graphs in the search box, and check the Include

prerelease versions.
6. Within the results, find Microsoft.Azure.Graphs and click Install.

If you get a message about reviewing changes to the solution, click OK. If you get a message about license
acceptance, click I accept.

The Microsoft.Azure.Graphs library provides a single extension method CreateGremlinQuery<T> for executing
Gremlin operations. Gremlin is a functional programming language that supports write operations (DML)
and query and traversal operations. We cover a few examples in this article to get your started with Gremlin.
Gremlin queries has a detailed walkthrough of Gremlin capabilities in Azure Cosmos DB.

Add these two constants and your client variable in your application.

Next, head back to the Azure portal to retrieve your endpoint URL and primary key. The endpoint URL and primary
key are necessary for your application to understand where to connect to, and for Azure Cosmos DB to trust your
application's connection.

In the Azure portal, navigate to your Azure Cosmos DB account, click Keys, and then click Read-write Keys.

https://portal.azure.com

Instantiate the DocumentClient

DocumentClient client = new DocumentClient(new Uri(endpoint), authKey);

Create a database

Database database = await client.CreateDatabaseIfNotExistsAsync(new Database { Id = "graphdb" });

Create a graph

DocumentCollection graph = await client.CreateDocumentCollectionIfNotExistsAsync(
 UriFactory.CreateDatabaseUri("graphdb"),
 new DocumentCollection { Id = "graphcollz" },
 new RequestOptions { OfferThroughput = 1000 });

Serialize vertices and edges to .NET objects

Run Gremlin using CreateGremlinQuery

Copy the URI from the portal and paste it over Endpoint in the endpoint property above. Then copy the PRIMARY
KEY from the portal and paste it into the AuthKey property above.

![Screen shot of the Azure portal used by the tutorial to create a C# application. Shows an Azure Cosmos DB
account the KEYS button highlighted on the Azure Cosmos DB navigation , and the URI and PRIMARY KEY values
highlighted on the Keys blade][keys]

Next, create a new instance of the DocumentClient.

Now, create an Azure Cosmos DB database by using the CreateDatabaseAsync method or
CreateDatabaseIfNotExistsAsync method of the DocumentClient class from the DocumentDB .NET SDK.

Next, create a graph container by using the using the CreateDocumentCollectionAsync method or
CreateDocumentCollectionIfNotExistsAsync method of the DocumentClient class. A collection is a container of
graph entities.

Azure Cosmos DB uses the GraphSON wire format, which defines a JSON schema for vertices, edges, and
properties. The Azure Cosmos DB .NET SDK includes JSON.NET as a dependency, and this allows us to
serialize/deserialize GraphSON into .NET objects that we can work with in code.

As an example, let's work with a simple social network with four people. We look at how to create Person vertices,
add Knows relationships between them, then query and traverse the graph to find "friend of friend" relationships.

The Microsoft.Azure.Graphs.Elements namespace provides Vertex , Edge , Property and VertexProperty classes for
deserializing GraphSON responses to well-defined .NET objects.

Gremlin, like SQL, supports read, write, and query operations. For example, the following snippet shows how to
create vertices, edges, perform some sample queries using CreateGremlinQuery<T> , and asynchronously iterate
through these results using ExecuteNextAsync and `HasMoreResults.

https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createdatabaseasync.aspx
https://msdn.microsoft.com/library/microsoft.azure.documents.client.documentclient.createdatabaseifnotexistsasync.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createdocumentcollectionasync.aspx
https://msdn.microsoft.com/library/microsoft.azure.documents.client.documentclient.createdocumentcollectionifnotexistsasync.aspx

Dictionary<string, string> gremlinQueries = new Dictionary<string, string>
{
 { "Cleanup", "g.V().drop()" },
 { "AddVertex 1", "g.addV('person').property('id', 'thomas').property('firstName', 'Thomas').property('age', 44)" },
 { "AddVertex 2", "g.addV('person').property('id', 'mary').property('firstName', 'Mary').property('lastName', 'Andersen').property('age', 39)" },
 { "AddVertex 3", "g.addV('person').property('id', 'ben').property('firstName', 'Ben').property('lastName', 'Miller')" },
 { "AddVertex 4", "g.addV('person').property('id', 'robin').property('firstName', 'Robin').property('lastName', 'Wakefield')" },
 { "AddEdge 1", "g.V('thomas').addE('knows').to(g.V('mary'))" },
 { "AddEdge 2", "g.V('thomas').addE('knows').to(g.V('ben'))" },
 { "AddEdge 3", "g.V('ben').addE('knows').to(g.V('robin'))" },
 { "UpdateVertex", "g.V('thomas').property('age', 44)" },
 { "CountVertices", "g.V().count()" },
 { "Filter Range", "g.V().hasLabel('person').has('age', gt(40))" },
 { "Project", "g.V().hasLabel('person').values('firstName')" },
 { "Sort", "g.V().hasLabel('person').order().by('firstName', decr)" },
 { "Traverse", "g.V('thomas').outE('knows').inV().hasLabel('person')" },
 { "Traverse 2x", "g.V('thomas').outE('knows').inV().hasLabel('person').outE('knows').inV().hasLabel('person')" },
 { "Loop", "g.V('thomas').repeat(out()).until(has('id', 'robin')).path()" },
 { "DropEdge", "g.V('thomas').outE('knows').where(inV().has('id', 'mary')).drop()" },
 { "CountEdges", "g.E().count()" },
 { "DropVertex", "g.V('thomas').drop()" },
};

foreach (KeyValuePair<string, string> gremlinQuery in gremlinQueries)
{
 Console.WriteLine($"Running {gremlinQuery.Key}: {gremlinQuery.Value}");

 // The CreateGremlinQuery method extensions allow you to execute Gremlin queries and iterate
 // results asychronously
 IDocumentQuery<dynamic> query = client.CreateGremlinQuery<dynamic>(graph, gremlinQuery.Value);
 while (query.HasMoreResults)
 {
 foreach (dynamic result in await query.ExecuteNextAsync())
 {
 Console.WriteLine($"\t {JsonConvert.SerializeObject(result)}");
 }
 }

 Console.WriteLine();
}

Add vertices and edges

// Create a vertex
IDocumentQuery<Vertex> createVertexQuery = client.CreateGremlinQuery<Vertex>(
 graphCollection,
 "g.addV('person').property('firstName', 'Thomas')");

while (createVertexQuery.HasMoreResults)
{
 Vertex thomas = (await create.ExecuteNextAsync<Vertex>()).First();
}

Let's look at the Gremlin statements shown in the preceding section more detail. First we some vertices using
Gremlin's addV method. For example, the following snippet creates a "Thomas Andersen" vertex of type "Person",
with properties for first name, last name, and age.

Then we create some edges between these vertices using Gremlin's addE method.

// Add a "knows" edge
IDocumentQuery<Edge> createEdgeQuery = client.CreateGremlinQuery<Edge>(
 graphCollection,
 "g.V('thomas').addE('knows').to(g.V('mary'))");

while (create.HasMoreResults)
{
 Edge thomasKnowsMaryEdge = (await create.ExecuteNextAsync<Edge>()).First();
}

// Update a vertex
client.CreateGremlinQuery<Vertex>(
 graphCollection,
 "g.V('thomas').property('age', 45)");

// Drop an edge
client.CreateGremlinQuery(graphCollection, "g.E('thomasKnowsRobin').drop()");

// Drop a vertex
client.CreateGremlinQuery(graphCollection, "g.V('robin').drop()");

Query the graph

// Run a query to count vertices
IDocumentQuery<int> countQuery = client.CreateGremlinQuery<int>(graphCollection, "g.V().count()");

// Run a query with filter
IDocumentQuery<Vertex> personsByAge = client.CreateGremlinQuery<Vertex>(
 graphCollection,
 "g.V().hasLabel('person').has('age', gt(40))");

// Run a query with projection
IDocumentQuery<string> firstNames = client.CreateGremlinQuery<string>(
 graphCollection,
 $"g.V().hasLabel('person').values('firstName')");

We can update an existing vertex by using properties step in Gremlin. We skip the call to execute the query via
HasMoreResults and ExecuteNextAsync for the rest of the examples.

You can drop edges and vertices using Gremlin's drop step. Here's a snippet that shows how to delete a vertex and
an edge. Note that dropping a vertex performs a cascading delete of the associated edges.

You can perform queries and traversals also using Gremlin. For example, the following snippet shows how to count
the number of vertices in the graph:

You can perform filters using Gremlin's has and hasLabel steps, and combine them using and , or , and not to
build more complex filters:

You can project certain properties in the query results using the values step:

So far, we've only seen query operators that work in any database. Graphs are fast and efficient for traversal
operations when you need to navigate to related edges and vertices. Let's find all friends of Thomas. We do this by
using Gremlin's outE step to find all the out-edges from Thomas, then traversing to the in-vertices from those
edges using Gremlin's inV step:

// Run a traversal (find friends of Thomas)
IDocumentQuery<Vertex> friendsOfThomas = client.CreateGremlinQuery<Vertex>(
 graphCollection,
 "g.V('thomas').outE('knows').inV().hasLabel('person')");

// Run a traversal (find friends of friends of Thomas)
IDocumentQuery<Vertex> friendsOfFriendsOfThomas = client.CreateGremlinQuery<Vertex>(
 graphCollection,
 "g.V('thomas').outE('knows').inV().hasLabel('person').outE('knows').inV().hasLabel('person')");

Clean up resources

Next Steps

The next query performs two hops to find all of Thomas' "friends of friends", by calling outE and inV two times.

You can build more complex queries and implement powerful graph traversal logic using Gremlin, including
mixing filter expressions, performing looping using the loop step, and implementing conditional navigation using
the choose step. Learn more about what you can do with Gremlin support!

That's it, this Azure Cosmos DB tutorial is complete!

If you're not going to continue to use this app, use the following steps to delete all resources created by this tutorial
in the Azure portal.

1. From the left-hand menu in the Azure portal, click Resource groups and then click the name of the resource
you created.

2. On your resource group page, click Delete, type the name of the resource to delete in the text box, and then
click Delete.

In this tutorial, you've done the following:

Created an Azure Cosmos DB account
Created a graph database and container
Serialized vertices and edges to .NET objects
Added vertices and edges
Queried the graph using Gremlin

You can now build more complex queries and implement powerful graph traversal logic using Gremlin.

Query using Gremlin

How to import data into Azure Cosmos DB for the
DocumentDB API?
6/12/2017 • 23 min to read • Edit Online

Prerequisites

Overview of the Data Migration tool

Install the Data Migration tool

This tutorial provides instructions on using the Azure Cosmos DB: DocumentDB API Data Migration tool, which
can import data from various sources, including JSON files, CSV files, SQL, MongoDB, Azure Table storage,
Amazon DynamoDB and Azure Cosmos DB DocumentDB API collections into collections for use with Azure
Cosmos DB and the DocumentDB API. The Data Migration tool can also be used when migrating from a single
partition collection to a multi-partition collection for the DocumentDB API.

The Data Migration tool only works when importing data into Azure Cosmos DB for use with the DocumentDB
API. Importing data for use with the Table API or Graph API is not supported at this time.

To import data for use with the MongoDB API, see Azure Cosmos DB: How to migrate data for the MongoDB
API?.

This tutorial covers the following tasks:

Installing the Data Migration tool
Importing data from different data sources
Exporting from Azure Cosmos DB to JSON

Before following the instructions in this article, ensure that you have the following installed:

Microsoft .NET Framework 4.51 or higher.

The Data Migration tool is an open source solution that imports data to Azure Cosmos DB from a variety of
sources, including:

JSON files
MongoDB
SQL Server
CSV files
Azure Table storage
Amazon DynamoDB
HBase
Azure Cosmos DB collections

While the import tool includes a graphical user interface (dtui.exe), it can also be driven from the command line
(dt.exe). In fact, there is an option to output the associated command after setting up an import through the UI.
Tabular source data (e.g. SQL Server or CSV files) can be transformed such that hierarchical relationships
(subdocuments) can be created during import. Keep reading to learn more about source options, sample
command lines to import from each source, target options, and viewing import results.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/import-data.md
https://www.microsoft.com/download/developer-tools.aspx

Import data

To import JSON files

The migration tool source code is available on GitHub in this repository and a compiled version is available from
Microsoft Download Center. You may either compile the solution or simply download and extract the compiled
version to a directory of your choice. Then run either:

Dtui.exe: Graphical interface version of the tool
Dt.exe: Command-line version of the tool

Once you've installed the tool, it's time to import your data. What kind of data do you want to import?

JSON files
MongoDB
MongoDB Export files
SQL Server
CSV files
Azure Table storage
Amazon DynamoDB
Blob
Azure Cosmos DB collections
HBase
Azure Cosmos DB bulk import
Azure Cosmos DB sequential record import

The JSON file source importer option allows you to import one or more single document JSON files or JSON
files that each contain an array of JSON documents. When adding folders that contain JSON files to import, you
have the option of recursively searching for files in subfolders.

https://github.com/azure/azure-documentdb-datamigrationtool
http://www.microsoft.com/downloads/details.aspx?FamilyID=cda7703a-2774-4c07-adcc-ad02ddc1a44d

#Import a single JSON file
dt.exe /s:JsonFile /s.Files:.\Sessions.json /t:CosmosDBBulk /t.ConnectionString:"AccountEndpoint=<CosmosDB Endpoint>;AccountKey=
<CosmosDB Key>;Database=<CosmosDB Database>;" /t.Collection:Sessions /t.CollectionThroughput:2500

#Import a directory of JSON files
dt.exe /s:JsonFile /s.Files:C:\TESessions*.json /t:CosmosDBBulk /t.ConnectionString:" AccountEndpoint=<CosmosDB
Endpoint>;AccountKey=<CosmosDB Key>;Database=<CosmosDB Database>;" /t.Collection:Sessions /t.CollectionThroughput:2500

#Import a directory (including sub-directories) of JSON files
dt.exe /s:JsonFile /s.Files:C:\LastFMMusic***.json /t:CosmosDBBulk /t.ConnectionString:" AccountEndpoint=<CosmosDB
Endpoint>;AccountKey=<CosmosDB Key>;Database=<CosmosDB Database>;" /t.Collection:Music /t.CollectionThroughput:2500

#Import a directory (single), directory (recursive), and individual JSON files
dt.exe /s:JsonFile
/s.Files:C:\Tweets*.*;C:\LargeDocs***.*;C:\TESessions\Session48172.json;C:\TESessions\Session48173.json;C:\TESessions\Session48174
.json;C:\TESessions\Session48175.json;C:\TESessions\Session48177.json /t:CosmosDBBulk /t.ConnectionString:"AccountEndpoint=
<CosmosDB Endpoint>;AccountKey=<CosmosDB Key>;Database=<CosmosDB Database>;" /t.Collection:subs
/t.CollectionThroughput:2500

#Import a single JSON file and partition the data across 4 collections
dt.exe /s:JsonFile /s.Files:D:\\CompanyData\\Companies.json /t:CosmosDBBulk /t.ConnectionString:"AccountEndpoint=<CosmosDB
Endpoint>;AccountKey=<CosmosDB Key>;Database=<CosmosDB Database>;" /t.Collection:comp[1-4] /t.PartitionKey:name
/t.CollectionThroughput:2500

To import from MongoDB

IMPORTANT

Here are some command line samples to import JSON files:

If you are importing to an Azure Cosmos DB account with Support for MongoDB, follow these instructions.

mongodb://<dbuser>:<dbpassword>@<host>:<port>/<database>

NOTE

#Import all documents from a MongoDB collection
dt.exe /s:MongoDB /s.ConnectionString:mongodb://<dbuser>:<dbpassword>@<host>:<port>/<database> /s.Collection:zips
/t:CosmosDBBulk /t.ConnectionString:"AccountEndpoint=<CosmosDB Endpoint>;AccountKey=<CosmosDB Key>;Database=<CosmosDB
Database>;" /t.Collection:BulkZips /t.IdField:_id /t.CollectionThroughput:2500

#Import documents from a MongoDB collection which match the query and exclude the loc field
dt.exe /s:MongoDB /s.ConnectionString:mongodb://<dbuser>:<dbpassword>@<host>:<port>/<database> /s.Collection:zips /s.Query:{pop:
{$gt:50000}} /s.Projection:{loc:0} /t:CosmosDBBulk /t.ConnectionString:"AccountEndpoint=<CosmosDB Endpoint>;AccountKey=
<CosmosDB Key>;Database=<CosmosDB Database>;" /t.Collection:BulkZipsTransform /t.IdField:_id/t.CollectionThroughput:2500

To import MongoDB export files

The MongoDB source importer option allows you to import from an individual MongoDB collection and
optionally filter documents using a query and/or modify the document structure by using a projection.

The connection string is in the standard MongoDB format:

Use the Verify command to ensure that the MongoDB instance specified in the connection string field can be accessed.

Enter the name of the collection from which data will be imported. You may optionally specify or provide a file
for a query (e.g. {pop: {$gt:5000}}) and/or projection (e.g. {loc:0}) to both filter and shape the data to be
imported.

Here are some command line samples to import from MongoDB:

IMPORTANT

dt.exe /s:MongoDBExport /s.Files:D:\mongoemployees.json /t:CosmosDBBulk /t.ConnectionString:"AccountEndpoint=<CosmosDB
Endpoint>;AccountKey=<CosmosDB Key>;Database=<CosmosDB Database>;" /t.Collection:employees /t.IdField:_id /t.Dates:Epoch
/t.CollectionThroughput:2500

To import from SQL Server

If you are importing to an Azure Cosmos DB account with support for MongoDB, follow these instructions.

The MongoDB export JSON file source importer option allows you to import one or more JSON files produced
from the mongoexport utility.

When adding folders that contain MongoDB export JSON files for import, you have the option of recursively
searching for files in subfolders.

Here is a command line sample to import from MongoDB export JSON files:

The SQL source importer option allows you to import from an individual SQL Server database and optionally
filter the records to be imported using a query. In addition, you can modify the document structure by specifying
a nesting separator (more on that in a moment).

NOTE

The format of the connection string is the standard SQL connection string format.

Use the Verify command to ensure that the SQL Server instance specified in the connection string field can be accessed.

The nesting separator property is used to create hierarchical relationships (sub-documents) during import.
Consider the following SQL query:

select CAST(BusinessEntityID AS varchar) as Id, Name, AddressType as [Address.AddressType], AddressLine1 as
[Address.AddressLine1], City as [Address.Location.City], StateProvinceName as
[Address.Location.StateProvinceName], PostalCode as [Address.PostalCode], CountryRegionName as
[Address.CountryRegionName] from Sales.vStoreWithAddresses WHERE AddressType='Main Office'

Which returns the following (partial) results:

Note the aliases such as Address.AddressType and Address.Location.StateProvinceName. By specifying a nesting
separator of ‘.’, the import tool creates Address and Address.Location subdocuments during the import. Here is
an example of a resulting document in Azure Cosmos DB:

{ "id": "956", "Name": "Finer Sales and Service", "Address": { "AddressType": "Main Office", "AddressLine1": "#500-
75 O'Connor Street", "Location": { "City": "Ottawa", "StateProvinceName": "Ontario" }, "PostalCode": "K4B 1S2",
"CountryRegionName": "Canada" } }

#Import records from SQL which match a query
dt.exe /s:SQL /s.ConnectionString:"Data Source=<server>;Initial Catalog=AdventureWorks;User Id=advworks;Password=<password>;"
/s.Query:"select CAST(BusinessEntityID AS varchar) as Id, * from Sales.vStoreWithAddresses WHERE AddressType='Main Office'"
/t:CosmosDBBulk /t.ConnectionString:" AccountEndpoint=<CosmosDB Endpoint>;AccountKey=<CosmosDB Key>;Database=<CosmosDB
Database>;" /t.Collection:Stores /t.IdField:Id /t.CollectionThroughput:2500

#Import records from sql which match a query and create hierarchical relationships
dt.exe /s:SQL /s.ConnectionString:"Data Source=<server>;Initial Catalog=AdventureWorks;User Id=advworks;Password=<password>;"
/s.Query:"select CAST(BusinessEntityID AS varchar) as Id, Name, AddressType as [Address.AddressType], AddressLine1 as
[Address.AddressLine1], City as [Address.Location.City], StateProvinceName as [Address.Location.StateProvinceName], PostalCode as
[Address.PostalCode], CountryRegionName as [Address.CountryRegionName] from Sales.vStoreWithAddresses WHERE
AddressType='Main Office'" /s.NestingSeparator:. /t:CosmosDBBulk /t.ConnectionString:" AccountEndpoint=<CosmosDB
Endpoint>;AccountKey=<CosmosDB Key>;Database=<CosmosDB Database>;" /t.Collection:StoresSub /t.IdField:Id
/t.CollectionThroughput:2500

To import CSV files and convert CSV to JSON

Here are some command line samples to import from SQL Server:

The CSV file source importer option enables you to import one or more CSV files. When adding folders that
contain CSV files for import, you have the option of recursively searching for files in subfolders.

Similar to the SQL source, the nesting separator property may be used to create hierarchical relationships (sub-
documents) during import. Consider the following CSV header row and data rows:

Note the aliases such as DomainInfo.Domain_Name and RedirectInfo.Redirecting. By specifying a nesting
separator of ‘.’, the import tool will create DomainInfo and RedirectInfo subdocuments during the import. Here is
an example of a resulting document in Azure Cosmos DB:

dt.exe /s:CsvFile /s.Files:.\Employees.csv /t:CosmosDBBulk /t.ConnectionString:"AccountEndpoint=<CosmosDB Endpoint>;AccountKey=
<CosmosDB Key>;Database=<CosmosDB Database>;" /t.Collection:Employees /t.IdField:EntityID /t.CollectionThroughput:2500

To import from Azure Table storage

{ "DomainInfo": { "Domain_Name": "ACUS.GOV", "Domain_Name_Address": "http://www.ACUS.GOV" }, "Federal
Agency": "Administrative Conference of the United States", "RedirectInfo": { "Redirecting": "0",
"Redirect_Destination": "" }, "id": "9cc565c5-ebcd-1c03-ebd3-cc3e2ecd814d" }

The import tool will attempt to infer type information for unquoted values in CSV files (quoted values are always
treated as strings). Types are identified in the following order: number, datetime, boolean.

There are two other things to note about CSV import:

1. By default, unquoted values are always trimmed for tabs and spaces, while quoted values are preserved as-is.
This behavior can be overridden with the Trim quoted values checkbox or the /s.TrimQuoted command line
option.

2. By default, an unquoted null is treated as a null value. This behavior can be overridden (i.e. treat an unquoted
null as a “null” string) with the Treat unquoted NULL as string checkbox or the /s.NoUnquotedNulls
command line option.

Here is a command line sample for CSV import:

The Azure Table storage source importer option allows you to import from an individual Azure Table storage
table and optionally filter the table entities to be imported. Note that you cannot use the Data Migration tool to
import Azure Table storage data into Azure Cosmos DB for use with the Table API. Only importing to Azure
Cosmos DB for use with the DocumentDB API is supported at this time.

The format of the Azure Table storage connection string is:

http://www.acus.gov

DefaultEndpointsProtocol=<protocol>;AccountName=<Account Name>;AccountKey=<Account Key>;

NOTE

dt.exe /s:AzureTable /s.ConnectionString:"DefaultEndpointsProtocol=https;AccountName=<Account Name>;AccountKey=<Account Key>"
/s.Table:metrics /s.InternalFields:All /s.Filter:"PartitionKey eq 'Partition1' and RowKey gt '00001'" /s.Projection:ObjectCount;ObjectSize
/t:CosmosDBBulk /t.ConnectionString:" AccountEndpoint=<CosmosDB Endpoint>;AccountKey=<CosmosDB Key>;Database=<CosmosDB
Database>;" /t.Collection:metrics /t.CollectionThroughput:2500

To import from Amazon DynamoDB

Use the Verify command to ensure that the Azure Table storage instance specified in the connection string field can be
accessed.

Enter the name of the Azure table from which data will be imported. You may optionally specify a filter.

The Azure Table storage source importer option has the following additional options:

1. Include Internal Fields

2. Select Columns

a. All - Include all internal fields (PartitionKey, RowKey, and Timestamp)
b. None - Exclude all internal fields
c. RowKey - Only include the RowKey field

a. Azure Table storage filters do not support projections. If you want to only import specific Azure Table
entity properties, add them to the Select Columns list. All other entity properties will be ignored.

Here is a command line sample to import from Azure Table storage:

The Amazon DynamoDB source importer option allows you to import from an individual Amazon DynamoDB
table and optionally filter the entities to be imported. Several templates are provided so that setting up an
import is as easy as possible.

https://msdn.microsoft.com/library/azure/ff683669.aspx

ServiceURL=<Service Address>;AccessKey=<Access Key>;SecretKey=<Secret Key>;

The format of the Amazon DynamoDB connection string is:

NOTE

dt.exe /s:DynamoDB /s.ConnectionString:ServiceURL=https://dynamodb.us-east-1.amazonaws.com;AccessKey=<accessKey>;SecretKey=
<secretKey> /s.Request:"{ """TableName""": """ProductCatalog""" }" /t:DocumentDBBulk /t.ConnectionString:"AccountEndpoint=<Azure
Cosmos DB Endpoint>;AccountKey=<Azure Cosmos DB Key>;Database=<Azure Cosmos DB Database>;" /t.Collection:catalogCollection
/t.CollectionThroughput:2500

To import files from Azure Blob storage

dt.exe /s:JsonFile /s.Files:"blobs://<account key>@account.blob.core.windows.net:443/importcontainer/.*" /t:CosmosDBBulk
/t.ConnectionString:"AccountEndpoint=<CosmosDB Endpoint>;AccountKey=<CosmosDB Key>;Database=<CosmosDB Database>;"
/t.Collection:doctest

To import from an Azure Cosmos DB DocumentDB API collection

Use the Verify command to ensure that the Amazon DynamoDB instance specified in the connection string field can be
accessed.

Here is a command line sample to import from Amazon DynamoDB:

The JSON file, MongoDB export file, and CSV file source importer options allow you to import one or more files
from Azure Blob storage. After specifying a Blob container URL and Account Key, simply provide a regular
expression to select the file(s) to import.

Here is command line sample to import JSON files from Azure Blob storage:

The Azure Cosmos DB source importer option allows you to import data from one or more Azure Cosmos DB

AccountEndpoint=<CosmosDB Endpoint>;AccountKey=<CosmosDB Key>;Database=<CosmosDB Database>;

Database=<CosmosDB Database>;

NOTE

NOTE

collections and optionally filter documents using a query.

The format of the Azure Cosmos DB connection string is:

The Azure Cosmos DB account connection string can be retrieved from the Keys blade of the Azure portal, as
described in How to manage an Azure Cosmos DB account, however the name of the database needs to be
appended to the connection string in the following format:

Use the Verify command to ensure that the Azure Cosmos DB instance specified in the connection string field can be
accessed.

To import from a single Azure Cosmos DB collection, enter the name of the collection from which data will be
imported. To import from multiple Azure Cosmos DB collections, provide a regular expression to match one or
more collection names (e.g. collection01 | collection02 | collection03). You may optionally specify, or provide a
file for, a query to both filter and shape the data to be imported.

Since the collection field accepts regular expressions, if you are importing from a single collection whose name contains
regular expression characters, then those characters must be escaped accordingly.

TIP

The Azure Cosmos DB source importer option has the following advanced options:

1. Include Internal Fields: Specifies whether or not to include Azure Cosmos DB document system properties in
the export (e.g. _rid, _ts).

2. Number of Retries on Failure: Specifies the number of times to retry the connection to Azure Cosmos DB in
case of transient failures (e.g. network connectivity interruption).

3. Retry Interval: Specifies how long to wait between retrying the connection to Azure Cosmos DB in case of
transient failures (e.g. network connectivity interruption).

4. Connection Mode: Specifies the connection mode to use with Azure Cosmos DB. The available choices are
DirectTcp, DirectHttps, and Gateway. The direct connection modes are faster, while the gateway mode is more
firewall friendly as it only uses port 443.

The import tool defaults to connection mode DirectTcp. If you experience firewall issues, switch to connection mode
Gateway, as it only requires port 443.

Here are some command line samples to import from Azure Cosmos DB:

#Migrate data from one Azure Cosmos DB collection to another Azure Cosmos DB collections
dt.exe /s:CosmosDB /s.ConnectionString:"AccountEndpoint=<CosmosDB Endpoint>;AccountKey=<CosmosDB Key>;Database=
<CosmosDB Database>;" /s.Collection:TEColl /t:CosmosDBBulk /t.ConnectionString:" AccountEndpoint=<CosmosDB
Endpoint>;AccountKey=<CosmosDB Key>;Database=<CosmosDB Database>;" /t.Collection:TESessions /t.CollectionThroughput:2500

#Migrate data from multiple Azure Cosmos DB collections to a single Azure Cosmos DB collection
dt.exe /s:CosmosDB /s.ConnectionString:"AccountEndpoint=<CosmosDB Endpoint>;AccountKey=<CosmosDB Key>;Database=
<CosmosDB Database>;" /s.Collection:comp1|comp2|comp3|comp4 /t:CosmosDBBulk /t.ConnectionString:"AccountEndpoint=<CosmosDB
Endpoint>;AccountKey=<CosmosDB Key>;Database=<CosmosDB Database>;" /t.Collection:singleCollection /t.CollectionThroughput:2500

#Export an Azure Cosmos DB collection to a JSON file
dt.exe /s:CosmosDB /s.ConnectionString:"AccountEndpoint=<CosmosDB Endpoint>;AccountKey=<CosmosDB Key>;Database=
<CosmosDB Database>;" /s.Collection:StoresSub /t:JsonFile /t.File:StoresExport.json /t.Overwrite /t.CollectionThroughput:2500

TIP

To import from HBase

The Azure Cosmos DB Data Import Tool also supports import of data from the Azure Cosmos DB Emulator. When
importing data from a local emulator, set the endpoint to https://localhost:<port> .

The HBase source importer option allows you to import data from an HBase table and optionally filter the data.
Several templates are provided so that setting up an import is as easy as possible.

ServiceURL=<server-address>;Username=<username>;Password=<password>

NOTE

dt.exe /s:HBase /s.ConnectionString:ServiceURL=<server-address>;Username=<username>;Password=<password> /s.Table:Contacts
/t:CosmosDBBulk /t.ConnectionString:"AccountEndpoint=<CosmosDB Endpoint>;AccountKey=<CosmosDB Key>;Database=<CosmosDB
Database>;" /t.Collection:hbaseimport

To import to the DocumentDB API (Bulk Import)

The format of the HBase Stargate connection string is:

Use the Verify command to ensure that the HBase instance specified in the connection string field can be accessed.

Here is a command line sample to import from HBase:

The Azure Cosmos DB Bulk importer allows you to import from any of the available source options, using an
Azure Cosmos DB stored procedure for efficiency. The tool supports import to one single-partitioned Azure
Cosmos DB collection, as well as sharded import whereby data is partitioned across multiple single-partitioned
Azure Cosmos DB collections. For more information about partitioning data, see Partitioning and scaling in
Azure Cosmos DB. The tool will create, execute, and then delete the stored procedure from the target
collection(s).

AccountEndpoint=<CosmosDB Endpoint>;AccountKey=<CosmosDB Key>;Database=<CosmosDB Database>;

Database=<CosmosDB Database>;

NOTE

The format of the Azure Cosmos DB connection string is:

The Azure Cosmos DB account connection string can be retrieved from the Keys blade of the Azure portal, as
described in How to manage an Azure Cosmos DB account, however the name of the database needs to be
appended to the connection string in the following format:

Use the Verify command to ensure that the Azure Cosmos DB instance specified in the connection string field can be
accessed.

To import to a single collection, enter the name of the collection to which data will be imported and click the Add
button. To import to multiple collections, either enter each collection name individually or use the following
syntax to specify multiple collections: collection_prefix[start index - end index]. When specifying multiple
collections via the aforementioned syntax, keep the following in mind:

1. Only integer range name patterns are supported. For example, specifying collection[0-3] will produce the
following collections: collection0, collection1, collection2, collection3.

2. You can use an abbreviated syntax: collection[3] will emit same set of collections mentioned in step 1.
3. More than one substitution can be provided. For example, collection[0-1] [0-9] will generate 20 collection

names with leading zeros (collection01, ..02, ..03).

Once the collection name(s) have been specified, choose the desired throughput of the collection(s) (400 RUs to

NOTE

10,000 RUs). For best import performance, choose a higher throughput. For more information about
performance levels, see Performance levels in Azure Cosmos DB.

The performance throughput setting only applies to collection creation. If the specified collection already exists, its
throughput will not be modified.

When importing to multiple collections, the import tool supports hash based sharding. In this scenario, specify
the document property you wish to use as the Partition Key (if Partition Key is left blank, documents will be
sharded randomly across the target collections).

You may optionally specify which field in the import source should be used as the Azure Cosmos DB document
id property during the import (note that if documents do not contain this property, then the import tool will
generate a GUID as the id property value).

There are a number of advanced options available during import. First, while the tool includes a default bulk
import stored procedure (BulkInsert.js), you may choose to specify your own import stored procedure:

Additionally, when importing date types (e.g. from SQL Server or MongoDB), you can choose between three
import options:

String: Persist as a string value
Epoch: Persist as an Epoch number value
Both: Persist both string and Epoch number values. This option will create a subdocument, for example:
"date_joined": { "Value": "2013-10-21T21:17:25.2410000Z", "Epoch": 1382390245 }

The Azure Cosmos DB Bulk importer has the following additional advanced options:

1. Batch Size: The tool defaults to a batch size of 50. If the documents to be imported are large, consider
lowering the batch size. Conversely, if the documents to be imported are small, consider raising the batch
size.

2. Max Script Size (bytes): The tool defaults to a max script size of 512KB
3. Disable Automatic Id Generation: If every document to be imported contains an id field, then selecting this

option can increase performance. Documents missing a unique id field will not be imported.
4. Update Existing Documents: The tool defaults to not replacing existing documents with id conflicts. Selecting

this option will allow overwriting existing documents with matching ids. This feature is useful for scheduled
data migrations that update existing documents.

5. Number of Retries on Failure: Specifies the number of times to retry the connection to Azure Cosmos DB in
case of transient failures (e.g. network connectivity interruption).

6. Retry Interval: Specifies how long to wait between retrying the connection to Azure Cosmos DB in case of
transient failures (e.g. network connectivity interruption).

7. Connection Mode: Specifies the connection mode to use with Azure Cosmos DB. The available choices are
DirectTcp, DirectHttps, and Gateway. The direct connection modes are faster, while the gateway mode is more

TIP

To import to the DocumentDB API (Sequential Record Import)

firewall friendly as it only uses port 443.

The import tool defaults to connection mode DirectTcp. If you experience firewall issues, switch to connection mode
Gateway, as it only requires port 443.

The Azure Cosmos DB sequential record importer allows you to import from any of the available source options
on a record by record basis. You might choose this option if you’re importing to an existing collection that has
reached its quota of stored procedures. The tool supports import to a single (both single-partition and multi-
partition) Azure Cosmos DB collection, as well as sharded import whereby data is partitioned across multiple
single-partition and/or multi-partition Azure Cosmos DB collections. For more information about partitioning
data, see Partitioning and scaling in Azure Cosmos DB.

AccountEndpoint=<CosmosDB Endpoint>;AccountKey=<CosmosDB Key>;Database=<CosmosDB Database>;

Database=<Azure Cosmos DB Database>;

NOTE

The format of the Azure Cosmos DB connection string is:

The Azure Cosmos DB account connection string can be retrieved from the Keys blade of the Azure portal, as
described in How to manage an Azure Cosmos DB account, however the name of the database needs to be
appended to the connection string in the following format:

Use the Verify command to ensure that the Azure Cosmos DB instance specified in the connection string field can be
accessed.

To import to a single collection, enter the name of the collection to which data will be imported and click the Add
button. To import to multiple collections, either enter each collection name individually or use the following
syntax to specify multiple collections: collection_prefix[start index - end index]. When specifying multiple
collections via the aforementioned syntax, keep the following in mind:

1. Only integer range name patterns are supported. For example, specifying collection[0-3] will produce the
following collections: collection0, collection1, collection2, collection3.

2. You can use an abbreviated syntax: collection[3] will emit same set of collections mentioned in step 1.
3. More than one substitution can be provided. For example, collection[0-1] [0-9] will generate 20 collection

names with leading zeros (collection01, ..02, ..03).

Once the collection name(s) have been specified, choose the desired throughput of the collection(s) (400 RUs to

NOTE

250,000 RUs). For best import performance, choose a higher throughput. For more information about
performance levels, see Performance levels in Azure Cosmos DB. Any import to collections with throughput
>10,000 RUs will require a partition key. If you choose to have more than 250,000 RUs, you will need to file a
request in the portal to have your account increased.

The throughput setting only applies to collection creation. If the specified collection already exists, its throughput will not
be modified.

When importing to multiple collections, the import tool supports hash based sharding. In this scenario, specify
the document property you wish to use as the Partition Key (if Partition Key is left blank, documents will be
sharded randomly across the target collections).

You may optionally specify which field in the import source should be used as the Azure Cosmos DB document
id property during the import (note that if documents do not contain this property, then the import tool will
generate a GUID as the id property value).

There are a number of advanced options available during import. First, when importing date types (e.g. from
SQL Server or MongoDB), you can choose between three import options:

String: Persist as a string value
Epoch: Persist as an Epoch number value
Both: Persist both string and Epoch number values. This option will create a subdocument, for example:
"date_joined": { "Value": "2013-10-21T21:17:25.2410000Z", "Epoch": 1382390245 }

The Azure Cosmos DB - Sequential record importer has the following additional advanced options:

1. Number of Parallel Requests: The tool defaults to 2 parallel requests. If the documents to be imported are
small, consider raising the number of parallel requests. Note that if this number is raised too much, the
import may experience throttling.

2. Disable Automatic Id Generation: If every document to be imported contains an id field, then selecting this
option can increase performance. Documents missing a unique id field will not be imported.

3. Update Existing Documents: The tool defaults to not replacing existing documents with id conflicts. Selecting
this option will allow overwriting existing documents with matching ids. This feature is useful for scheduled
data migrations that update existing documents.

4. Number of Retries on Failure: Specifies the number of times to retry the connection to Azure Cosmos DB in
case of transient failures (e.g. network connectivity interruption).

5. Retry Interval: Specifies how long to wait between retrying the connection to Azure Cosmos DB in case of
transient failures (e.g. network connectivity interruption).

6. Connection Mode: Specifies the connection mode to use with Azure Cosmos DB. The available choices are
DirectTcp, DirectHttps, and Gateway. The direct connection modes are faster, while the gateway mode is more
firewall friendly as it only uses port 443.

TIP

Specify an indexing policy when creating Azure Cosmos DB
collections

The import tool defaults to connection mode DirectTcp. If you experience firewall issues, switch to connection mode
Gateway, as it only requires port 443.

When you allow the migration tool to create collections during import, you can specify the indexing policy of the
collections. In the advanced options section of the Azure Cosmos DB Bulk import and Azure Cosmos DB
Sequential record options, navigate to the Indexing Policy section.

Using the Indexing Policy advanced option, you can select an indexing policy file, manually enter an indexing
policy, or select from a set of default templates (by right clicking in the indexing policy textbox).

The policy templates the tool provides are:

Default. This policy is best when you’re performing equality queries against strings and using ORDER BY,
range, and equality queries for numbers. This policy has a lower index storage overhead than Range.
Range. This policy is best you’re using ORDER BY, range and equality queries on both numbers and strings.
This policy has a higher index storage overhead than Default or Hash.

NOTE

Export to JSON file

If you do not specify an indexing policy, then the default policy will be applied. For more information about indexing
policies, see Azure Cosmos DB indexing policies.

The Azure Cosmos DB JSON exporter allows you to export any of the available source options to a JSON file that
contains an array of JSON documents. The tool will handle the export for you, or you can choose to view the
resulting migration command and run the command yourself. The resulting JSON file may be stored locally or in
Azure Blob storage.

You may optionally choose to prettify the resulting JSON, which will increase the size of the resulting document
while making the contents more human readable.

Standard JSON export
[{"id":"Sample","Title":"About Paris","Language":{"Name":"English"},"Author":{"Name":"Don","Location":
{"City":"Paris","Country":"France"}},"Content":"Don's document in Azure Cosmos DB is a valid JSON document as defined by the JSON
spec.","PageViews":10000,"Topics":[{"Title":"History of Paris"},{"Title":"Places to see in Paris"}]}]

Prettified JSON export
[
 {
"id": "Sample",
"Title": "About Paris",
"Language": {
 "Name": "English"
},
"Author": {
 "Name": "Don",
 "Location": {
 "City": "Paris",
 "Country": "France"
 }
},
"Content": "Don's document in Azure Cosmos DB is a valid JSON document as defined by the JSON spec.",
"PageViews": 10000,
"Topics": [
 {
 "Title": "History of Paris"
 },
 {
 "Title": "Places to see in Paris"
 }
]
}]

Advanced configuration

![Screenshot of Advanced configuration screen](./media/import-data/AdvancedConfiguration.png)

Confirm import settings and view command line

In the Advanced configuration screen, specify the location of the log file to which you would like any errors
written. The following rules apply to this page:

1. If a file name is not provided, then all errors will be returned on the Results page.
2. If a file name is provided without a directory, then the file will be created (or overwritten) in the current

environment directory.
3. If you select an existing file, then the file will be overwritten, there is no append option.

Then, choose whether to log all, critical, or no error messages. Finally, decide how frequently the on screen
transfer message will be updated with its progress.

1. After specifying source information, target information, and advanced configuration, review the migration
summary and, optionally, view/copy the resulting migration command (copying the command is useful to
automate import operations):

2. Once you’re satisfied with your source and target options, click Import. The elapsed time, transferred

count, and failure information (if you didn't provide a file name in the Advanced configuration) will
update as the import is in process. Once complete, you can export the results (e.g. to deal with any import
failures).

3. You may also start a new import, either keeping the existing settings (e.g. connection string information,
source and target choice, etc.) or resetting all values.

Next steps
In this tutorial, you've done the following:

Installed the Data Migration tool
Imported data from different data sources
Exported from Azure Cosmos DB to JSON

You can now proceed to the next tutorial and learn how to query data using Azure Cosmos DB.

How to query data?

Azure Cosmos DB: How to import MongoDB data?
6/13/2017 • 4 min to read • Edit Online

Prerequisites

Find your connection string information (host, port, username, and
password)

To migrate data from MongoDB to an Azure Cosmos DB account for use with the MongoDB API, you must:

Download either mongoimport.exe or mongorestore.exe from the MongoDB Download Center.
Get your API for MongoDB connection string.

If you are importing data from MongoDB and plan to use it with the DocumentDB API, you should use the Data
Migration Tool to import data. For more information, see Data Migration Tool.

This tutorial covers the following tasks:

Retrieving your connection string
Importing MongoDB data using mongoimport
Importing MongoDB data using mongorestore

Increase throughput: The duration of your data migration depends on the amount of throughput you set
up for your collections. Be sure to increase the throughput for larger data migrations. After you've
completed the migration, decrease the throughput to save costs. For more information about increasing
throughput in the Azure portal, see Performance levels and pricing tiers in Azure Cosmos DB.

Enable SSL: Azure Cosmos DB has strict security requirements and standards. Be sure to enable SSL when
you interact with your account. The procedures in the rest of the article include how to enable SSL for
mongoimport and mongorestore.

1. In the Azure portal, in the left pane, click the Azure Cosmos DB entry.
2. In the Subscriptions pane, select your account name.
3. In the Connection String blade, click Connection String.

The right pane contains all the information you need to successfully connect to your account.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/mongodb-migrate.md
https://www.mongodb.com/download-center
https://portal.azure.com
https://portal.azure.com

Import data to MongoDB API with mongoimport

mongoimport.exe --host <your_hostname>:10255 -u <your_username> -p <your_password> --db <your_database> --collection
<your_collection> --ssl --sslAllowInvalidCertificates --type json --file C:\sample.json

mongoimport.exe --host anhoh-host.documents.azure.com:10255 -u anhoh-host -p
tkvaVkp4Nnaoirnouenrgisuner2435qwefBH0z256Na24frio34LNQasfaefarfernoimczciqisAXw== --ssl --sslAllowInvalidCertificates --db
sampleDB --collection sampleColl --type json --file C:\Users\anhoh\Desktop*.json

Import data to API for MongoDB with mongorestore

mongorestore.exe --host <your_hostname>:10255 -u <your_username> -p <your_password> --db <your_database> --collection
<your_collection> --ssl --sslAllowInvalidCertificates <path_to_backup>

mongorestore.exe --host anhoh-host.documents.azure.com:10255 -u anhoh-host -p
tkvaVkp4Nnaoirnouenrgisuner2435qwefBH0z256Na24frio34LNQasfaefarfernoimczciqisAXw== --ssl --sslAllowInvalidCertificates
./dumps/dump-2016-12-07

To import data to your Azure Cosmos DB account, use the following template to execute the import. Fill in host,
username, and password with the values that are specific to your account.

Template:

Example:

To restore data to your API for MongoDB account, use the following template to execute the import. Fill in host,
username, and password with the values specific to your account.

Template:

Example:

Guide for a successful migration
1. Pre-create and scale your collections

By default, Azure Cosmos DB will provision a new MongoDB collection with 1,000 RUs. Before the
migration using mongoimport, mongorestore, or mongomirror, pre-create all your collections from
the Azure Portal or MongoDB drivers, tools, etc. If your collection is greater than 10GB, make sure to
create a sharded / partitioned collection with an appropriate shard key.

From the Azure Portal, increase your collections' throughput from 1,000 RUs for a single partition
collection / 2,500 RUs for a sharded collection just for the migration. With the higher throughput
you will be able to avoid throttling and migrate in a shorter period of time. With Azure Cosmos DB's
hourly billing, you can reduce the throughput immediately after the migration to save costs.

2. Calculate the approximate RU charge for a single document write

globaldb:PRIMARY> db.runCommand({getLastRequestStatistics: 1})
{
 "_t": "GetRequestStatisticsResponse",
 "ok": 1,
 "CommandName": "insert",
 "RequestCharge": 10,
 "RequestDurationInMilliSeconds": NumberLong(50)
}

Connect to your Azure Cosmos DB MongoDB database from the MongoDB Shell. Instructions can
be found here.

Run a sample insert command using one of your sample documents from the MongoDB Shell

db.coll.insert({ "playerId": "a067ff", "hashedid": "bb0091", "countryCode": "hk" })

Following the insert, run db.runCommand({getLastRequestStatistics: 1}) and you will receive a response as
such

Take note of the Request Charge

3. Determine the latency from your machine to the Azure Cosmos DB cloud service.

Fetched 1 record(s) in 100(ms)

Enable verbose logging from the MongoDB Shell with the command: setVerboseShell(true)

Run a simple query against the database: db.coll.find().limit(1) and you will receive a response as such

4. Make sure to remove the inserted document before the migration to ensure no duplicate documents. You
can remove the documents with a db.coll.remove({}) .

5. Calculating the approximate batchSize and numInsertionWorkers

For the batchSize, divide the total provisioned RUs by the RUs consumed from your single
document write in Step 3.

If the calculated batchSize <= 24, you use that number as your batchSize

If the calculated batchSize > 24, you should set the batchSize to 24.

For the numInsertionWorkers, use this equation: numInsertionWorkers = (provisioned throughput *
latency in seconds) / (batch size * consumed RUs for a single write)

https://portal.azure.com
https://portal.azure.com

mongoimport.exe --host anhoh-mongodb.documents.azure.com:10255 -u anhoh-mongodb -p
wzRJCyjtLPNuhm53yTwaefawuiefhbauwebhfuabweifbiauweb2YVdl2ZFNZNv8IU89LqFVm5U0bw== --ssl --sslAllowInvalidCertificates --
jsonArray --db dabasename --collection collectionName --file "C:\sample.json" --numInsertionWorkers 4 --batchSize 24

Next steps

PROPERTY VALUE

batchSize 24

RUs provisioned 10000

Latency 0.100 s

RU charged for 1 doc write 10 RUs

numInsertionWorkers ?

numInsertionWorkers = (10000RUs x 0.1s) / (24 x 10 RUs) = 4.1666

6. Final migration command:

In this tutorial, you've done the following:

Retrieved your connection string
Imported MongoDB data using mongoimport
Imported MongoDB data using mongorestore

You can now proceed to the next tutorial and learn how to query MongoDB data using Azure Cosmos DB.

How to query MongoDB data?

Azure Cosmos DB: How to query using SQL?
5/31/2017 • 1 min to read • Edit Online

Sample document

{
 "id": "WakefieldFamily",
 "parents": [
 { "familyName": "Wakefield", "givenName": "Robin" },
 { "familyName": "Miller", "givenName": "Ben" }
],
 "children": [
 {
 "familyName": "Merriam",
 "givenName": "Jesse",
 "gender": "female", "grade": 1,
 "pets": [
 { "givenName": "Goofy" },
 { "givenName": "Shadow" }
]
 },
 {
 "familyName": "Miller",
 "givenName": "Lisa",
 "gender": "female",
 "grade": 8 }
],
 "address": { "state": "NY", "county": "Manhattan", "city": "NY" },
 "creationDate": 1431620462,
 "isRegistered": false
}

Where can I run SQL queries?

Prerequisites

The Azure Cosmos DB DocumentDB API supports querying documents using SQL. This article provides a sample
document and two sample SQL queries and results.

This article covers the following tasks:

Querying data with SQL

The SQL queries in this article use the following sample document.

You can run queries using the Data Explorer in the Azure portal, via the REST API and SDKs, and even the Query
playground, which runs queries on an existing set of sample data.

For more information about SQL queries, see:

SQL query and SQL syntax

This tutorial assumes you have an Azure Cosmos DB account and collection. Don't have any of those? Complete the
5-minute quickstart or the developer tutorial to create an account and collection.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/tutorial-query-documentdb.md
https://www.documentdb.com/sql/demo

Example query 1

SELECT *
FROM Families f
WHERE f.id = "WakefieldFamily"

{
 "id": "WakefieldFamily",
 "parents": [
 { "familyName": "Wakefield", "givenName": "Robin" },
 { "familyName": "Miller", "givenName": "Ben" }
],
 "children": [
 {
 "familyName": "Merriam",
 "givenName": "Jesse",
 "gender": "female", "grade": 1,
 "pets": [
 { "givenName": "Goofy" },
 { "givenName": "Shadow" }
]
 },
 {
 "familyName": "Miller",
 "givenName": "Lisa",
 "gender": "female",
 "grade": 8 }
],
 "address": { "state": "NY", "county": "Manhattan", "city": "NY" },
 "creationDate": 1431620462,
 "isRegistered": false
}

Example query 2

SELECT c.givenName
FROM Families f
JOIN c IN f.children
WHERE f.id = 'WakefieldFamily'
ORDER BY f.children.grade ASC

[
 { "givenName": "Jesse" },
 { "givenName": "Lisa"}
]

Given the sample family document above, following SQL query returns the documents where the id field matches
WakefieldFamily . Since it's a SELECT * statement, the output of the query is the complete JSON document:

Query

Results

The next query returns all the given names of children in the family whose id matches WakefieldFamily ordered by
their grade.

Query

Results

Next steps
In this tutorial, you've done the following:

Learned how to query using SQL

You can now proceed to the next tutorial to learn how to distribute your data globally.

Distribute your data globally

Azure Cosmos DB: How to query with API for
MongoDB?
5/30/2017 • 3 min to read • Edit Online

Sample document

{
 "id": "WakefieldFamily",
 "parents": [
 { "familyName": "Wakefield", "givenName": "Robin" },
 { "familyName": "Miller", "givenName": "Ben" }
],
 "children": [
 {
 "familyName": "Merriam",
 "givenName": "Jesse",
 "gender": "female", "grade": 1,
 "pets": [
 { "givenName": "Goofy" },
 { "givenName": "Shadow" }
]
 },
 {
 "familyName": "Miller",
 "givenName": "Lisa",
 "gender": "female",
 "grade": 8 }
],
 "address": { "state": "NY", "county": "Manhattan", "city": "NY" },
 "creationDate": 1431620462,
 "isRegistered": false
}

Example query 1

db.families.find({ id: “WakefieldFamily”})

The Azure Cosmos DB API for MongoDB supports MongoDB shell queries.

This article covers the following tasks:

Querying data with MongoDB

The queries in this article use the following sample document.

Given the sample family document above, the following query returns the documents where the id field matches
WakefieldFamily .

Query

Results

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/tutorial-query-mongodb.md
https://docs.mongodb.com/manual/tutorial/query-documents/

{
"_id": "ObjectId(\"58f65e1198f3a12c7090e68c\")",
"id": "WakefieldFamily",
"parents": [
 {
 "familyName": "Wakefield",
 "givenName": "Robin"
 },
 {
 "familyName": "Miller",
 "givenName": "Ben"
 }
],
"children": [
 {
 "familyName": "Merriam",
 "givenName": "Jesse",
 "gender": "female",
 "grade": 1,
 "pets": [
 { "givenName": "Goofy" },
 { "givenName": "Shadow" }
]
 },
 {
 "familyName": "Miller",
 "givenName": "Lisa",
 "gender": "female",
 "grade": 8
 }
],
"address": {
 "state": "NY",
 "county": "Manhattan",
 "city": "NY"
},
"creationDate": 1431620462,
"isRegistered": false
}

Example query 2

db.familes.find({ id: “WakefieldFamily” }, { children: true })

The next query returns all the children in the family.

Query

Results

{
"_id": "ObjectId("58f65e1198f3a12c7090e68c")",
"children": [
 {
 "familyName": "Merriam",
 "givenName": "Jesse",
 "gender": "female",
 "grade": 1,
 "pets": [
 { "givenName": "Goofy" },
 { "givenName": "Shadow" }
]
 },
 {
 "familyName": "Miller",
 "givenName": "Lisa",
 "gender": "female",
 "grade": 8
 }
]
}

Example query 3

db.families.find({ "isRegistered" : true })

Example query 4

db.families.find({ "isRegistered" : false })

The next query returns all the families which are registered.

Query

Results No document will be returned.

The next query returns all the families which are not registered.

Query

Results

 {
"_id": ObjectId("58f65e1198f3a12c7090e68c"),
"id": "WakefieldFamily",
"parents": [{
 "familyName": "Wakefield",
 "givenName": "Robin"
}, {
 "familyName": "Miller",
 "givenName": "Ben"
}],
"children": [{
 "familyName": "Merriam",
 "givenName": "Jesse",
 "gender": "female",
 "grade": 1,
 "pets": [{
 "givenName": "Goofy"
 }, {
 "givenName": "Shadow"
 }]
}, {
 "familyName": "Miller",
 "givenName": "Lisa",
 "gender": "female",
 "grade": 8
}],
"address": {
 "state": "NY",
 "county": "Manhattan",
 "city": "NY"
},
"creationDate": 1431620462,
"isRegistered": false

Example query 5

 db.families.find({ "isRegistered" : false, "address.state" : "NY" })

}

The next query returns all the families which are not registered and state is NY.

Query

Results

 {
"_id": ObjectId("58f65e1198f3a12c7090e68c"),
"id": "WakefieldFamily",
"parents": [{
 "familyName": "Wakefield",
 "givenName": "Robin"
}, {
 "familyName": "Miller",
 "givenName": "Ben"
}],
"children": [{
 "familyName": "Merriam",
 "givenName": "Jesse",
 "gender": "female",
 "grade": 1,
 "pets": [{
 "givenName": "Goofy"
 }, {
 "givenName": "Shadow"
 }]
}, {
 "familyName": "Miller",
 "givenName": "Lisa",
 "gender": "female",
 "grade": 8
}],
"address": {
 "state": "NY",
 "county": "Manhattan",
 "city": "NY"
},
"creationDate": 1431620462,
"isRegistered": false

Example query 6

 db.families.find({ children : { $elemMatch: { grade : 8 }} })

}

The next query returns all the families where children grades are 8.

Query

Results

 {
"_id": ObjectId("58f65e1198f3a12c7090e68c"),
"id": "WakefieldFamily",
"parents": [{
 "familyName": "Wakefield",
 "givenName": "Robin"
}, {
 "familyName": "Miller",
 "givenName": "Ben"
}],
"children": [{
 "familyName": "Merriam",
 "givenName": "Jesse",
 "gender": "female",
 "grade": 1,
 "pets": [{
 "givenName": "Goofy"
 }, {
 "givenName": "Shadow"
 }]
}, {
 "familyName": "Miller",
 "givenName": "Lisa",
 "gender": "female",
 "grade": 8
}],
"address": {
 "state": "NY",
 "county": "Manhattan",
 "city": "NY"
},
"creationDate": 1431620462,
"isRegistered": false

Example query 7

 db.Family.find({children: { $size:3} })

Next steps

}

The next query returns all the families where size of children array is 3.

Query

Results

No results will be returned as we do not have more than 2 children. Only when parameter is 2 this query will
succeed and return the full document.

In this tutorial, you've done the following:

Learned how to query using MongoDB

You can now proceed to the next tutorial to learn how to distribute your data globally.

Distribute your data globally

Azure Cosmos DB: How to query table data by using
the Table API (preview)?
5/30/2017 • 2 min to read • Edit Online

PARTITIONKEY ROWKEY EMAIL PHONENUMBER

Harp Walter Walter@contoso.com 425-555-0101

Smith Ben Ben@contoso.com 425-555-0102

Smith Jeff Jeff@contoso.com 425-555-0104

Prerequisites

Query on PartitionKey and RowKey

https://<mytableendpoint>/People(PartitionKey='Harp',RowKey='Walter')

PARTITIONKEY ROWKEY EMAIL PHONENUMBER

Harp Walter Walter@contoso.com 425-555-0104

The Azure Cosmos DB Table API (preview) supports OData and LINQ queries against key/value (table) data.

This article covers the following tasks:

Querying data with the Table API

The queries in this article use the following sample People table:

Because Azure Cosmos DB is compatible with the Azure Table storage APIs, see Querying Tables and Entities for
details on how to query by using the Table API.

For more information on the premium capabilities that Azure Cosmos DB offers, see Azure Cosmos DB: Table API
and Develop with the Table API in .NET.

For these queries to work, you must have an Azure Cosmos DB account and have entity data in the container. Don't
have any of those? Complete the five-minute quickstart or the developer tutorial to create an account and populate
your database.

Because the PartitionKey and RowKey properties form an entity's primary key, you can use the following special
syntax to identify the entity:

Query

Results

Alternatively, you can specify these properties as part of the $filter option, as shown in the following section. Note
that the key property names and constant values are case-sensitive. Both the PartitionKey and RowKey properties
are of type String.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/tutorial-query-table.md
https://docs.microsoft.com/rest/api/storageservices/fileservices/writing-linq-queries-against-the-table-service
https://docs.microsoft.com/rest/api/storageservices/fileservices/querying-tables-and-entities
https://aka.ms/acdbtnetqs
https://aka.ms/acdbtabletut

Query by using an OData filter

https://<mytableapi-endpoint>/People()?$filter=PartitionKey%20eq%20'Smith'%20and%20Email%20eq%20'Ben@contoso.com'

PARTITIONKEY ROWKEY EMAIL PHONENUMBER

Ben Smith Ben@contoso.com 425-555-0102

Query by using LINQ

CloudTableClient tableClient = account.CreateCloudTableClient();
CloudTable table = tableClient.GetTableReference("people");

TableQuery<CustomerEntity> query = new TableQuery<CustomerEntity>()
 .Where(
 TableQuery.CombineFilters(
 TableQuery.GenerateFilterCondition(PartitionKey, QueryComparisons.Equal, "Smith"),
 TableOperators.And,
 TableQuery.GenerateFilterCondition(Email, QueryComparisons.Equal,"Ben@contoso.com")
));

await table.ExecuteQuerySegmentedAsync<CustomerEntity>(query, null);

Next steps

When you're constructing a filter string, keep these rules in mind:

Use the logical operators defined by the OData Protocol Specification to compare a property to a value. Note
that you can't compare a property to a dynamic value. One side of the expression must be a constant.
The property name, operator, and constant value must be separated by URL-encoded spaces. A space is URL-
encoded as %20 .
All parts of the filter string are case-sensitive.
The constant value must be of the same data type as the property in order for the filter to return valid results.
For more information about supported property types, see Understanding the Table Service Data Model.

Here's an example query that shows how to filter by the PartitionKey and Email properties by using an OData
$filter .

Query

For more information on how to construct filter expressions for various data types, see Querying Tables and
Entities.

Results

You can also query by using LINQ, which translates to the corresponding OData query expressions. Here's an
example of how to build queries by using the .NET SDK:

In this tutorial, you've done the following:

Learned how to query by using the Table API (preview)

You can now proceed to the next tutorial to learn how to distribute your data globally.

Distribute your data globally

https://docs.microsoft.com/rest/api/storageservices/understanding-the-table-service-data-model
https://docs.microsoft.com/rest/api/storageservices/querying-tables-and-entities

Azure Cosmos DB: How to query with the Graph API
(preview)?
5/30/2017 • 1 min to read • Edit Online

Prerequisites

Count vertices in the graph

g.V().count()

Filters

g.V().hasLabel('person').has('age', gt(40))

Projection

g.V().hasLabel('person').values('firstName')

Find related edges and vertices

g.V('thomas').outE('knows').inV().hasLabel('person')

The Azure Cosmos DB Graph API (preview) supports Gremlin queries. This article provides sample documents and
queries to get you started. A detailed Gremlin reference is provided in the Gremlin support article.

This article covers the following tasks:

Querying data with Gremlin

For these queries to work, you must have an Azure Cosmos DB account and have graph data in the container.
Don't have any of those? Complete the 5-minute quickstart or the developer tutorial to create an account and
populate your database. You can run the following queries using the Azure Cosmos DB .NET graph library,
Gremlin console, or your favorite Gremlin driver.

The following snippet shows how to count the number of vertices in the graph:

You can perform filters using Gremlin's has and hasLabel steps, and combine them using and , or , and not to
build more complex filters. Azure Cosmos DB provides schema-agnostic indexing of all properties within your
vertices and degrees for fast queries:

You can project certain properties in the query results using the values step:

So far, we've only seen query operators that work in any database. Graphs are fast and efficient for traversal
operations when you need to navigate to related edges and vertices. Let's find all friends of Thomas. We do this
by using Gremlin's outE step to find all the out-edges from Thomas, then traversing to the in-vertices from those
edges using Gremlin's inV step:

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/tutorial-query-graph.md
https://docs.mongodb.com/manual/tutorial/query-documents/
https://tinkerpop.apache.org/docs/current/reference/#gremlin-console

g.V('thomas').outE('knows').inV().hasLabel('person').outE('knows').inV().hasLabel('person')

Next steps

The next query performs two hops to find all of Thomas' "friends of friends", by calling outE and inV two times.

You can build more complex queries and implement powerful graph traversal logic using Gremlin, including
mixing filter expressions, performing looping using the loop step, and implementing conditional navigation using
the choose step. Learn more about what you can do with Gremlin support!

In this tutorial, you've done the following:

Learned how to query using Graph

You can now proceed to the next tutorial to learn how to distribute your data globally.

Distribute your data globally

How to setup Azure Cosmos DB global distribution
using the DocumentDB API
5/30/2017 • 7 min to read • Edit Online

Add global database regions using the Azure Portal

In this article, we show how to use the Azure portal to setup Azure Cosmos DB global distribution and then
connect using the DocumentDB API.

This article covers the following tasks:

Configure global distribution using the Azure portal
Configure global distribution using the DocumentDB APIs

 You can learn about Azure Cosmos DB global distribution in this Azure Friday video with Scott Hanselman and
Principal Engineering Manager Karthik Raman.

For more information about how global database replication works in Cosmos DB, see Distribute data globally
with Cosmos DB.

Azure Cosmos DB is available in all Azure regions world-wide. After selecting the default consistency level for
your database account, you can associate one or more regions (depending on your choice of default consistency
level and global distribution needs).

1. In the Azure portal, in the left bar, click Azure Cosmos DB.
2. In the Azure Cosmos DB blade, select the database account to modify.
3. In the account blade, click Replicate data globally from the menu.
4. In the Replicate data globally blade, select the regions to add or remove by clicking regions in the map,

and then click Save. There is a cost to adding regions, see the pricing page or the Distribute data globally
with DocumentDB article for more information.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/tutorial-global-distribution-documentdb.md
https://docs.microsoft.com/en-us/azure/documentdb/documentdb-distribute-data-globally
https://azure.microsoft.com/regions/#services
https://portal.azure.com/
https://azure.microsoft.com/pricing/details/documentdb/
https://docs.microsoft.com/en-us/azure/documentdb/documentdb-distribute-data-globally

Selecting global database regions

Connecting to a preferred region using the DocumentDB API

Once you add a second region, the Manual Failover option is enabled on the Replicate data globally blade in
the portal. You can use this option to test the failover process or change the primary write region. Once you add a
third region, the Failover Priorities option is enabled on the same blade so that you can change the failover
order for reads.

There are two common scenarios for configuring two or more regions:

1. Delivering low-latency access to data to end users no matter where they are located around the globe
2. Adding regional resiliency for business continuity and disaster recovery (BCDR)

For delivering low-latency to end-users, it is recommended to deploy both the application and add Azure Cosmos
DB in the regions thats correspond to where the application's users are located.

For BCDR, it is recommended to add regions based on the region pairs described in the Business continuity and
disaster recovery (BCDR): Azure Paired Regions article.

In order to take advantage of global distribution, client applications can specify the ordered preference list of
regions to be used to perform document operations. This can be done by setting the connection policy. Based on
the Azure Cosmos DB account configuration, current regional availability and the preference list specified, the
most optimal endpoint will be chosen by the DocumentDB SDK to perform write and read operations.

https://azure.microsoft.com/documentation/articles/best-practices-availability-paired-regions/

.NET SDK

NOTE

// Getting endpoints from application settings or other configuration location
Uri accountEndPoint = new Uri(Properties.Settings.Default.GlobalDatabaseUri);
string accountKey = Properties.Settings.Default.GlobalDatabaseKey;

ConnectionPolicy connectionPolicy = new ConnectionPolicy();

//Setting read region selection preference
connectionPolicy.PreferredLocations.Add(LocationNames.WestUS); // first preference
connectionPolicy.PreferredLocations.Add(LocationNames.EastUS); // second preference
connectionPolicy.PreferredLocations.Add(LocationNames.NorthEurope); // third preference

// initialize connection
DocumentClient docClient = new DocumentClient(
 accountEndPoint,
 accountKey,
 connectionPolicy);

// connect to DocDB
await docClient.OpenAsync().ConfigureAwait(false);

NodeJS, JavaScript, and Python SDKs

This preference list is specified when initializing a connection using the DocumentDB SDKs. The SDKs accept an
optional parameter "PreferredLocations" that is an ordered list of Azure regions.

The SDK will automatically send all writes to the current write region.

All reads will be sent to the first available region in the PreferredLocations list. If the request fails, the client will
fail down the list to the next region, and so on.

The SDKs will only attempt to read from the regions specified in PreferredLocations. So, for example, if the
Database Account is available in three regions, but the client only specifies two of the non-write regions for
PreferredLocations, then no reads will be served out of the write region, even in the case of failover.

The application can verify the current write endpoint and read endpoint chosen by the SDK by checking two
properties, WriteEndpoint and ReadEndpoint, available in SDK version 1.8 and above.

If the PreferredLocations property is not set, all requests will be served from the current write region.

The SDK can be used without any code changes. In this case, the SDK automatically directs both reads and writes
to the current write region.

In version 1.8 and later of the .NET SDK, the ConnectionPolicy parameter for the DocumentClient constructor has
a property called Microsoft.Azure.Documents.ConnectionPolicy.PreferredLocations. This property is of type
Collection <string> and should contain a list of region names. The string values are formatted per the Region
Name column on the Azure Regions page, with no spaces before or after the first and last character respectively.

The current write and read endpoints are available in DocumentClient.WriteEndpoint and
DocumentClient.ReadEndpoint respectively.

The URLs for the endpoints should not be considered as long-lived constants. The service may update these at any point.
The SDK handles this change automatically.

The SDK can be used without any code changes. In this case, the SDK will automatically direct both reads and

https://azure.microsoft.com/regions/

NOTE

// Creating a ConnectionPolicy object
var connectionPolicy = new DocumentBase.ConnectionPolicy();

// Setting read region selection preference, in the following order -
// 1 - West US
// 2 - East US
// 3 - North Europe
connectionPolicy.PreferredLocations = ['West US', 'East US', 'North Europe'];

// initialize the connection
var client = new DocumentDBClient(host, { masterKey: masterKey }, connectionPolicy);

REST

https://{databaseaccount}.documents.azure.com/

writes to the current write region.

In version 1.8 and later of each SDK, the ConnectionPolicy parameter for the DocumentClient constructor a new
property called DocumentClient.ConnectionPolicy.PreferredLocations. This is parameter is an array of strings that
takes a list of region names. The names are formatted per the Region Name column in the Azure Regions page.
You can also use the predefined constants in the convenience object AzureDocuments.Regions

The current write and read endpoints are available in DocumentClient.getWriteEndpoint and
DocumentClient.getReadEndpoint respectively.

The URLs for the endpoints should not be considered as long-lived constants. The service may update these at any point.
The SDK will handle this change automatically.

Below is a code example for NodeJS/Javascript. Python and Java will follow the same pattern.

Once a database account has been made available in multiple regions, clients can query its availability by
performing a GET request on the following URI.

The service will return a list of regions and their corresponding Azure Cosmos DB endpoint URIs for the replicas.
The current write region will be indicated in the response. The client can then select the appropriate endpoint for
all further REST API requests as follows.

Example response

https://azure.microsoft.com/regions/

{
 "_dbs": "//dbs/",
 "media": "//media/",
 "writableLocations": [
 {
 "Name": "West US",
 "DatabaseAccountEndpoint": "https://globaldbexample-westus.documents.azure.com:443/"
 }
],
 "readableLocations": [
 {
 "Name": "East US",
 "DatabaseAccountEndpoint": "https://globaldbexample-eastus.documents.azure.com:443/"
 }
],
 "MaxMediaStorageUsageInMB": 2048,
 "MediaStorageUsageInMB": 0,
 "ConsistencyPolicy": {
 "defaultConsistencyLevel": "Session",
 "maxStalenessPrefix": 100,
 "maxIntervalInSeconds": 5
 },
 "addresses": "//addresses/",
 "id": "globaldbexample",
 "_rid": "globaldbexample.documents.azure.com",
 "_self": "",
 "_ts": 0,
 "_etag": null
}

Next steps

All PUT, POST and DELETE requests must go to the indicated write URI
All GETs and other read-only requests (for example queries) may go to any endpoint of the client’s choice

Write requests to read-only regions will fail with HTTP error code 403 (“Forbidden”).

If the write region changes after the client’s initial discovery phase, subsequent writes to the previous write region
will fail with HTTP error code 403 (“Forbidden”). The client should then GET the list of regions again to get the
updated write region.

That's it, that completes this tutorial. You can learn how to manage the consistency of your globally replicated
account by reading Consistency levels in Azure Cosmos DB. And for more information about how global database
replication works in Azure Cosmos DB, see Distribute data globally with Azure Cosmos DB.

In this tutorial, you've done the following:

Configure global distribution using the Azure portal
Configure global distribution using the DocumentDB APIs

You can now proceed to the next tutorial to learn how to develop locally using the Azure Cosmos DB local
emulator.

Develop locally with the emulator

How to setup Azure Cosmos DB global distribution
using the MongoDB API
5/30/2017 • 4 min to read • Edit Online

Add global database regions using the Azure Portal

In this article, we show how to use the Azure portal to setup Azure Cosmos DB global distribution and then connect
using the MongoDB API.

This article covers the following tasks:

Configure global distribution using the Azure portal
Configure global distribution using the MongoDB API

You can learn about Azure Cosmos DB global distribution in this Azure Friday video with Scott Hanselman and
Principal Engineering Manager Karthik Raman.

For more information about how global database replication works in Cosmos DB, see Distribute data globally with
Cosmos DB.

Azure Cosmos DB is available in all Azure regions world-wide. After selecting the default consistency level for your
database account, you can associate one or more regions (depending on your choice of default consistency level
and global distribution needs).

1. In the Azure portal, in the left bar, click Azure Cosmos DB.
2. In the Azure Cosmos DB blade, select the database account to modify.
3. In the account blade, click Replicate data globally from the menu.
4. In the Replicate data globally blade, select the regions to add or remove by clicking regions in the map,

and then click Save. There is a cost to adding regions, see the pricing page or the Distribute data globally
with DocumentDB article for more information.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/tutorial-global-distribution-mongodb.md
https://docs.microsoft.com/en-us/azure/documentdb/documentdb-distribute-data-globally
https://azure.microsoft.com/regions/#services
https://portal.azure.com/
https://azure.microsoft.com/pricing/details/documentdb/
https://docs.microsoft.com/en-us/azure/documentdb/documentdb-distribute-data-globally

Selecting global database regions

Verifying your regional setup using the MongoDB API

Once you add a second region, the Manual Failover option is enabled on the Replicate data globally blade in
the portal. You can use this option to test the failover process or change the primary write region. Once you add a
third region, the Failover Priorities option is enabled on the same blade so that you can change the failover order
for reads.

There are two common scenarios for configuring two or more regions:

1. Delivering low-latency access to data to end users no matter where they are located around the globe
2. Adding regional resiliency for business continuity and disaster recovery (BCDR)

For delivering low-latency to end-users, it is recommended to deploy both the application and add Azure Cosmos
DB in the regions thats correspond to where the application's users are located.

For BCDR, it is recommended to add regions based on the region pairs described in the Business continuity and
disaster recovery (BCDR): Azure Paired Regions article.

The simplest way of double checking your global configuration within API for MongoDB is to run the isMaster()
command from the Mongo Shell.

From your Mongo Shell:

https://azure.microsoft.com/documentation/articles/best-practices-availability-paired-regions/

 db.isMaster()

 {
 "_t": "IsMasterResponse",
 "ok": 1,
 "ismaster": true,
 "maxMessageSizeBytes": 4194304,
 "maxWriteBatchSize": 1000,
 "minWireVersion": 0,
 "maxWireVersion": 2,
 "tags": {
 "region": "South India"
 },
 "hosts": [
 "vishi-api-for-mongodb-southcentralus.documents.azure.com:10250",
 "vishi-api-for-mongodb-westeurope.documents.azure.com:10250",
 "vishi-api-for-mongodb-southindia.documents.azure.com:10250"
],
 "setName": "globaldb",
 "setVersion": 1,
 "primary": "vishi-api-for-mongodb-southindia.documents.azure.com:10250",
 "me": "vishi-api-for-mongodb-southindia.documents.azure.com:10250"
 }

Connecting to a preferred region using the MongoDB API

var collection = database.GetCollection<BsonDocument>(collectionName);
collection = collection.WithReadPreference(new ReadPreference(ReadPreferenceMode.Nearest));

var collection = database.GetCollection<BsonDocument>(collectionName);
collection = collection.WithReadPreference(new ReadPreference(ReadPreferenceMode.SecondaryPreferred));

var collection = database.GetCollection<BsonDocument>(collectionName);
var tag = new Tag("region", "Southeast Asia");
collection = collection.WithReadPreference(new ReadPreference(ReadPreferenceMode.Secondary, new[] { new TagSet(new[] { tag }) }));

Next steps

Example results:

The MongoDB API enables you to specify your collection's read preference for a globally distributed database. For
both low latency reads and global high availability, we recommend setting your collection's read preference to
nearest. A read preference of nearest is configured to read from the closest region.

For applications with a primary read/write region and a secondary region for disaster recovery (DR) scenarios, we
recommend setting your collection's read preference to secondary preferred. A read preference of secondary
preferred is configured to read from the secondary region when the primary region is unavailable.

Lastly, if you would like to manually specify your read regions. You can set the region Tag within your read
preference.

That's it, that completes this tutorial. You can learn how to manage the consistency of your globally replicated
account by reading Consistency levels in Azure Cosmos DB. And for more information about how global database
replication works in Azure Cosmos DB, see Distribute data globally with Azure Cosmos DB.

In this tutorial, you've done the following:

Configure global distribution using the Azure portal
Configure global distribution using the DocumentDB APIs

You can now proceed to the next tutorial to learn how to develop locally using the Azure Cosmos DB local
emulator.

Develop locally with the emulator

How to setup Azure Cosmos DB global distribution
using the Table API
5/30/2017 • 4 min to read • Edit Online

Add global database regions using the Azure Portal

In this article, we show how to use the Azure portal to setup Azure Cosmos DB global distribution and then
connect using the Table API (preview).

This article covers the following tasks:

Configure global distribution using the Azure portal
Configure global distribution using the Table API

You can learn about Azure Cosmos DB global distribution in this Azure Friday video with Scott Hanselman and
Principal Engineering Manager Karthik Raman.

For more information about how global database replication works in Cosmos DB, see Distribute data globally
with Cosmos DB.

Azure Cosmos DB is available in all Azure regions world-wide. After selecting the default consistency level for your
database account, you can associate one or more regions (depending on your choice of default consistency level
and global distribution needs).

1. In the Azure portal, in the left bar, click Azure Cosmos DB.
2. In the Azure Cosmos DB blade, select the database account to modify.
3. In the account blade, click Replicate data globally from the menu.
4. In the Replicate data globally blade, select the regions to add or remove by clicking regions in the map,

and then click Save. There is a cost to adding regions, see the pricing page or the Distribute data globally
with DocumentDB article for more information.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/tutorial-global-distribution-table.md
https://docs.microsoft.com/en-us/azure/documentdb/documentdb-distribute-data-globally
https://azure.microsoft.com/regions/#services
https://portal.azure.com/
https://azure.microsoft.com/pricing/details/documentdb/
https://docs.microsoft.com/en-us/azure/documentdb/documentdb-distribute-data-globally

Selecting global database regions

Connecting to a preferred region using the Table API

Once you add a second region, the Manual Failover option is enabled on the Replicate data globally blade in
the portal. You can use this option to test the failover process or change the primary write region. Once you add a
third region, the Failover Priorities option is enabled on the same blade so that you can change the failover order
for reads.

There are two common scenarios for configuring two or more regions:

1. Delivering low-latency access to data to end users no matter where they are located around the globe
2. Adding regional resiliency for business continuity and disaster recovery (BCDR)

For delivering low-latency to end-users, it is recommended to deploy both the application and add Azure Cosmos
DB in the regions thats correspond to where the application's users are located.

For BCDR, it is recommended to add regions based on the region pairs described in the Business continuity and
disaster recovery (BCDR): Azure Paired Regions article.

In order to take advantage of global distribution, client applications can specify the ordered preference list of
regions to be used to perform document operations. This can be done by setting the TablePreferredLocations

configuration value in the app config for the preview Azure Storage SDK. Based on the Azure Cosmos DB account
configuration, current regional availability and the preference list specified, the most optimal endpoint will be

https://azure.microsoft.com/documentation/articles/best-practices-availability-paired-regions/

 <appSettings>
 <add key="TablePreferredLocations" value="East US, West US, North Europe"/>
 </appSettings>

Next steps

chosen by the Azure Storage SDK to perform write and read operations.

The TablePreferredLocations should contain a comma-separated list of preferred (multi-homing) locations for reads.
Each client instance can specify a subset of these regions in the preferred order for low latency reads. The regions
must be named using their display names, for example, West US .

All reads will be sent to the first available region in the TablePreferredLocations list. If the request fails, the client will
fail down the list to the next region, and so on.

The SDK will only attempt to read from the regions specified in TablePreferredLocations . So, for example, if the
Database Account is available in three regions, but the client only specifies two of the non-write regions for
TablePreferredLocations , then no reads will be served out of the write region, even in the case of failover.

The SDK will automatically send all writes to the current write region.

If the TablePreferredLocations property is not set, all requests will be served from the current write region.

That's it, that completes this tutorial. You can learn how to manage the consistency of your globally replicated
account by reading Consistency levels in Azure Cosmos DB. And for more information about how global database
replication works in Azure Cosmos DB, see Distribute data globally with Azure Cosmos DB.

In this tutorial, you've done the following:

Configure global distribution using the Azure portal
Configure global distribution using the DocumentDB APIs

You can now proceed to the next tutorial to learn how to develop locally using the Azure Cosmos DB local
emulator.

Develop locally with the emulator

https://msdn.microsoft.com/library/azure/gg441293.aspx

How to setup Azure Cosmos DB global distribution
using the Graph API
5/30/2017 • 5 min to read • Edit Online

Add global database regions using the Azure Portal

In this article, we show how to use the Azure portal to setup Azure Cosmos DB global distribution and then connect
using the Graph API (preview).

This article covers the following tasks:

Configure global distribution using the Azure portal
Configure global distribution using the Graph APIs (preview)

You can learn about Azure Cosmos DB global distribution in this Azure Friday video with Scott Hanselman and
Principal Engineering Manager Karthik Raman.

For more information about how global database replication works in Cosmos DB, see Distribute data globally with
Cosmos DB.

Azure Cosmos DB is available in all Azure regions world-wide. After selecting the default consistency level for your
database account, you can associate one or more regions (depending on your choice of default consistency level
and global distribution needs).

1. In the Azure portal, in the left bar, click Azure Cosmos DB.
2. In the Azure Cosmos DB blade, select the database account to modify.
3. In the account blade, click Replicate data globally from the menu.
4. In the Replicate data globally blade, select the regions to add or remove by clicking regions in the map,

and then click Save. There is a cost to adding regions, see the pricing page or the Distribute data globally
with DocumentDB article for more information.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/tutorial-global-distribution-graph.md
https://docs.microsoft.com/en-us/azure/documentdb/documentdb-distribute-data-globally
https://azure.microsoft.com/regions/#services
https://portal.azure.com/
https://azure.microsoft.com/pricing/details/documentdb/
https://docs.microsoft.com/en-us/azure/documentdb/documentdb-distribute-data-globally

Selecting global database regions

Connecting to a preferred region using the Graph API using the .NET
SDK

Once you add a second region, the Manual Failover option is enabled on the Replicate data globally blade in
the portal. You can use this option to test the failover process or change the primary write region. Once you add a
third region, the Failover Priorities option is enabled on the same blade so that you can change the failover order
for reads.

There are two common scenarios for configuring two or more regions:

1. Delivering low-latency access to data to end users no matter where they are located around the globe
2. Adding regional resiliency for business continuity and disaster recovery (BCDR)

For delivering low-latency to end-users, it is recommended to deploy both the application and add Azure Cosmos
DB in the regions thats correspond to where the application's users are located.

For BCDR, it is recommended to add regions based on the region pairs described in the Business continuity and
disaster recovery (BCDR): Azure Paired Regions article.

The Graph API is exposed as an extension library on top of the DocumentDB SDK.

In order to take advantage of global distribution, client applications can specify the ordered preference list of

https://azure.microsoft.com/documentation/articles/best-practices-availability-paired-regions/

Using the SDK

NOTE

// Getting endpoints from application settings or other configuration location
Uri accountEndPoint = new Uri(Properties.Settings.Default.GlobalDatabaseUri);
string accountKey = Properties.Settings.Default.GlobalDatabaseKey;

ConnectionPolicy connectionPolicy = new ConnectionPolicy();

//Setting read region selection preference
connectionPolicy.PreferredLocations.Add(LocationNames.WestUS); // first preference
connectionPolicy.PreferredLocations.Add(LocationNames.EastUS); // second preference
connectionPolicy.PreferredLocations.Add(LocationNames.NorthEurope); // third preference

// initialize connection
DocumentClient docClient = new DocumentClient(
 accountEndPoint,
 accountKey,
 connectionPolicy);

// connect to Azure Cosmos DB
await docClient.OpenAsync().ConfigureAwait(false);

Next steps

regions to be used to perform document operations. This can be done by setting the connection policy. Based on
the Azure Cosmos DB account configuration, current regional availability and the preference list specified, the most
optimal endpoint will be chosen by the SDK to perform write and read operations.

This preference list is specified when initializing a connection using the SDKs. The SDKs accept an optional
parameter "PreferredLocations" that is an ordered list of Azure regions.

Writes: The SDK will automatically send all writes to the current write region.
Reads: All reads will be sent to the first available region in the PreferredLocations list. If the request fails, the
client will fail down the list to the next region, and so on. The SDKs will only attempt to read from the regions
specified in PreferredLocations. So, for example, if the Cosmos DB account is available in three regions, but the
client only specifies two of the non-write regions for PreferredLocations, then no reads will be served out of the
write region, even in the case of failover.

The application can verify the current write endpoint and read endpoint chosen by the SDK by checking two
properties, WriteEndpoint and ReadEndpoint, available in SDK version 1.8 and above. If the PreferredLocations
property is not set, all requests will be served from the current write region.

For example, in the .NET SDK, the ConnectionPolicy parameter for the DocumentClient constructor has a property
called PreferredLocations . This property can be set to a list of region names. The display names for Azure Regions can
be specified as part of PreferredLocations .

The URLs for the endpoints should not be considered as long-lived constants. The service may update these at any point. The
SDK handles this change automatically.

That's it, that completes this tutorial. You can learn how to manage the consistency of your globally replicated
account by reading Consistency levels in Azure Cosmos DB. And for more information about how global database
replication works in Azure Cosmos DB, see Distribute data globally with Azure Cosmos DB.

In this tutorial, you've done the following:

Configure global distribution using the Azure portal

https://azure.microsoft.com/regions/

Configure global distribution using the DocumentDB APIs

You can now proceed to the next tutorial to learn how to develop locally using the Azure Cosmos DB local
emulator.

Develop locally with the emulator

Use the Azure Cosmos DB Emulator for local
development and testing
6/9/2017 • 11 min to read • Edit Online

Binaries Download MSI

Docker Docker Hub

Docker source Github

How the Emulator works

The Azure Cosmos DB Emulator provides a local environment that emulates the Azure Cosmos DB service for
development purposes. Using the Azure Cosmos DB Emulator, you can develop and test your application
locally, without creating an Azure subscription or incurring any costs. When you're satisfied with how your
application is working in the Azure Cosmos DB Emulator, you can switch to using an Azure Cosmos DB
account in the cloud.

This article covers the following tasks:

Installing the Emulator
Running the Emulator on Docker for Windows
Authenticating requests
Using the Data Explorer in the Emulator
Exporting SSL certificates
Calling the Emulator from the command line
Collecting trace files

We recommend getting started by watching the following video, where Kirill Gavrylyuk shows how to get
started with the Azure Cosmos DB Emulator. Note that the video refers to the emulator as the DocumentDB
Emulator, but the tool itself has been renamed the Azure Cosmos DB Emulator since taping the video. All
information in the video is still accurate for the Azure Cosmos DB Emulator.

The Azure Cosmos DB Emulator provides a high-fidelity emulation of the Azure Cosmos DB service. It
supports identical functionality as Azure Cosmos DB, including support for creating and querying JSON
documents, provisioning and scaling collections, and executing stored procedures and triggers. You can
develop and test applications using the Azure Cosmos DB Emulator, and deploy them to Azure at global scale
by just making a single configuration change to the connection endpoint for Azure Cosmos DB.

While we created a high-fidelity local emulation of the actual Azure Cosmos DB service, the implementation
of the Azure Cosmos DB Emulator is different than that of the service. For example, the Azure Cosmos DB
Emulator uses standard OS components such as the local file system for persistence, and HTTPS protocol

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/local-emulator.md
https://aka.ms/cosmosdb-emulator
https://hub.docker.com/r/microsoft/azure-documentdb-emulator/
https://github.com/azure/azure-documentdb-emulator-docker

NOTE

System requirements

Installation

NOTE

Running on Docker for Windows

docker pull microsoft/azure-cosmosdb-emulator

md %LOCALAPPDATA%\CosmosDBEmulatorCert 2>nul
docker run -v %LOCALAPPDATA%\CosmosDBEmulatorCert:c:\CosmosDBEmulator\CosmosDBEmulatorCert -P -t -i microsoft/azure-
cosmosdb-emulator

stack for connectivity. This means that some functionality that relies on Azure infrastructure like global
replication, single-digit millisecond latency for reads/writes, and tunable consistency levels are not available
via the Azure Cosmos DB Emulator.

At this time the Data Explorer in the emulator only supports the creation of DocumentDB API collections and
MongoDB collections. The Data Explorer in the emulator does not currently support the creation of tables and graphs.

The Azure Cosmos DB Emulator has the following hardware and software requirements:

Software requirements

Minimum Hardware requirements
Windows Server 2012 R2, Windows Server 2016, or Windows 10

2 GB RAM
10 GB available hard disk space

You can download and install the Azure Cosmos DB Emulator from the Microsoft Download Center.

To install, configure, and run the Azure Cosmos DB Emulator, you must have administrative privileges on the
computer.

The Azure Cosmos DB Emulator can be run on Docker for Windows. The Emulator does not work on Docker
for Oracle Linux.

Once you have Docker for Windows installed, you can pull the Emulator image from Docker Hub by running
the following command from your favorite shell (cmd.exe, PowerShell, etc.).

To start the image, run the following commands.

The response looks similar to the following:

https://aka.ms/cosmosdb-emulator
https://www.docker.com/docker-windows

Starting Emulator
Emulator Endpoint: https://172.20.229.193:8081/
Master Key: C2y6yDjf5/R+ob0N8A7Cgv30VRDJIWEHLM+4QDU5DE2nQ9nDuVTqobD4b8mGGyPMbIZnqyMsEcaGQy67XIw/Jw==
Exporting SSL Certificate
You can import the SSL certificate from an administrator command prompt on the host by running:
cd /d %LOCALAPPDATA%\CosmosDBEmulatorCert
powershell .\importcert.ps1
--
Starting interactive shell

cd %LOCALAPPDATA%\CosmosDBEmulatorCert
powershell .\importcert.ps1

Start the Emulator

Start Data Explorer

Closing the interactive shell once the Emulator has been started will shutdown the Emulator’s container.

Use the endpoint and master key in from the response in your client and import the SSL certificate into your
host. To import the SSL certificate, do the following from an admin command prompt:

To start the Azure Cosmos DB Emulator, select the Start button or press the Windows key. Begin typing Azure
Cosmos DB Emulator, and select the emulator from the list of applications.

When the emulator is running, you'll see an icon in the Windows taskbar notification area.

The Azure Cosmos DB Emulator by default runs on the local machine ("localhost") listening on port 8081.

The Azure Cosmos DB Emulator is installed by default to the C:\Program Files\Azure Cosmos DB Emulator directory.
You can also start and stop the emulator from the command-line. See command-line tool reference for more
information.

When the Azure Cosmos DB emulator launches it will automatically open the Azure Cosmos DB Data Explorer
in your browser. The address will appear as https://localhost:8081/_explorer/index.html. If you close the
explorer and would like to re-open it later, you can either open the URL in your browser or launch it from the
Azure Cosmos DB Emulator in the Windows Tray Icon as shown below.

https://localhost:8081/_explorer/index.html

Checking for updates

NOTE

Authenticating requests

Account name: localhost:<port>
Account key: C2y6yDjf5/R+ob0N8A7Cgv30VRDJIWEHLM+4QDU5DE2nQ9nDuVTqobD4b8mGGyPMbIZnqyMsEcaGQy67XIw/Jw==

NOTE

Developing with the Emulator

// Connect to the Azure Cosmos DB Emulator running locally
DocumentClient client = new DocumentClient(
 new Uri("https://localhost:8081"),
 "C2y6yDjf5/R+ob0N8A7Cgv30VRDJIWEHLM+4QDU5DE2nQ9nDuVTqobD4b8mGGyPMbIZnqyMsEcaGQy67XIw/Jw==");

Data Explorer indicates if there is a new update available for download.

Data created in one version of the Azure Cosmos DB Emulator is not guaranteed to be accessible when using a
different version. If you need to persist your data for the long term, it is recommended that you store that data in an
Azure Cosmos DB account, rather than in the Azure Cosmos DB Emulator.

Just as with Azure Document in the cloud, every request that you make against the Azure Cosmos DB
Emulator must be authenticated. The Azure Cosmos DB Emulator supports a single fixed account and a well-
known authentication key for master key authentication. This account and key are the only credentials
permitted for use with the Azure Cosmos DB Emulator. They are:

The master key supported by the Azure Cosmos DB Emulator is intended for use only with the emulator. You cannot
use your production Azure Cosmos DB account and key with the Azure Cosmos DB Emulator.

Additionally, just as the Azure Cosmos DB service, the Azure Cosmos DB Emulator supports only secure
communication via SSL.

Once you have the Azure Cosmos DB Emulator running on your desktop, you can use any supported Azure
Cosmos DB SDK or the Azure Cosmos DB REST API to interact with the Emulator. The Azure Cosmos DB
Emulator also includes a built-in Data Explorer that lets you create collections for the DocumentDB and
MongoDB APIs, and view and edit documents without writing any code.

If you're using Azure Cosmos DB protocol support for MongoDB, please use the following connection string:

https://msdn.microsoft.com/library/azure/dn781481.aspx

mongodb://localhost:C2y6yDjf5/R+ob0N8A7Cgv30VRDJIWEHLM+4QDU5DE2nQ9nDuVTqobD4b8mGGyPMbIZnqyMsEcaGQy67XIw/Jw
==@localhost:10250/admin?ssl=true&3t.sslSelfSignedCerts=true

Export the SSL certificate

Command-line tool reference

Command-line Syntax

CosmosDB.Emulator.exe [/Shutdown] [/DataPath] [/Port] [/MongoPort] [/DirectPorts] [/Key] [/EnableRateLimiting] [/DisableRateLimiting]
[/NoUI] [/NoExplorer] [/?]

You can use existing tools like Azure DocumentDB Studio to connect to the Azure Cosmos DB Emulator. You
can also migrate data between the Azure Cosmos DB Emulator and the Azure Cosmos DB service using the
Azure Cosmos DB Data Migration Tool.

Using the Azure Cosmos DB emulator, by default, you can create up to 25 single partition collections or 1
partitioned collection. For more information about changing this value, see Setting the PartitionCount value.

.NET languages and runtime use the Windows Certificate Store to securely connect to the Azure Cosmos DB
local emulator. Other languages have their own method of managing and using certificates. Java uses its own
certificate store whereas Python uses socket wrappers.

In order to obtain a certificate to use with languages and runtimes that do not integrate with the Windows
Certificate Store you will need to export it using the Windows Certificate Manager. You can start it by running
certlm.msc or follow the step by step instructions in Export the Azure Cosmos DB Emulator Certificates. Once
the certificate manager is running, open the Personal Certificates as shown below and export the certificate
with the friendly name "DocumentDBEmulatorCertificate" as a BASE-64 encoded X.509 (.cer) file.

The X.509 certificate can be imported into the Java certificate store by following the instructions in Adding a
Certificate to the Java CA Certificates Store. Once the certificate is imported into the certificate store, Java and
MongoDB applications will be able to connect to the Azure Cosmos DB Emulator.

When connecting to the emulator from Python and Node.js SDKs, SSL verification is disabled.

From the installation location, you can use the command-line to start and stop the emulator, configure
options, and perform other operations.

To view the list of options, type CosmosDB.Emulator.exe /? at the command prompt.

https://github.com/mingaliu/DocumentDBStudio
https://github.com/azure/azure-documentdb-datamigrationtool
https://docs.oracle.com/cd/E19830-01/819-4712/ablqw/index.html
https://docs.python.org/2/library/ssl.html
https://docs.microsoft.com/azure/java-add-certificate-ca-store

Option Description Command Arguments

[No arguments] Starts up the Azure
Cosmos DB Emulator with
default settings.

CosmosDB.Emulator.exe

[Help] Displays the list of
supported command-line
arguments.

CosmosDB.Emulator.exe /?

Shutdown Shuts down the Azure
Cosmos DB Emulator.

CosmosDB.Emulator.exe
/Shutdown

DataPath Specifies the path in which
to store data files. Default
is
%LocalAppdata%\Cosmos
DBEmulator.

CosmosDB.Emulator.exe
/DataPath=<datapath>

<datapath>: An accessible
path

Port Specifies the port number
to use for the emulator.
Default is 8081.

CosmosDB.Emulator.exe
/Port=<port>

<port>: Single port
number

MongoPort Specifies the port number
to use for MongoDB
compatibility API. Default is
10250.

CosmosDB.Emulator.exe
/MongoPort=
<mongoport>

<mongoport>: Single port
number

DirectPorts Specifies the ports to use
for direct connectivity.
Defaults are
10251,10252,10253,1025
4.

CosmosDB.Emulator.exe
/DirectPorts:<directports>

<directports>: Comma-
delimited list of 4 ports

Key Authorization key for the
emulator. Key must be the
base-64 encoding of a 64-
byte vector.

CosmosDB.Emulator.exe
/Key:<key>

<key>: Key must be the
base-64 encoding of a 64-
byte vector

EnableRateLimiting Specifies that request rate
limiting behavior is
enabled.

CosmosDB.Emulator.exe
/EnableRateLimiting

DisableRateLimiting Specifies that request rate
limiting behavior is
disabled.

CosmosDB.Emulator.exe
/DisableRateLimiting

NoUI Do not show the emulator
user interface.

CosmosDB.Emulator.exe
/NoUI

NoExplorer Don't show document
explorer on startup.

CosmosDB.Emulator.exe
/NoExplorer

PartitionCount Specifies the maximum
number of partitioned
collections. See Change the
number of collections for
more information.

CosmosDB.Emulator.exe
/PartitionCount=
<partitioncount>

<partitioncount>:
Maximum number of
allowed single partition
collections. Default is 25.
Maximum allowed is 250.

Differences between the Azure Cosmos DB Emulator and Azure
Cosmos DB

Change the number of collections

Sorry, we are currently experiencing high demand in this region,
and cannot fulfill your request at this time. We work continuously
to bring more and more capacity online, and encourage you to try again.
Please do not hesitate to email docdbswat@microsoft.com at any time or
for any reason. ActivityId: 29da65cc-fba1-45f9-b82c-bf01d78a1f91

Troubleshooting

Because the Azure Cosmos DB Emulator provides an emulated environment running on a local developer
workstation, there are some differences in functionality between the emulator and an Azure Cosmos DB
account in the cloud:

The Azure Cosmos DB Emulator supports only a single fixed account and a well-known master key. Key
regeneration is not possible in the Azure Cosmos DB Emulator.
The Azure Cosmos DB Emulator is not a scalable service and will not support a large number of
collections.
The Azure Cosmos DB Emulator does not simulate different Azure Cosmos DB consistency levels.
The Azure Cosmos DB Emulator does not simulate multi-region replication.
The Azure Cosmos DB Emulator does not support the service quota overrides that are available in the
Azure Cosmos DB service (e.g. document size limits, increased partitioned collection storage).
As your copy of the Azure Cosmos DB Emulator might not be up to date with the most recent changes
with the Azure Cosmos DB service, please Azure Cosmos DB capacity planner to accurately estimate
production throughput (RUs) needs of your application.

By default, you can create up to 25 single partition collections, or 1 partitioned collection using the Azure
Cosmos DB Emulator. By modifying the PartitionCount value, you can create up to 250 single partition
collections or 10 partitioned collections, or any combination of the two that does not exceed 250 single
partitions (where 1 partitioned collection = 25 single partition collection).

If you attempt to create a collection after the current partition count has been exceeded, the emulator throws
a ServiceUnavailable exception, with the following message.

To change the number of collections available to the Azure Cosmos DB Emulator, do the following:

1. Delete all local Azure Cosmos DB Emulator data by right-clicking the Azure Cosmos DB Emulator icon
on the system tray, and then clicking Reset Data….

2. Delete all emulator data in this folder C:\Users\user_name\AppData\Local\CosmosDBEmulator.
3. Exit all open instances by right-clicking the Azure Cosmos DB Emulator icon on the system tray, and

then clicking Exit. It may take a minute for all instances to exit.
4. Install the latest version of the Azure Cosmos DB Emulator.
5. Launch the emulator with the PartitionCount flag by setting a value <= 250. For example:

C:\Program Files\Azure CosmosDB Emulator>CosmosDB.Emulator.exe /PartitionCount=100 .

Use the following tips to help troubleshoot issues you encounter with the Azure Cosmos DB emulator:

If the Azure Cosmos DB emulator crashes, collect dump files from
c:\Users\user_name\AppData\Local\CrashDumps folder, compress them, and attach them to an email
to askcosmosdb@microsoft.com.

https://www.documentdb.com/capacityplanner
https://aka.ms/cosmosdb-emulator
mailto:askcosmosdb@microsoft.com

 Collect trace files

Next steps

If you experience crashes in CosmosDB.StartupEntryPoint.exe, run the following command from an
admin command prompt: lodctr /R

If you encounter a connectivity issue, collect trace files, compress them, and attach them to an email to
askcosmosdb@microsoft.com.

If you receive a Service Unavailable message, the emulator might be failing to initialize the network
stack. Check to see if you have the Pulse secure client or Juniper networks client installed, as their
network filter drivers may cause the problem. Uninstalling third party network filter drivers typically
fixes the issue.

To collect debugging traces, run the following commands from an administrative command prompt:

1. cd /d "%ProgramFiles%\Azure Cosmos DB Emulator"

2. CosmosDB.Emulator.exe /shutdown . Watch the system tray to make sure the program has shut down, it may
take a minute. You can also just click Exit in the Azure Cosmos DB emulator user interface.

3. CosmosDB.Emulator.exe /starttraces

4. CosmosDB.Emulator.exe

5. Reproduce the problem. If Data Explorer is not working, you only need to wait for the browser to open for
a few seconds to catch the error.

6. CosmosDB.Emulator.exe /stoptraces

7. Navigate to %ProgramFiles%\Azure Cosmos DB Emulator and find the docdbemulator_000001.etl file.
8. Send the .etl file along with repro steps to askcosmosdb@microsoft.com for debugging.

In this tutorial, you've done the following:

Installed the local Emulator
Rand the Emulator on Docker for Windows
Authenticated requests
Used the Data Explorer in the Emulator
Exported SSL certificates
Called the Emulator from the command line
Collected trace files

In this tutorial, you've learned how to use the local Emulator for free local development. You can now proceed
to the next tutorial and learn how to export Emulator SSL certificates.

Export the Azure Cosmos DB Emulator certificates

mailto:askcosmosdb@microsoft.com
mailto:askcosmosdb@microsoft.com

Export the Azure Cosmos DB Emulator certificates
for use with Java, Python, and Node.js
6/9/2017 • 3 min to read • Edit Online

Certification rotation

How to export the Azure Cosmos DB SSL certificate

Download the Emulator

The Azure Cosmos DB Emulator provides a local environment that emulates the Azure Cosmos DB service for
development purposes including its use of SSL connections. This post demonstrates how to export the SSL
certificates for use in languages and runtimes that do not integrate with the Windows Certificate Store such as Java
which uses its own certificate store and Python which uses socket wrappers and Node.js which uses tlsSocket. You
can read more about the emulator in Use the Azure Cosmos DB Emulator for development and testing.

This tutorial covers the following tasks:

Rotating certificates
Exporting SSL certificate
Learning how to use the certificate in Java, Python, and Node.js

Certificates in the Azure Cosmos DB Local Emulator are generated the first time the emulator is run. There are two
certificates. One used for connecting to the local emulator and one for managing secrets within the emulator. The
certificate you want to export is the connection certificate with the friendly name
"DocumentDBEmulatorCertificate".

Both certificates can be regenerated by clicking Reset Data as shown below from Azure Cosmos DB Emulator
running in the Windows Tray. If you regenerate the certificates and have installed them into the Java certificate
store or used them elsewhere you will need to update them, otherwise your application will no longer connect to
the local emulator.

1. Start the Windows Certificate manager by running certlm.msc and navigate to the Personal->Certificates
folder and open the certificate with the friendly name DocumentDbEmulatorCertificate.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/local-emulator-export-ssl-certificates.md
https://aka.ms/cosmosdb-emulator
https://docs.oracle.com/cd/E19830-01/819-4712/ablqw/index.html
https://docs.python.org/2/library/ssl.html
https://nodejs.org/api/tls.html#tls_tls_connect_options_callback

2. Click on Details then OK.

3. Click Copy to File....

4. Click Next.

5. Click No, do not export private key, then click Next.

6. Click on Base-64 encoded X.509 (.CER) and then Next.

7. Give the certificate a name. In this case documentdbemulatorcert and then click Next.

How to use the certificate in Java

8. Click Finish.

When running Java applications or MongoDB applications that use the Java client it is easier to install the
certificate into the Java default certificate store than passing the "-Djavax.net.ssl.trustStore= -
Djavax.net.ssl.trustStorePassword="" flags. For example the included Java Demo application depends on the
default certificate store.

https://localhost:8081/_explorer/index.html

How to use the certificate in Python

How to use the certificate in Node.js

Next steps

Follow the instructions in the Adding a Certificate to the Java CA Certificates Store to import the X.509 certificate
into the default Java certificate store. Keep in mind you will be working in the %JAVA_HOME% directory when
running keytool.

Once the "CosmosDBEmulatorCertificate" SSL certificate is installed your application should be able to connect and
use the local Azure Cosmos DB Emulator. If you continue to have trouble you may want to follow the Debugging
SSL/TLS Connections article. It is very likely the certificate is not installed into the
%JAVA_HOME%/jre/lib/security/cacerts store. For example if you have multiple installed versions of Java your
application may be using a different cacerts store than the one you updated.

By default the Python SDK(version 2.0.0 or higher) for the DocumentDB API will not try and use the SSL certificate
when connecting to the local emulator. If however you want to use SSL validation you can follow the examples in
the Python socket wrappers documentation.

By default the Node.js SDK(version 1.10.1 or higher) for the DocumentDB API will not try and use the SSL
certificate when connecting to the local emulator. If however you want to use SSL validation you can follow the
examples in the Node.js documentation.

In this tutorial, you've done the following:

Rotated certificates
Exported the SSL certificate
Learned how to use the certificate in Java, Python and Node.js

You can now proceed to the Concepts section for more information about Cosmos DB.

Global distribution

https://docs.microsoft.com/azure/java-add-certificate-ca-store
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/ReadDebug.html
https://docs.python.org/2/library/ssl.html
https://nodejs.org/api/tls.html#tls_tls_connect_options_callback

Azure CLI samples for Azure Cosmos DB
6/7/2017 • 1 min to read • Edit Online

Create Azure Cosmos DB account, database, and
containers

Create a DocumentDB, Graph, or Table API account Creates a single Azure Cosmos DB API account, database, and
container for use with the DocumentDB, Graph, or Table APIs.

Create a MongoDB API account Creates a single Azure Cosmos DB MongoDB API account,
database, and collection.

Scale Azure Cosmos DB

Scale container throughput Changes the provisioned througput on a container.

Replicate Azure Cosmos DB database account in multiple
regions and configure failover priorities

Globally replicates account data into multiple regions with a
specified failover priority.

Secure Azure Cosmos DB

Get account keys Gets the primary and secondary master write keys and
primary and secondary read-only keys for the account.

Get MongoDB connection string Gets the connection string to connect your MongoDB app to
your Azure Cosmos DB account.

Regenerate account keys Regenerates the master or read-only key for the account.

Create a firewall Creates an inbound IP access control policy to limit access to
the account from an approved set of machines and/or cloud
services.

High availability, disaster recovery, backup and restore

Configure failover policy Sets the failover priority of each region in which the account is
replicated.

Connect Azure Cosmos DB to resources

Connect a web app to Azure Cosmos DB Create and connect an Azure Cosmos DB database and an
Azure web app.

The following table includes links to sample Azure CLI scripts for Azure Cosmos DB. Reference pages for all Azure
Cosmos DB CLI commands are available in the Azure CLI 2.0 Reference.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/cli-samples.md
https://docs.microsoft.com/cli/azure/cosmosdb
https://docs.microsoft.com/en-us/azure/cosmos-db/scripts/create-database-account-collections-cli
https://docs.microsoft.com/en-us/azure/cosmos-db/scripts/create-mongodb-database-account-cli
https://docs.microsoft.com/en-us/azure/cosmos-db/scripts/scale-collection-throughput-cli
https://docs.microsoft.com/en-us/azure/cosmos-db/scripts/scale-multiregion-cli
https://docs.microsoft.com/en-us/azure/cosmos-db/scripts/secure-get-account-key-cli
https://docs.microsoft.com/en-us/azure/cosmos-db/scripts/secure-mongo-connection-string-cli
https://docs.microsoft.com/en-us/azure/cosmos-db/scripts/secure-regenerate-key-cli
https://docs.microsoft.com/en-us/azure/cosmos-db/scripts/create-firewall-cli
https://docs.microsoft.com/en-us/azure/cosmos-db/scripts/ha-failover-policy-cli
https://docs.microsoft.com/azure/app-service-web/scripts/app-service-cli-app-service-documentdb?toc=%2fcli%2fazure%2ftoc.json

Azure PowerShell samples for Azure Cosmos DB
6/1/2017 • 1 min to read • Edit Online

Create an Azure Cosmos DB account

Create a DocumentDB API account Creates a single Azure Cosmos DB account to use with the
DocumentDB API.

Scale Azure Cosmos DB

Replicate Azure Cosmos DB account in multiple regions and
configure failover priorities

Globally replicates account data into multiple regions with a
specified failover priority.

Secure Azure Cosmos DB

Get account keys Gets the primary and secondary master write keys and
primary and secondary read-only keys for the account.

Get MongoDB connection string Gets the connection string to connect your MongoDB app to
your Azure Cosmos DB account.

Regenerate account keys Regenerates the master or read-only key for the account.

Create a firewall Creates an inbound IP access control policy to limit access to
the account from an approved set of machines and/or cloud
services.

High availability, disaster recovery, backup and restore

Configure failover policy Sets the failover priority of each region in which the account is
replicated.

The following table includes links to sample Azure PowerShell scripts for Azure Cosmos DB.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/powershell-samples.md
https://docs.microsoft.com/en-us/azure/cosmos-db/scripts/create-database-account-powershell
https://docs.microsoft.com/en-us/azure/cosmos-db/scripts/scale-multiregion-powershell
https://docs.microsoft.com/en-us/azure/cosmos-db/scripts/secure-get-account-key-powershell
https://docs.microsoft.com/en-us/azure/cosmos-db/scripts/secure-mongo-connection-string-powershell
https://docs.microsoft.com/en-us/azure/cosmos-db/scripts/secure-regenerate-key-powershell
https://docs.microsoft.com/en-us/azure/cosmos-db/scripts/create-firewall-powershell
https://docs.microsoft.com/en-us/azure/cosmos-db/scripts/ha-failover-policy-powershell

How to distribute data globally with Azure
Cosmos DB?
6/9/2017 • 16 min to read • Edit Online

Azure is ubiquitous - it has a global footprint across 30+ geographical regions and is continuously expanding.
With its worldwide presence, one of the differentiated capabilities Azure offers to its developers is the ability
to build, deploy, and manage globally distributed applications easily.

Azure Cosmos DB is Microsoft's globally distributed, multi-model database service for mission-critical
applications. Azure Cosmos DB provides turn-key global distribution, elastic scaling of throughput and
storage worldwide, single-digit millisecond latencies at the 99th percentile, five well-defined consistency
levels, and guaranteed high availability, all backed by industry-leading SLAs. Azure Cosmos DB automatically
indexes data without requiring you to deal with schema and index management. It is multi-model and
supports document, key-value, graph, and columnar data models. As a cloud-born service, Azure Cosmos DB
is carefully engineered with multi-tenancy and global distribution from the ground up.

A single Azure Cosmos DB collection partitioned and distributed across three Azure regions

As we have learned while building Azure Cosmos DB, adding global distribution cannot be an afterthought -
it cannot be "bolted-on" atop a "single site" database system. The capabilities offered by a globally distributed
database span beyond that of traditional geographical disaster recovery (Geo-DR) offered by "single-site"
databases. Single site databases offering Geo-DR capability are a strict subset of globally distributed
databases.

With Azure Cosmos DB's turnkey global distribution, developers do not have to build their own replication
scaffolding by employing either the Lambda pattern (for example, AWS DynamoDB replication) over the
database log or by doing "double writes" across multiple regions. We do not recommend these approaches
since it is impossible to ensure correctness of such approaches and provide sound SLAs.

In this article, we provide an overview of Azure Cosmos DB's global distribution capabilities. We also describe
Azure Cosmos DB's unique approach to providing comprehensive SLAs.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/distribute-data-globally.md
https://azure.microsoft.com/support/legal/sla/cosmos-db/
http://www.vldb.org/pvldb/vol8/p1668-shukla.pdf
https://github.com/awslabs/dynamodb-cross-region-library/blob/master/README.md

Enabling turn-key global distribution

Ubiquitous regional presence

Associating an unlimited number of regions with your Azure Cosmos DB database account

Azure Cosmos DB provides the following capabilities to enable you to easily write planet scale applications.
These capabilities are available via the Azure Cosmos DB's resource provider-based REST APIs as well as the
Azure portal.

Azure is constantly growing its geographical presence by bringing new regions online. Azure Cosmos DB is
available in all new Azure regions by default. This allows you to associate a geographical region with your
Azure Cosmos DB database account as soon as Azure opens the new region for business.

Azure Cosmos DB is available in all Azure regions by default

Azure Cosmos DB allows you to associate any number of Azure regions with your Azure Cosmos DB
database account. Outside of geo-fencing restrictions (for example, China, Germany), there are no limitations
on the number of regions that can be associated with your Azure Cosmos DB database account. The following
figure shows a database account configured to span across 25 Azure regions.

A tenant's Azure Cosmos DB database account spanning 25 Azure regions

https://docs.microsoft.com/rest/api/documentdbresourceprovider/

Policy-based geo-fencing

Dynamically add and remove regions

Failover priorities

Azure Cosmos DB is designed to have policy-based geo-fencing capabilities. Geo-fencing is an important
component to ensure data governance and compliance restrictions and may prevent associating a specific
region with your account. Examples of geo-fencing include (but are not restricted to), scoping global
distribution to the regions within a sovereign cloud (for example, China and Germany), or within a
government taxation boundary (for example, Australia). The policies are controlled using the metadata of
your Azure subscription.

Azure Cosmos DB allows you to add (associate) or remove (dissociate) regions to your database account at
any point in time (see preceding figure). By virtue of replicating data across partitions in parallel, Azure
Cosmos DB ensures that when a new region comes online, Azure Cosmos DB is available within 30 minutes
anywhere in the world for up to 100 TBs.

To control exact sequence of regional failovers when there is a multi-regional outage, Azure Cosmos DB
enables you to associate the priority to various regions associated with the database account (see the
following figure). Azure Cosmos DB ensures that the automatic failover sequence occurs in the priority order
you specified. For more information about regional failovers, see Automatic regional failovers for business
continuity in Azure Cosmos DB.

A tenant of Azure Cosmos DB can configure the failover priority order (right pane) for regions
associated with a database account

Dynamically taking a region "offline"

Multiple, well-defined consistency models for globally replicated databases

Tunable consistency for globally replicated databases

Dynamically configurable read and write regions

Elastically scaling throughput across Azure regions

Geo-local reads and writes

Manually initiate regional failover

Automatic failover

Azure Cosmos DB enables you to take your database account offline in a specific region and bring it back
online later. Regions marked offline do not actively participate in replication and are not part of the failover
sequence. This enables you to freeze the last known good database image in one of the read regions before
rolling out potentially risky upgrades to your application.

Azure Cosmos DB exposes multiple well-defined consistency levels backed by SLAs. You can choose a specific
consistency model (from the available list of options) depending on the workload/scenarios.

Azure Cosmos DB allows you to programmatically override and relax the default consistency choice on a per
request basis, at runtime.

Azure Cosmos DB enables you to configure the regions (associated with the database) for "read", "write" or
"read/write" regions.

You can elastically scale an Azure Cosmos DB collection by provisioning throughput programmatically. The
throughput is applied to all the regions the collection is distributed in.

The key benefit of a globally distributed database is to offer low latency access to the data anywhere in the
world. Azure Cosmos DB offers low latency guarantees at P99 for various database operations. It ensures that
all reads are routed to the closest local read region. To serve a read request, the quorum local to the region in
which the read is issued is used; the same applies to the writes. A write is acknowledged only after a majority
of replicas has durably committed the write locally but without being gated on remote replicas to
acknowledge the writes. Put differently, the replication protocol of Azure Cosmos DB operates under the
assumption that the read and write quorums are always local to the read and write regions, respectively, in
which the request is issued.

Azure Cosmos DB allows you to trigger the failover of the database account to validate the end to end
availability properties of the entire application (beyond the database). Since both the safety and liveness
properties of the failure detection and leader election are guaranteed, Azure Cosmos DB guarantees zero-
data-loss for a tenant-initiated manual failover operation.

Designed for different failover granularities

Multi-homing APIs in Azure Cosmos DB

Transparent and consistent database schema and index migration

Comprehensive SLAs (beyond just high availability)

Latency guarantees

Latency's relationship with consistency

Azure Cosmos DB supports automatic failover in case of one or more regional outages. During a regional
failover, Azure Cosmos DB maintains its read latency, uptime availability, consistency, and throughput SLAs.
Azure Cosmos DB provides an upper bound on the duration of an automatic failover operation to complete.
This is the window of potential data loss during the regional outage.

Currently the automatic and manual failover capabilities are exposed at the granularity of the database
account. Note, internally Azure Cosmos DB is designed to offer automatic failover at finer granularity of a
database, collection, or even a partition (of a collection owning a range of keys).

Azure Cosmos DB allows you to interact with the database using either logical (region agnostic) or physical
(region-specific) endpoints. Using logical endpoints ensures that the application can transparently be multi-
homed in case of failover. The latter, physical endpoints, provide fine-grained control to the application to
redirect reads and writes to specific regions.

You can find information on how to configure read preferences for the DocumentDB API, Graph API, Table
API, and MongoDB API in their respective linked articles.

Azure Cosmos DB is fully schema agnostic. The unique design of its database engine allows it to
automatically and synchronously index all of the data it ingests without requiring any schema or secondary
indices from you. This enables you to iterate your globally distributed application rapidly without worrying
about database schema and index migration or coordinating multi-phase application rollouts of schema
changes. Azure Cosmos DB guarantees that any changes to indexing policies explicitly made by you does not
result into degradation of either performance or availability.

As a globally distributed database service, Azure Cosmos DB offers well-defined SLA for data-loss,
availability, latency at P99, throughput and consistency for the database as a whole, regardless of the
number of regions associated with the database.

The key benefit of a globally distributed database service like Azure Cosmos DB is to offer low latency access
to your data anywhere in the world. Azure Cosmos DB offers guaranteed low latency at P99 for various
database operations. The replication protocol that Azure Cosmos DB employs ensures that the database
operations (ideally, both reads and writes) are always performed in the region local to that of the client. The
latency SLA of Azure Cosmos DB includes P99 for both reads, (synchronously) indexed writes and queries for
various request and response sizes. The latency guarantees for writes include durable majority quorum
commits within the local datacenter.

For a globally distributed service to offer strong consistency in a globally distributed setup, it needs to
synchronously replicate the writes or synchronous perform cross-region reads – the speed of light and the
wide area network reliability dictate that strong consistency results in high latencies and low availability of
database operations. Hence, in order to offer guaranteed low latencies at P99 and 99.99 availability, the
service must employ asynchronous replication. This in-turn requires that the service must also offer well-
defined, relaxed consistency choice(s) – weaker than strong (to offer low latency and availability guarantees)
and ideally stronger than "eventual" consistency (to offer an intuitive programming model).

Azure Cosmos DB ensures that a read operation is not required to contact replicas across multiple regions to
deliver the specific consistency level guarantee. Likewise, it ensures that a write operation does not get
blocked while the data is being replicated across all the regions (i.e. writes are asynchronously replicated

http://www.vldb.org/pvldb/vol8/p1668-shukla.pdf

Latency's relationship with availability

Latency's relationship with throughput

Consistency guarantees

Consistency Level Consistency Characteristics SLA

Session Read your own write 100%

Monotonic read 100%

Consistent prefix 100%

Bounded staleness Monotonic read (within a region) 100%

Consistent prefix 100%

Staleness bound < K,T 100%

Consistent prefix Consistent prefix 100%

Strong Linearizable 100%

Consistency's relationship with availability

across regions). For multi-region database accounts multiple relaxed consistency levels are available.

Latency and availability are the two sides of the same coin. We talk about latency of the operation in steady
state and availability, in the face of failures. From the application standpoint, a slow running database
operation is indistinguishable from a database that is unavailable.

To distinguish high latency from unavailability, Azure Cosmos DB provides an absolute upper bound on
latency of various database operations. If the database operation takes longer than the upper bound to
complete, Azure Cosmos DB returns a timeout error. The Azure Cosmos DB availability SLA ensures that the
timeouts are counted against the availability SLA.

Azure Cosmos DB does not make you choose between latency and throughput. It honors the SLA for both
latency at P99 and deliver the throughput that you have provisioned.

While the strong consistency model is the gold standard of programmability, it comes at the steep price of
high latency (in steady state) and loss of availability (in the face of failures).

Azure Cosmos DB offers a well-defined programming model to you to reason about replicated data's
consistency. In order to enable you to build multi-homed applications, the consistency models exposed by
Azure Cosmos DB are designed to be region-agnostic and not depend on the region from where the reads
and writes are served.

Azure Cosmos DB's consistency SLA guarantees that 100% of read requests will meet the consistency
guarantee for the consistency level requested by you (either the default consistency level on the database
account or the overridden value on the request). A read request is considered to have met the consistency
SLA if all the consistency guarantees associated with the consistency level are satisfied. The following table
captures the consistency guarantees that correspond to specific consistency levels offered by Azure Cosmos
DB.

Consistency guarantees associated with a given consistency level in Azure Cosmos DB

http://cs.brown.edu/~mph/HerlihyW90/p463-herlihy.pdf

Consistency's relationship with latency

Consistency's relationship with throughput

Throughput guarantees

The impossibility result of the CAP theorem proves that it is indeed impossible for the system to remain
available and offer linearizable consistency in the face of failures. The database service must choose to be
either CP or AP - CP systems forgo availability in favor of linearizable consistency while the AP systems forgo
linearizable consistency in favor of availability. Azure Cosmos DB never violates the requested consistency
level, which formally makes it a CP system. However, in practice consistency is not an all or nothing
proposition – there are multiple well-defined consistency models along the consistency spectrum between
linearizable and eventual consistency. In Azure Cosmos DB, we have tried to identify several of the relaxed
consistency models with real world applicability and an intuitive programming model. Azure Cosmos DB
navigates the consistency-availability tradeoffs by offering 99.99 availability SLA along with multiple relaxed
yet well-defined consistency levels.

A more comprehensive variation of CAP was proposed by Prof. Daniel Abadi and it is called PACELC, which
also accounts for latency and consistency tradeoffs in steady state. It states that in steady state, the database
system must choose between consistency and latency. With multiple relaxed consistency models (backed by
asynchronous replication and local read, write quorums), Azure Cosmos DB ensures that all reads and writes
are local to the read and write regions respectively. This allows Azure Cosmos DB to offer low latency
guarantees within the region for the consistency levels.

Since the implementation of a specific consistency model depends on the choice of a quorum type, the
throughput also varies based on the choice of consistency. For instance, in Azure Cosmos DB, the throughput
with strongly consistent reads is roughly half to that of eventually consistent reads.

Relationship of read capacity for a specific consistency level in Azure Cosmos DB

Azure Cosmos DB allows you to scale throughput (as well as, storage), elastically across different regions
depending on the demand.

A single Azure Cosmos DB collection partitioned (across three shards) and then distributed across
three Azure regions

http://www.glassbeam.com/sites/all/themes/glassbeam/images/blog/10.1.1.67.6951.pdf
https://people.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://cs.brown.edu/~mph/HerlihyW90/p463-herlihy.pdf
http://cs-www.cs.yale.edu/homes/dna/papers/abadi-pacelc.pdf
http://cs.brown.edu/~mph/HerlihyW90/p463-herlihy.pdf

An Azure Cosmos DB collection gets distributed using two dimensions – within a region and then across
regions. Here's how:

Within a single region, an Azure Cosmos DB collection is scaled out in terms of resource partitions. Each
resource partition manages a set of keys and is strongly consistent and highly available by virtue of state
machine replication among a set of replicas. Azure Cosmos DB is a fully resource governed system where
a resource partition is responsible for delivering its share of throughput for the budget of system
resources allocated to it. The scaling of an Azure Cosmos DB collection is completely transparent – Azure
Cosmos DB manages the resource partitions and splits and merges it as needed.
Each of the resource partitions is then distributed across multiple regions. Resource partitions owning the
same set of keys across various regions form partition set (see preceding figure). Resource partitions
within a partition set are coordinated using state machine replication across the multiple regions.
Depending on the consistency level configured, the resource partitions within a partition set are
configured dynamically using different topologies (for example, star, daisy-chain, tree etc.).

By virtue of a highly responsive partition management, load balancing and strict resource governance, Azure
Cosmos DB allows you to elastically scale throughput across multiple Azure regions on an Azure Cosmos DB
collection. Changing throughput on a collection is a runtime operation in Azure Cosmos DB - like with other
database operations Azure Cosmos DB guarantees the absolute upper bound on latency for your request to
change the throughput. As an example, the following figure shows a customer's collection with elastically
provisioned throughput (ranging from 1M-10M requests/sec across two regions) based on the demand.

A customer's collection with elastically provisioned throughput (1M-10M requests/sec)

Throughput's relationship with consistency

Throughput's relationship with availability

Availability guarantees

Availability's relationship with consistency, latency, and throughput

Guarantees and system behavior for "data loss"

Customer facing SLA Metrics

Same as Consistency's relationship with throughput.

Azure Cosmos DB continues to maintain its availability when the changes are made to the throughput. Azure
Cosmos DB transparently manages partitions (for example, split, merge, clone operations) and ensures that
the operations do not degrade performance or availability, while the application elastically increases or
decreases throughput.

Azure Cosmos DB offers a 99.99% uptime availability SLA for each of the data and control plane operations.
As described earlier, Azure Cosmos DB's availability guarantees include an absolute upper bound on latency
for every data and control plane operations. The availability guarantees are steadfast and do not change with
the number of regions or geographical distance between regions. Availability guarantees apply with both
manual as well as, automatic failover. Azure Cosmos DB offers transparent multi-homing APIs that ensure
that your application can operate against logical endpoints and can transparently route the requests to the
new region in case of failover. Put differently, your application does not need to be redeployed upon regional
failover and the availability SLAs are maintained.

Availability’s relationship with consistency, latency, and throughput is described in Consistency's relationship
with availability, Latency's relationship with availability and Throughput's relationship with availability.

In Azure Cosmos DB, each partition (of a collection) is made highly available by a number of replicas, which
are spread across at least 10-20 fault domains. All writes are synchronously and durably committed by a
majority quorum of replicas before they are acknowledged to the client. Asynchronous replication is applied
with coordination across partitions spread across multiple regions. Azure Cosmos DB guarantees that there is
no data loss for a tenant-initiated manual failover. During automatic failover, Azure Cosmos DB guarantees
an upper bound of the configured bounded staleness interval on the data loss window as part of its SLA.

Azure Cosmos DB transparently exposes the throughput, latency, consistency and availability metrics. These
metrics are accessible programmatically and via the Azure portal (see following figure). You can also set up
alerts on various thresholds using Azure Application Insights.

Consistency, Latency, Throughput, and Availability metrics are transparently available to each
tenant

Next Steps

References

To implement global replication on your Azure Cosmos DB account using the Azure portal, see How to
perform Azure Cosmos DB global database replication using the Azure portal.
To learn about how to implement multi-master architectures with Azure Cosmos DB, see Multi-master
database architectures with Azure Cosmos DB.
To learn more about how automatic and manual failovers work in Azure Cosmos DB, see Regional
Failovers in Azure Cosmos DB.

1. Eric Brewer. Towards Robust Distributed Systems
2. Eric Brewer. CAP Twelve Years Later – How the rules have changed
3. Gilbert, Lynch. - Brewer's Conjecture and Feasibility of Consistent, Available, Partition Tolerant Web

Services
4. Daniel Abadi. Consistency Tradeoffs in Modern Distributed Database Systems Design
5. Martin Kleppmann. Please stop calling databases CP or AP
6. Peter Bailis et al. Probabilistic Bounded Staleness (PBS) for Practical Partial Quorums
7. Naor and Wool. Load, Capacity and Availability in Quorum Systems
8. Herlihy and Wing. Lineralizability: A correctness condition for concurrent objects
9. Azure Cosmos DB SLA

https://people.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://informatik.unibas.ch/fileadmin/Lectures/HS2012/CS341/workshops/reportsAndSlides/PresentationKevinUrban.pdf
http://www.glassbeam.com/sites/all/themes/glassbeam/images/blog/10.1.1.67.6951.pdf
http://cs-www.cs.yale.edu/homes/dna/papers/abadi-pacelc.pdf
https://martin.kleppmann.com/2015/05/11/please-stop-calling-databases-cp-or-ap.html
http://vldb.org/pvldb/vol5/p776_peterbailis_vldb2012.pdf
http://www.cs.utexas.edu/~lorenzo/corsi/cs395t/04S/notes/naor98load.pdf
http://cs.brown.edu/~mph/HerlihyW90/p463-herlihy.pdf
https://azure.microsoft.com/support/legal/sla/cosmos-db/

How to partition and scale in Azure Cosmos DB
6/13/2017 • 10 min to read • Edit Online

Partitioning in Azure Cosmos DB

Microsoft Azure Cosmos DB is a global distributed, multi-model database service designed to help you
achieve fast, predictable performance and scale seamlessly along with your application as it grows. This
article provides an overview of how partitioning works for all the data models in Azure Cosmos DB, and
describes how you can configure Azure Cosmos DB containers to effectively scale your applications.

Partitioning and partition keys are also covered in this Azure Friday video with Scott Hanselman and Azure
Cosmos DB Principal Engineering Manager, Shireesh Thota.

In Azure Cosmos DB, you can store and query schema-less data with order-of-millisecond response times at
any scale. Cosmos DB provides containers for storing data called collections (for document), graphs, or
tables. Containers are logical resources and can span one or more physical partitions or servers. The number
of partitions is determined by Cosmos DB based on the storage size and the provisioned throughput of the
container. Every partition in Cosmos DB has a fixed amount of SSD-backed storage associated with it, and is
replicated for high availability. Partition management is fully managed by Azure Cosmos DB, and you do not
have to write complex code or manage your partitions. Cosmos DB containers are unlimited in terms of
storage and throughput.

Partitioning is transparent to your application. Cosmos DB supports fast reads and writes, queries,
transactional logic, consistency levels, and fine-grained access control via methods/APIs to a single container
resource. The service handles distributing data across partitions and routing query requests to the right

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/partition-data.md
https://azure.microsoft.com/services/cosmos-db/

API PARTITION KEY ROW KEY

DocumentDB custom partition key path fixed id

MongoDB custom shard key fixed _id

Graph custom partition key property fixed id

Table fixed PartitionKey fixed RowKey

NOTE

Partitioning and provisioned throughput

partition.

How does partitioning work? Each item must have a partition key and a row key, which uniquely identify it.
Your partition key acts as a logical partition for your data, and provides Cosmos DB with a natural boundary
for distributing data across partitions. In brief, here is how partitioning works in Azure Cosmos DB:

You provision a Cosmos DB container with T requests/s throughput
Behind the scenes, Cosmos DB provisions partitions needed to serve T requests/s. If T is higher than
the maximum throughput per partition t , then Cosmos DB provisions N = T/t partitions
Cosmos DB allocates the key space of partition key hashes evenly across the N partitions. So, each
partition (physical partition) hosts 1-N partition key values (logical partitions)
When a physical partition p reaches its storage limit, Cosmos DB seamlessly splits p into two new
partitions p1 and p2 and distributes values corresponding to roughly half the keys to each of the
partitions. This split operation is invisible to your application.
Similarly, when you provision throughput higher than t*N throughput, Cosmos DB splits one or more of
your partitions to support the higher throughput

The semantics for partition keys are slightly different to match the semantics of each API, as shown in the
following table:

Cosmos DB uses hash-based partitioning. When you write an item, Cosmos DB hashes the partition key value
and use the hashed result to determine which partition to store the item in. Cosmos DB stores all items with
the same partition key in the same physical partition. The choice of the partition key is an important decision
that you have to make at design time. You must pick a property name that has a wide range of values and has
even access patterns.

It is a best practice to have a partition key with many distinct values (100s-1000s at a minimum).

Azure Cosmos DB containers can be created as "fixed" or "unlimited." Fixed-size containers have a maximum
limit of 10 GB and 10,000 RU/s throughput. Some APIs allow the partition key to be omitted for fixed-size
containers. To create a container as unlimited, you must specify a minimum throughput of 2500 RU/s.

Cosmos DB is designed for predictable performance. When you create a container, you reserve throughput in
terms of request units (RU) per second with a potential add-on for RU per minute. Each request is
assigned a request unit charge that is proportionate to the amount of system resources like CPU, Memory,
and IO consumed by the operation. A read of a 1-KB document with Session consistency consumes one
request unit. A read is 1 RU regardless of the number of items stored or the number of concurrent requests
running at the same time. Larger items require higher request units depending on the size. If you know the
size of your entities and the number of reads you need to support for your application, you can provision the

NOTE

Working with the Azure Cosmos DB APIs

DocumentDB API

DocumentClient client = new DocumentClient(new Uri(endpoint), authKey);
await client.CreateDatabaseAsync(new Database { Id = "db" });

DocumentCollection myCollection = new DocumentCollection();
myCollection.Id = "coll";
myCollection.PartitionKey.Paths.Add("/deviceId");

await client.CreateDocumentCollectionAsync(
 UriFactory.CreateDatabaseUri("db"),
 myCollection,
 new RequestOptions { OfferThroughput = 20000 });

// Read document. Needs the partition key and the ID to be specified
DeviceReading document = await client.ReadDocumentAsync<DeviceReading>(
 UriFactory.CreateDocumentUri("db", "coll", "XMS-001-FE24C"),
 new RequestOptions { PartitionKey = new PartitionKey("XMS-0001") });

MongoDB API

db.runCommand({ shardCollection: "admin.people", key: { region: "hashed" } })

{
 "_t" : "ShardCollectionResponse",
 "ok" : 1,
 "collectionsharded" : "admin.people"
}

Table API

exact amount of throughput required for your application's read needs.

To achieve the full throughput of the container, you must choose a partition key that allows you to evenly distribute
requests among some distinct partition key values.

You can use the Azure portal or Azure CLI to create containers and scale them at any time. This section shows
how to create containers and specify the throughput and partition key definition in each of the supported
APIs.

The following sample shows how to create a container (collection) using the DocumentDB API. You can find
more details in Partitioning with DocumentDB API.

You can read an item (document) using the GET method in the REST API or using ReadDocumentAsync in one
of the SDKs.

With the MongoDB API, you can create a sharded collection through your favorite tool, driver, or SDK. In this
example, we use the Mongo Shell for the collection creation.

In the Mongo Shell:

Results:

<configuration>
 <appSettings>
 <!--Table creation options -->
 <add key="TableThroughput" value="700"/>
 </appSettings>
</configuration>

CloudTableClient tableClient = storageAccount.CreateCloudTableClient();

CloudTable table = tableClient.GetTableReference("people");
table.CreateIfNotExists();

// Create a retrieve operation that takes a customer entity.
TableOperation retrieveOperation = TableOperation.Retrieve<CustomerEntity>("Smith", "Ben");

// Execute the retrieve operation.
TableResult retrievedResult = table.Execute(retrieveOperation);

Graph API

g.V(['USA', 'Seattle'])

g.E(['USA', 'I5'])

Designing for partitioning

With the Table API, you specify the throughput for tables in the appSettings configuration for your
application:

Then you create a table using the Azure Table storage SDK. The partition key is implicitly created as the
PartitionKey value.

You can retrieve a single entity using the following snippet:

See Developing with the Table API for more details.

With the Graph API, you must use the Azure portal or CLI to create containers. Alternatively, since Azure
Cosmos DB is multi-model, you can use one of the other models to create and scale your graph container.

You can read any vertex or edge using the partition key and id in Gremlin. For example, for a graph with
region ("USA") as the partition key, and "Seattle" as the row key, you can find a vertex using the following
syntax:

Same with edges, you can reference an edge using the partition key and row key.

See Gremlin support for Cosmos DB for more details.

To scale effectively with Azure Cosmos DB, you need to pick a good partition key when you create your
container. There are two key considerations for choosing a partition key:

Boundary for query and transactions: Your choice of partition key should balance the need to enable
the use of transactions against the requirement to distribute your entities across multiple partition keys to
ensure a scalable solution. At one extreme, you could set the same partition key for all your items, but this
may limit the scalability of your solution. At the other extreme, you could assign a unique partition key for
each item, which would be highly scalable but would prevent you from using cross document transactions

Partitioning and logging/time-series data

Partitioning and multi-tenancy

via stored procedures and triggers. An ideal partition key is one that enables you to use efficient queries
and that has sufficient cardinality to ensure your solution is scalable.
No storage and performance bottlenecks: It is important to pick a property that allows writes to be
distributed across various distinct values. Requests to the same partition key cannot exceed the
throughput of a single partition, and are throttled. So it is important to pick a partition key that does not
result in "hot spots" within your application. Since all the data for a single partition key must be stored
within a partition, it is also recommended to avoid partition keys that have high volumes of data for the
same value.

Let's look at a few real-world scenarios, and good partition keys for each:

If you’re implementing a user profile backend, then the user ID is a good choice for partition key.
If you’re storing IoT data for example, device state, a device ID is a good choice for partition key.
If you’re using DocumentDB for logging time-series data, then the hostname or process ID is a good
choice for partition key.
If you have a multi-tenant architecture, the tenant ID is a good choice for partition key.

In some use cases like IoT and user profiles, the partition key might be the same as your id (document key). In
others like the time series data, you might have a partition key that’s different than the id.

One of the common use cases of Cosmos DB is for logging and telemetry. It is important to pick a good
partition key since you might need to read/write vast volumes of data. The choice depends on your read and
write rates and kinds of queries you expect to run. Here are some tips on how to choose a good partition key.

If your use case involves a small rate of writes accumulating over a long period of time, and need to query
by ranges of timestamps and other filters, then using a rollup of the timestamp, for example, date as a
partition key is a good approach. This allows you to query over all the data for a date from a single
partition.
If your workload is written heavy, which is more common, you should use a partition key that’s not based
on timestamp so that Cosmos DB can distribute writes evenly across various partitions. Here a hostname,
process ID, activity ID, or another property with high cardinality is a good choice.
A third approach is a hybrid one where you have multiple containers, one for each day/month and the
partition key is a granular property like hostname. This has the benefit that you can set different
throughput based on the time window, for example, the container for the current month is provisioned
with higher throughput since it serves reads and writes, whereas previous months with lower throughput
since they only serve reads.

If you are implementing a multi-tenant application using Cosmos DB, there are two popular patterns – one
partition key per tenant, and one container per tenant. Here are the pros and cons for each:

One Partition Key per tenant: In this model, tenants are collocated within a single container. But queries
and inserts for items within a single tenant can be performed against a single partition. You can also
implement transactional logic across all items within a tenant. Since multiple tenants share a container,
you can save storage and throughput costs by pooling resources for tenants within a single container
rather than provisioning extra headroom for each tenant. The drawback is that you do not have
performance isolation per tenant. Performance/throughput increases apply to the entire container vs
targeted increases for tenants.
One Container per tenant: Each tenant has its own container. In this model, you can reserve performance
per tenant. With Cosmos DB's new provisioning pricing model, this model is more cost-effective for multi-
tenant applications with a few tenants.

You can also use a combination/tiered approach that collocates small tenants and migrates larger tenants to

Next steps

their own container.

In this article, we provided an overview for an overview of concepts and best practices for partitioning with
any Azure Cosmos DB API.

Learn about provisioned throughput in Azure Cosmos DB
Learn about global distribution in Azure Cosmos DB

Tunable data consistency levels in Azure Cosmos
DB
5/30/2017 • 8 min to read • Edit Online

Distributed databases and consistency

CONSISTENCY LEVEL GUARANTEES

Strong Linearizability

Bounded Staleness Consistent Prefix. Reads lag behind writes by k prefixes or t
interval

Azure Cosmos DB is designed from the ground up with global distribution in mind for every data model. It is
designed to offer predictable low latency guarantees, a 99.99% availability SLA, and multiple well-defined
relaxed consistency models. Currently, Azure Cosmos DB provides five consistency levels: strong, bounded-
staleness, session, and eventual.

Besides strong and eventual consistency models commonly offered by distributed databases, Azure
Cosmos DB offers three more carefully codified and operationalized consistency models, and has validated
their usefulness against real world use cases. These are the bounded staleness, session, and consistent
prefix consistency levels. Collectively these five consistency levels enable you to make well-reasoned trade-
offs between consistency, availability, and latency.

Commercial distributed databases fall into two categories: databases that do not offer well-defined, provable
consistency choices at all, and databases which offer two extreme programmability choices (strong vs.
eventual consistency).

The former burdens application developers with minutia of their replication protocols and expects them to
make difficult tradeoffs between consistency, availability, latency, and throughput. The latter puts a pressure
to choose one of the two extremes. Despite the abundance of research and proposals for more than 50
consistency models, the distributed database community has not been able to commercialize consistency
levels beyond strong and eventual consistency. Cosmos DB allows developers to choose between five well-
defined consistency models along the consistency spectrum – strong, bounded staleness, session, consistent
prefix, and eventual.

The following table illustrates the specific guarantees each consistency level provides.

Consistency Levels and guarantees

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/consistency-levels.md
http://dl.acm.org/citation.cfm?id=383631

Session Consistent Prefix. Monotonic reads, monotonic writes,
read-your-writes, write-follows-reads

Consistent Prefix Updates returned are some prefix of all the updates, with
no gaps

Eventual Out of order reads

CONSISTENCY LEVEL GUARANTEES

Scope of consistency

Consistency levels

You can configure the default consistency level on your Cosmos DB account (and later override the
consistency on a specific read request). Internally, the default consistency level applies to data within the
partition sets which may be span regions. About 73% of our tenants use session consistency and 20% prefer
bounded staleness. We observe that approximately 3% of our customers experiment with various
consistency levels initially before settling on a specific consistency choice for their application. We also
observe that only 2% of our tenants override consistency levels on a per request basis.

In Cosmos DB, reads served at session, consistent prefix and eventual consistency are twice as cheap as
reads with strong or bounded staleness consistency. Cosmos DB has industry leading comprehensive
99.99% SLAs including consistency guarantees along with availability, throughput, and latency. We employ a
linearizability checker, which continuously operates over our service telemetry and openly reports any
consistency violations to you. For bounded staleness, we monitor and report any violations to k and t
bounds. For all five relaxed consistency levels, we also report the probabilistic bounded staleness metric
directly to you.

The granularity of consistency is scoped to a single user request. A write request may correspond to an
insert, replace, upsert, or delete transaction. As with writes, a read/query transaction is also scoped to a
single user request. The user may be required to paginate over a large result-set, spanning multiple
partitions, but each read transaction is scoped to a single page and served from within a single partition.

You can configure a default consistency level on your database account that applies to all collections (and
databases) under your Cosmos DB account. By default, all reads and queries issued against the user-defined
resources use the default consistency level specified on the database account. You can relax the consistency
level of a specific read/query request using in each of the supported APIs. There are five types of consistency
levels supported by the Azure Cosmos DB replication protocol that provide a clear trade-off between specific
consistency guarantees and performance, as described in this section.

Strong:

Strong consistency offers a linearizability guarantee with the reads guaranteed to return the most recent
version of an item.
Strong consistency guarantees that a write is only visible after it is committed durably by the majority
quorum of replicas. A write is either synchronously committed durably by both the primary and the
quorum of secondaries, or it is aborted. A read is always acknowledged by the majority read quorum, a
client can never see an uncommitted or partial write and is always guaranteed to read the latest
acknowledged write.
Azure Cosmos DB accounts that are configured to use strong consistency cannot associate more than
one Azure region with their Azure Cosmos DB account.
The cost of a read operation (in terms of request units consumed) with strong consistency is higher than
session and eventual, but the same as bounded staleness.

http://dl.acm.org/citation.cfm?id=1806634
http://dl.acm.org/citation.cfm?id=2212359
https://aphyr.com/posts/313-strong-consistency-models

Configuring the default consistency level

Bounded staleness:

Bounded staleness consistency guarantees that the reads may lag behind writes by at most K versions or
prefixes of an item or t time-interval.
Therefore, when choosing bounded staleness, the "staleness" can be configured in two ways: number of
versions K of the item by which the reads lag behind the writes, and the time interval t
Bounded staleness offers total global order except within the "staleness window." The monotonic read
guarantees exists within a region both inside and outside the "staleness window."
Bounded staleness provides a stronger consistency guarantee than session or eventual consistency. For
globally distributed applications, we recommend you use bounded staleness for scenarios where you
would like to have strong consistency but also want 99.99% availability and low latency.
Azure Cosmos DB accounts that are configured with bounded staleness consistency can associate any
number of Azure regions with their Azure Cosmos DB account.
The cost of a read operation (in terms of RUs consumed) with bounded staleness is higher than session
and eventual consistency, but the same as strong consistency.

Session:

Unlike the global consistency models offered by strong and bounded staleness consistency levels,
session consistency is scoped to a client session.
Session consistency is ideal for all scenarios where a device or user session is involved since it
guarantees monotonic reads, monotonic writes, and read your own writes (RYW) guarantees.
Session consistency provides predictable consistency for a session, and maximum read throughput while
offering the lowest latency writes and reads.
Azure Cosmos DB accounts that are configured with session consistency can associate any number of
Azure regions with their Azure Cosmos DB account.
The cost of a read operation (in terms of RUs consumed) with session consistency level is less than
strong and bounded staleness, but more than eventual consistency

 Consistent Prefix:

Consistent prefix guarantees that in absence of any further writes, the replicas within the group
eventually converge.
Consistent prefix guarantees that reads never see out of order writes. If writes were performed in the
order A, B, C , then a client sees either A , A,B , or A,B,C , but never out of order like A,C or B,A,C .
Azure Cosmos DB accounts that are configured with consistent prefix consistency can associate any
number of Azure regions with their Azure Cosmos DB account.

Eventual:

Eventual consistency guarantees that in absence of any further writes, the replicas within the group
eventually converge.
Eventual consistency is the weakest form of consistency where a client may get the values that are older
than the ones it had seen before.
Eventual consistency provides the weakest read consistency but offers the lowest latency for both reads
and writes.
Azure Cosmos DB accounts that are configured with eventual consistency can associate any number of
Azure regions with their Azure Cosmos DB account.
The cost of a read operation (in terms of RUs consumed) with the eventual consistency level is the lowest
of all the Azure Cosmos DB consistency levels.

Consistency levels for queries

INDEXING MODE READS QUERIES

Consistent (default) Select from strong, bounded
staleness, session, consistent prefix,
or eventual

Select from strong, bounded
staleness, session, or eventual

Lazy Select from strong, bounded
staleness, session, consistent prefix,
or eventual

Eventual

None Select from strong, bounded
staleness, session, consistent prefix,
or eventual

Not applicable

Next steps

1. In the Azure portal, in the Jumpbar, click Azure Cosmos DB.
2. In the Azure Cosmos DB blade, select the database account to modify.
3. In the account blade, click Default consistency.
4. In the Default Consistency blade, select the new consistency level and click Save.

By default, for user-defined resources, the consistency level for queries is the same as the consistency level
for reads. By default, the index is updated synchronously on each insert, replace, or delete of an item to the
Cosmos DB container. This enables the queries to honor the same consistency level as that of point reads.
While Azure Cosmos DB is write optimized and supports sustained volumes of writes, synchronous index
maintenance and serving consistent queries, you can configure certain collections to update their index
lazily. Lazy indexing further boosts the write performance and is ideal for bulk ingestion scenarios when a
workload is primarily read-heavy.

As with read requests, you can lower the consistency level of a specific query request in each API.

If you'd like to do more reading about consistency levels and tradeoffs, we recommend the following

https://portal.azure.com/

resources:

Doug Terry. Replicated Data Consistency explained through baseball (video).
https://www.youtube.com/watch?v=gluIh8zd26I
Doug Terry. Replicated Data Consistency explained through baseball.
http://research.microsoft.com/pubs/157411/ConsistencyAndBaseballReport.pdf
Doug Terry. Session Guarantees for Weakly Consistent Replicated Data.
http://dl.acm.org/citation.cfm?id=383631
Daniel Abadi. Consistency Tradeoffs in Modern Distributed Database Systems Design: CAP is only part of
the story”.
http://computer.org/csdl/mags/co/2012/02/mco2012020037-abs.html
Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein, Ion Stoica. Probabilistic
Bounded Staleness (PBS) for Practical Partial Quorums.
http://vldb.org/pvldb/vol5/p776_peterbailis_vldb2012.pdf
Werner Vogels. Eventual Consistent - Revisited.
http://allthingsdistributed.com/2008/12/eventually_consistent.html
Moni Naor , Avishai Wool, The Load, Capacity, and Availability of Quorum Systems, SIAM Journal on
Computing, v.27 n.2, p.423-447, April 1998.
http://epubs.siam.org/doi/abs/10.1137/S0097539795281232
Sebastian Burckhardt, Chris Dern, Macanal Musuvathi, Roy Tan, Line-up: a complete and automatic
linearizability checker, Proceedings of the 2010 ACM SIGPLAN conference on Programming language
design and implementation, June 05-10, 2010, Toronto, Ontario, Canada
[doi>10.1145/1806596.1806634] http://dl.acm.org/citation.cfm?id=1806634
Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein , Ion Stoica,
Probabilistically bounded staleness for practical partial quorums, Proceedings of the VLDB Endowment,
v.5 n.8, p.776-787, April 2012 http://dl.acm.org/citation.cfm?id=2212359

https://www.youtube.com/watch?v=gluIh8zd26I
http://research.microsoft.com/pubs/157411/ConsistencyAndBaseballReport.pdf
http://dl.acm.org/citation.cfm?id=383631
http://computer.org/csdl/mags/co/2012/02/mco2012020037-abs.html
http://vldb.org/pvldb/vol5/p776_peterbailis_vldb2012.pdf
http://allthingsdistributed.com/2008/12/eventually_consistent.html
http://epubs.siam.org/doi/abs/10.1137/S0097539795281232
http://dl.acm.org/citation.cfm?id=1806634
http://dl.acm.org/citation.cfm?id=2212359

Request Units in Azure Cosmos DB
6/9/2017 • 14 min to read • Edit Online

Introduction

Now available: Azure Cosmos DB request unit calculator. Learn more in Estimating your throughput needs.

Azure Cosmos DB is Microsoft's globally distributed multi-model database. With Azure Cosmos DB, you don;t
have to rent virtual machines, deploy software, or monitor databases. Azure Cosmos DB is operated and
continuously monitored by Microsoft top engineers to deliver world class availability, performance, and data
protection. You can access your data using APIs of your choice, as DocumentDB SQL (document), MongoDB
(document), Azure Table Storage (key-value), and Gremlin (graph) are all natively supported. The currency of
Azure Cosmos DB is the Request Unit (RU). With RU, you do not need to reserve read, write caprcities or
provision CPU, Memory and IOPS.

Azure Cosmos DB supports a number of APIs with different operations ranging from reads, writes to complex
graph queries. Since not all requests are equal, they are assigned a normalized amount of request units based
on the amount of computation required to serve the request. The number of request units for an operation is
deterministic, and you can track the number of request units consumed by any operation in Azure Cosmos DB
via a response header.

To provide a predictable performance, you need to reserve throughput by unit of 100 RU/second. For each
block of 100 RU/second, you can attach a block of 1,000 RU/minute. Combining provisioning per second and
per minute is extremely powerful as you do not need to provision for peak and can save up to 75% in cost
versus any service working only with per second provisioning.

After reading this article, you'll be able to answer the following questions:

What are request units and request charges?
How do I specify request unit capacity for a collection?
How do I estimate my application's request unit needs?
What happens if I exceed request unit capacity for a collection?

As Azure Cosmos DB is a multi-model database, this is important to note that we will refer to a
collection/document for a document API, a graph/node for a graph API and a table/entity for table API.
Throughput this document we will generalize to the concepts of container/item.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/request-units.md
https://www.documentdb.com/capacityplanner
https://azure.microsoft.com/services/cosmos-db/
https://azure.microsoft.com/services/storage/tables/
https://tinkerpop.apache.org/gremlin.html

Request units and request charges

Specifying request unit capacity in Azure Cosmos DB

NOTE

Azure Cosmos DB delivers fast, predictable performance by reserving resources to satisfy your application's
throughput needs. Because application load and access patterns change over time, Azure Cosmos DB allows
you to easily increase or decrease the amount of reserved throughput available to your application.

With Azure Cosmos DB, reserved throughput is specified in terms of request units processing per second or
per minute (add-on). You can think of request units as throughput currency, whereby you reserve an amount of
guaranteed request units available to your application on per second or minute basis. Each operation in Azure
Cosmos DB - writing a document, performing a query, updating a document - consumes CPU, memory, and
IOPS. That is, each operation incurs a request charge, which is expressed in request units. Understanding the
factors which impact request unit charges, along with your application's throughput requirements, enables you
to run your application as cost effectively as possible. The query explorer is also a wonderful tool to test the
core of a query.

We recommend getting started by watching the following video, where Aravind Ramachandran explains
request units and predictable performance with Azure Cosmos DB.

When starting a new collection, table or graph, you specify the number of request units per second (RU per
second) you want reserved. You can also decide if you want RU per minute enabled. If you enable it, you will
get 10x what you get per second but per minute. Based on the provisioned throughput, Azure Cosmos DB
allocates physical partitions to host your collection and splits/rebalances data across partitions as it grows.

Azure Cosmos DB requires a partition key to be specified when a collection is provisioned with 2,500 request
units or higher. A partition key is also required to scale your collection's throughput beyond 2,500 request
units in the future. Therefore, it is highly recommended to configure a partition key when creating a container
regardless of your initial throughput. Since your data might have to be split across multiple partitions, it is
necessary to pick a partition key that has a high cardinality (100 to millions of distinct values) so that your
collection/table/graph and requests can be scaled uniformly by Azure Cosmos DB.

A partition key is a logical boundary, and not a physical one. Therefore, you do not need to limit the number of distinct
partition key values. It is in fact better to have more distinct partition key values than less, as Azure Cosmos DB has
more load balancing options.

Here is a code snippet for creating a collection with 3,000 request units per second using the .NET SDK:

DocumentCollection myCollection = new DocumentCollection();
myCollection.Id = "coll";
myCollection.PartitionKey.Paths.Add("/deviceId");

await client.CreateDocumentCollectionAsync(
 UriFactory.CreateDatabaseUri("db"),
 myCollection,
 new RequestOptions { OfferThroughput = 3000 });

// Fetch the resource to be updated
Offer offer = client.CreateOfferQuery()
 .Where(r => r.ResourceLink == collection.SelfLink)
 .AsEnumerable()
 .SingleOrDefault();

// Set the throughput to 5000 request units per second
offer = new OfferV2(offer, 5000);

// Now persist these changes to the database by replacing the original resource
await client.ReplaceOfferAsync(offer);

Request unit considerations

Azure Cosmos DB operates on a reservation model on throughput. That is, you are billed for the amount of
throughput reserved, regardless of how much of that throughput is actively used. As your application's load,
data, and usage patterns change you can easily scale up and down the amount of reserved RUs through SDKs
or using the Azure Portal.

Each collection/table/graph are mapped to an Offer resource in Azure Cosmos DB, which has metadata about
the provisioned throughput. You can change the allocated throughput by looking up the corresponding offer
resource for a container, then updating it with the new throughput value. Here is a code snippet for changing
the throughput of a collection to 5,000 request units per second using the .NET SDK:

There is no impact to the availability of your container when you change the throughput. Typically the new
reserved throughput is effective within seconds on application of the new throughput.

When estimating the number of request units to reserve for your Azure Cosmos DB container, it is important to
take the following variables into consideration:

Item size. As size increases the units consumed to read or write the data will also increase.
Item property count. Assuming default indexing of all properties, the units consumed to write a
document/node/ntity will increase as the property count increases.
Data consistency. When using data consistency levels of Strong or Bounded Staleness, additional units will
be consumed to read items.
Indexed properties. An index policy on each container determines which properties are indexed by default.
You can reduce your request unit consumption by limiting the number of indexed properties or by enabling
lazy indexing.
Document indexing. By default each item is automatically indexed, you will consume fewer request units
if you choose not to index some of your items.
Query patterns. The complexity of a query impacts how many Request Units are consumed for an
operation. The number of predicates, nature of the predicates, projections, number of UDFs, and the size of
the source data set all influence the cost of query operations.
Script usage. As with queries, stored procedures and triggers consume request units based on the
complexity of the operations being performed. As you develop your application, inspect the request charge
header to better understand how each operation is consuming request unit capacity.

https://portal.azure.com

 Estimating throughput needs

NOTE

Use the request unit calculator

A request unit is a normalized measure of request processing cost. A single request unit represents the
processing capacity required to read (via self link or id) a single 1KB item consisting of 10 unique property
values (excluding system properties). A request to create (insert), replace or delete the same item will consume
more processing from the service and thereby more request units.

The baseline of 1 request unit for a 1KB item corresponds to a simple GET by self link or id of the item.

For example, here's a table that shows how many request units to provision at three different item sizes (1KB,
4KB, and 64KB) and at two different performance levels (500 reads/second + 100 writes/second and 500
reads/second + 500 writes/second). The data consistency was configured at Session, and the indexing policy
was set to None.

Item size Reads/second Writes/second Request units

1 KB 500 100 (500 * 1) + (100 * 5) =
1,000 RU/s

1 KB 500 500 (500 * 1) + (500 * 5) =
3,000 RU/s

4 KB 500 100 (500 * 1.3) + (100 * 7)
= 1,350 RU/s

4 KB 500 500 (500 * 1.3) + (500 * 7)
= 4,150 RU/s

64 KB 500 100 (500 * 10) + (100 * 48)
= 9,800 RU/s

64 KB 500 500 (500 * 10) + (500 * 48)
= 29,000 RU/s

To help customers fine tune their throughput estimations, there is a web based request unit calculator to help
estimate the request unit requirements for typical operations, including:

Item creates (writes)
Item reads
Item deletes
Item updates

The tool also includes support for estimating data storage needs based on the sample items you provide.

Using the tool is simple:

1. Upload one or more representative items.

https://www.documentdb.com/capacityplanner

2. To estimate data storage requirements, enter the total number of items you expect to store.
3. Enter the number of items create, read, update, and delete operations you require (on a per-second

basis). To estimate the request unit charges of item update operations, upload a copy of the sample item
from step 1 above that includes typical field updates. For example, if item updates typically modify two
properties named lastLogin and userVisits, then simply copy the sample item, update the values for
those two properties, and upload the copied item.

4. Click calculate and examine the results.

NOTE

Use the Azure Cosmos DB request charge response header

If you have item types which will differ dramatically in terms of size and the number of indexed properties, then upload a
sample of each type of typical item to the tool and then calculate the results.

Every response from the Azure Cosmos DB service includes a custom header (x-ms-request-charge) that contains
the request units consumed for the request. This header is also accessible through the DocumentDB SDKs. In
the .NET SDK, RequestCharge is a property of the ResourceResponse object. For queries, the Azure Cosmos DB
Query Explorer in the Azure portal provides request charge information for executed queries.

NOTE

Use API for MongoDB's GetLastRequestStatistics command

> db.sample.find()

> db.runCommand({getLastRequestStatistics: 1})
{
 "_t": "GetRequestStatisticsResponse",
 "ok": 1,
 "CommandName": "OP_QUERY",
 "RequestCharge": 2.48,
 "RequestDurationInMilliSeconds" : 4.0048
}

NOTE

Use API for MongoDB's portal metrics

With this in mind, one method for estimating the amount of reserved throughput required by your application
is to record the request unit charge associated with running typical operations against a representative item
used by your application and then estimating the number of operations you anticipate performing each
second. Be sure to measure and include typical queries and Azure Cosmos DB script usage as well.

If you have item types which will differ dramatically in terms of size and the number of indexed properties, then record
the applicable operation request unit charge associated with each type of typical item.

For example:

1. Record the request unit charge of creating (inserting) a typical item.
2. Record the request unit charge of reading a typical item.
3. Record the request unit charge of updating a typical item.
4. Record the request unit charge of typical, common item queries.
5. Record the request unit charge of any custom scripts (stored procedures, triggers, user-defined functions)

leveraged by the application
6. Calculate the required request units given the estimated number of operations you anticipate to run each

second.

API for MongoDB supports a custom command, getLastRequestStatistics, for retrieving the request charge for
specified operations.

For example, in the Mongo Shell, execute the operation you want to verify the request charge for.

Next, execute the command getLastRequestStatistics.

With this in mind, one method for estimating the amount of reserved throughput required by your application
is to record the request unit charge associated with running typical operations against a representative item
used by your application and then estimating the number of operations you anticipate performing each
second.

If you have item types which will differ dramatically in terms of size and the number of indexed properties, then record
the applicable operation request unit charge associated with each type of typical item.

The simplest way to get a good estimation of request unit charges for your API for MongoDB database is to use

A request unit estimation example

the Azure portal metrics. With the Number of requests and Request Charge charts, you can get an estimation of
how many request units each operation is consuming and how many request units they consume relative to
one another.

Consider the following ~1KB document:

https://portal.azure.com

{
 "id": "08259",
 "description": "Cereals ready-to-eat, KELLOGG, KELLOGG'S CRISPIX",
 "tags": [
 {
 "name": "cereals ready-to-eat"
 },
 {
 "name": "kellogg"
 },
 {
 "name": "kellogg's crispix"
 }
],
 "version": 1,
 "commonName": "Includes USDA Commodity B855",
 "manufacturerName": "Kellogg, Co.",
 "isFromSurvey": false,
 "foodGroup": "Breakfast Cereals",
 "nutrients": [
 {
 "id": "262",
 "description": "Caffeine",
 "nutritionValue": 0,
 "units": "mg"
 },
 {
 "id": "307",
 "description": "Sodium, Na",
 "nutritionValue": 611,
 "units": "mg"
 },
 {
 "id": "309",
 "description": "Zinc, Zn",
 "nutritionValue": 5.2,
 "units": "mg"
 }
],
 "servings": [
 {
 "amount": 1,
 "description": "cup (1 NLEA serving)",
 "weightInGrams": 29
 }
]
}

NOTE

OPERATION REQUEST UNIT CHARGE

Create item ~15 RU

Documentss are minified in Azure Cosmos DB, so the system calculated size of the document above is slightly less than
1KB.

The following table shows approximate request unit charges for typical operations on this item (the
approximate request unit charge assumes that the account consistency level is set to “Session” and that all
items are automatically indexed):

Read item ~1 RU

Query item by id ~2.5 RU

OPERATION REQUEST UNIT CHARGE

QUERY REQUEST UNIT CHARGE # OF RETURNED ITEMS

Select food by id ~2.5 RU 1

Select foods by manufacturer ~7 RU 7

Select by food group and order by
weight

~70 RU 100

Select top 10 foods in a food group ~10 RU 10

NOTE

OPERATION/QUERY ESTIMATED NUMBER PER SECOND REQUIRED RUS

Create item 10 150

Read item 100 100

Select foods by manufacturer 25 175

Select by food group 10 700

Select top 10 15 150 Total

Exceeding reserved throughput limits in Azure Cosmos DB

Additionally, this table shows approximate request unit charges for typical queries used in the application:

RU charges vary based on the number of items returned.

With this information, we can estimate the RU requirements for this application given the number of
operations and queries we expect per second:

In this case, we expect an average throughput requirement of 1,275 RU/s. Rounding up to the nearest 100, we
would provision 1,300 RU/s for this application's collection.

Recall that request unit consumption is evaluated as a rate per second if Request Unit per Minute is disabled or
the budget is empty. For applications that exceed the provisioned request unit rate for a container, requests to
that collection will be throttled until the rate drops below the reserved level. When a throttle occurs, the server
will preemptively end the request with RequestRateTooLargeException (HTTP status code 429) and return the
x-ms-retry-after-ms header indicating the amount of time, in milliseconds, that the user must wait before
reattempting the request.

HTTP Status 429
Status Line: RequestRateTooLarge
x-ms-retry-after-ms :100

Exceeding reserved throughput limits in API for MongoDB

Next steps

If you are using the .NET Client SDK and LINQ queries, then most of the time you never have to deal with this
exception, as the current version of the .NET Client SDK implicitly catches this response, respects the server-
specified retry-after header, and retries the request. Unless your account is being accessed concurrently by
multiple clients, the next retry will succeed.

If you have more than one client cumulatively operating above the request rate, the default retry behavior may
not suffice, and the client will throw a DocumentClientException with status code 429 to the application. In
cases such as this, you may consider handling retry behavior and logic in your application's error handling
routines or increasing the reserved throughput for the container.

Applications that exceed the provisioned request units for a collection will be throttled until the rate drops
below the reserved level. When a throttle occurs, the backend will preemptively end the request with a 16500
error code - Too Many Requests. By default, API for MongoDB will automatically retry up to 10 times before
returning a Too Many Requests error code. If you are receiving many Too Many Requests error codes, you may
consider either adding retry behavior in your application's error handling routines or increasing the reserved
throughput for the collection.

To learn more about reserved throughput with Azure Cosmos DB databases, explore these resources:

Azure Cosmos DB pricing
Partitioning data in Azure Cosmos DB

To learn more about Azure Cosmos DB, see the Azure Cosmos DB documentation.

To get started with scale and performance testing with Azure Cosmos DB, see Performance and Scale Testing
with Azure Cosmos DB.

https://azure.microsoft.com/pricing/details/cosmos-db/
https://azure.microsoft.com/documentation/services/cosmos-db/

Request units per minute in Azure Cosmos DB
6/13/2017 • 8 min to read • Edit Online

Provisioning request units per minute (RU/m)

Azure Cosmos DB is designed to help you achieve a fast, predictable performance and scale seamlessly along with
your application’s growth. You can provision throughput on a Cosmos DB container at both, per-second and at
per-minute (RU/m) granularities. The provisioned throughput at per-minute granularity is used to manage
unexpected spikes in the workload occurring at a per-second granularity.

This article provides an overview of how the provisioning of Request Unit per Minute (RU/m) works. The goal in
mind with provisioning of RU/m is to provide a predictable performance around unpredictable needs (especially if
you need to run analytics on top of your operational data) and spiky workloads. We want to have our customers
consume more the throughput they provision so they can scale quickly with peace of mind.

After reading this article, you will be able to answer the following questions:

How does a Request Unit per Minute work?
What is the difference between Request Unit per Minute and Request Unit per Second?
How to provision RU/m?
Under which scenario shall I consider provisioning Request Unit per Minute?
How to use the portal metrics to optimize my cost and performance?
Define which type of request can consume your RU/m budget?

When you provision Azure Cosmos DB at the second granularity (RU/s), you get the guarantee that your request
succeeds at a low latency if your throughput has not exceeded the capacity provisioned within that second. With
RU/m, the granularity is at the minute with the guarantee that your request succeeds within that minute.
Compared to bursting systems, we make sure that the performance you get is predictable and you can plan on it.

The way per minute provisioning works is simple:

RU/m is billed hourly and in addition to RU/s. For more details, please visit Azure Cosmos DB pricing page.
RU/m can be enabled at collection level. That can be done through the SDKs (Node.js, Java, or .Net) or through
the portal (also include MongoDB API workloads)
When RU/m is enabled, for every 100 RU/s provisioned, you also get 1,000 RU/m provisioned (the ratio is 10x)
At a given second, a request unit consumes your RU/m provisioning only if you have exceeded your per second
provisioning within that second
Once the 60-second period (UTC) ends, the per minute provisioning is refilled
RU/m can be enabled only for collections with a maximum provisioning of 5,000 RU/s per partition. If you scale
your throughput needs and have such a high level of provisioning per partition, you will get a warning message

Below is a concrete example, in which a customer can provision 10kRU/s with 100kRU/m, saving 73% in cost
against provisioning for peak (at 50kRU/sec) through a 90-second period on a collection that has 10,000 RU/s and
100,000 RU/m provisioned:

1st second: The RU/m budget is set at 100,000
3rd second: During that second the consumption of Request Unit was 11,010 RUs, 1,010 RUs above the RU/s
provisioning. Therefore, 1,010 RUs are deducted from the RU/m budget. 98,990 RUs are available for the next
57 seconds in the RU/m budget
29th second: During that second, a large spike happened (>4x higher than provisioning per second) and the

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/request-units-per-minute.md
https://aka.ms/acdbpricing

Specifying request unit capacity with RU/m

Through the Portal

consumption of Request Unit was 46,920 RUs. 36,920 RUs are deducted from the RU/m budget that dropped
from 92,323 RUs (28th second) to 55,403 RUs (29th second)
61st second: RU/m budget is set back to 100,000 RUs.

When creating an Azure Cosmos DB collection, you specify the number of request units per second (RU per
second) you want reserved for the collection. You can also decide if you want to add RU per minute. This can be
done through the Portal or the SDK.

Enabling or disabling RU per minute simply requires a click when provisioning a collection.

Through the SDK

// Create a collection with RU/m enabled
DocumentCollection myCollection = new DocumentCollection();
myCollection.Id = "coll";
myCollection.PartitionKey.Paths.Add("/deviceId");

// Set the throughput to 3,000 request units per second which will give you 30,000 request units per minute as the RU/m budget
await client.CreateDocumentCollectionAsync(
 UriFactory.CreateDatabaseUri("db"),
 myCollection,
 new RequestOptions { OfferThroughput = 3000, OfferEnableRUPerMinuteThroughput = true });

First, this is important to note that RU/m is only available for the following SDKs:

.Net 1.14.0
Java 1.11.0
Node.js 1.12.0
Python 2.2.0

Here is a code snippet for creating a collection with 3,000 request units per second and 30,000 request units per
minute using the .NET SDK:

Here is a code snippet for changing the throughput of a collection to 5,000 request units per second without
provisioning RU per minute using the .NET SDK:

// Get the current offer
Offer offer = client.CreateOfferQuery()
 .Where(r => r.ResourceLink == collection.SelfLink)
 .AsEnumerable()
 .SingleOrDefault();

// Set the throughput to 5000 request units per second without RU/m enabled (the last parameter to OfferV2 constructor below)
OfferV2 offerV2 = new OfferV2(offer, 5000, false);

// Now persist these changes to the database by replacing the original resource
await client.ReplaceOfferAsync(offerV2);

Good fit scenarios
In this section, we provide an overview of scenarios that are a good fit for enabling request units per minute.

Dev/Test environment: Good fit. During the development stage, if you are testing your application with different
workloads, RU/m can provide the flexibility at this stage. While the emulator is a great free tool to test Azure
Cosmos DB. However if you want to start in a cloud environment, you will have a great flexibility with RU/m for
your adhoc performance needs. You will spend more time developing, less worrying about performance needs at
first. We recommend starting with the minimum RU/s provisioning and enable RU/m.

Unpredictable, spiky, minute granularity needs: Good fit – Savings: 25-75%. We have seen large
improvement from RU/m and most production scenarios are into that group. If you have an IoT workload that has
spike a few times in a minute, if you have queries running when your system makes mass insert at the same time,
you will need extra capacity for handeling spiky needs. We recommend optimizing your resource needs by
applying our step by step approach below.

Figure - RU consumption benchmark

Peace of mind: Good fit – Savings: 10-20%. Sometimes, you just want to have peace of mind and not worry
about potential peaks and throttling. This feature is the right one for you. In that case, we recommend enabling
RU/m and slightly lower your per second provisioning. This case is different from the above as you will not try to
optimize aggressively your provisioning. This is more of a “Zero Throttling” mindset you are in.

Critical operations with adhoc needs: We sometimes recommend to only let critical operations access RU/m
budget so the budget doesn’t get consume by adhoc or less important operations. That can be easily defined in the
section below.

Using the portal metrics to optimize cost and performance

RU/M % UTILIZATION DEGREE OF UTILIZATION OF RU/M
RECOMMENDED ACTIONS FOR
PROVISIONING

0-1% Under utilization Lower RU/s to consume more RU/m

1-10% Healthy use Keep the same provisioning level

Above 10% Over utilization Increase RU/s to rely less on RU/m

In the coming weeks, we will further develop the content around monitoring RUs minute consumption
to optimize your throughput needs.

Through the portal metrics, you can see how much of regular RU seconds you consume versus RU minutes.
Monitoring these metrics should help you optimize your provisioning.

We recommend a step by step approach on how to use RU/m to your advantage. For each step, you should have
an overview of the RU consumption representing a full cycle of your workload (it could be hours, days, or even
weeks) and get insights on the utilization of what you provision.

The principle behind this approach is to make your throughput provisioning as close as possible to a provisioning
point that matches your performance criteria below.

To understand the optimal provisioning point for your workload, you need to understand:

Consumption patterns: no, infrequent or sustained spikes? Small (2x average), medium, or large (>10x average)
spikes?
Percent of throttled requests: do you feel comfortable if you have a bit of throttling? If so, by how much?

Once you have identified what your goals are, you will be able to get closer to the optimal provisioning.

To assist you, we want to provide an overall guidance on how to optimize your provisioning based on your RU/m
consumption. This guidance doesn’t apply to all kind of workloads but is based on the private preview knowledge.
We might change such baselines as we learn more:

Select which operations can consume the RU/m budget

// In order to disable any CRUD request for RU/m, set DisableRUPerMinuteUsage to true in RequestOptions
await client.CreateDocumentAsync(
 UriFactory.CreateDocumentCollectionUri("db", "container"),
 new Document { Id = "Cosmos DB" },
 new RequestOptions { DisableRUPerMinuteUsage = true });
// In order to disable any query request for RU/m, set DisableRUPerMinuteOnRequest to true in RequestOptions
FeedOptions feedOptions = new FeedOptions();
feedOptions.DisableRUPerMinuteUsage = true;
var query = client.CreateDocumentQuery<Book>(
 UriFactory.CreateDocumentCollectionUri("db", "container"),
 "select * from c",feedOptions).AsDocumentQuery();

Next steps

At request level, you can also enable/disable RU/m budget to serve the request irrespective of operation type. If
regular provisioned RUs/sec budget is consumed and the request cannot consume the RU/m budget, this request
will be throttled. By default, any request is served by RU/m budget if RU/m throughput budget is activated.

Here is a code snippet for disabling RU/m budget using the DocumentDB API for CRUD and query operations.

In this article, we've described how partitioning works in Azure Cosmos DB, how you can create partitioned
collections, and how you can pick a good partition key for your application.

Perform scale and performance testing with Azure Cosmos DB. See Performance and Scale Testing with Azure
Cosmos DB for a sample.
Get started coding with the SDKs or the REST API.
Learn about provisioned throughput in Azure Cosmos DB

https://msdn.microsoft.com/library/azure/dn781481.aspx

Introduction to Azure Cosmos DB: DocumentDB API
6/9/2017 • 7 min to read • Edit Online

What capabilities and key features does Azure Cosmos DB offer?

Azure Cosmos DB is Microsoft's globally distributed, multi-model database service for mission-critical
applications. Azure Cosmos DB provides turn-key global distribution, elastic scaling of throughput and storage
worldwide, single-digit millisecond latencies at the 99th percentile, five well-defined consistency levels, and
guaranteed high availability, all backed by industry-leading SLAs. Azure Cosmos DB automatically indexes data
without requiring you to deal with schema and index management. It is multi-model and supports document, key-
value, graph, and columnar data models.

With the DocumentDB API, Azure Cosmos DB provides rich and familiar SQL query capabilities with consistent
low latencies over schema-less JSON data. In this article, we provide an overview of the Azure Cosmos DB's
DocumentDB API, and how you can use it to store massive volumes of JSON data, query them within order of
milliseconds latency, and evolve the schema easily.

Azure Cosmos DB, via the DocumentDB API, offers the following key capabilities and benefits:

Elastically scalable throughput and storage: Easily scale up or scale down your JSON database to meet
your application needs. Your data is stored on solid state disks (SSD) for low predictable latencies. Azure
Cosmos DB supports containers for storing JSON data called collections that can scale to virtually
unlimited storage sizes and provisioned throughput. You can elastically scale Azure Cosmos DB with
predictable performance seamlessly as your application grows.

Multi-region replication: Azure Cosmos DB transparently replicates your data to all regions you've
associated with your Azure Cosmos DB account, enabling you to develop applications that require global
access to data while providing tradeoffs between consistency, availability and performance, all with
corresponding guarantees. Azure Cosmos DB provides transparent regional failover with multi-homing
APIs, and the ability to elastically scale throughput and storage across the globe. Learn more in Distribute
data globally with Azure Cosmos DB.

Ad hoc queries with familiar SQL syntax: Store heterogeneous JSON documents and query these
documents through a familiar SQL syntax. Azure Cosmos DB utilizes a highly concurrent, lock free, log
structured indexing technology to automatically index all document content. This enables rich real-time
queries without the need to specify schema hints, secondary indexes, or views. Learn more in Query Azure
Cosmos DB.

JavaScript execution within the database: Express application logic as stored procedures, triggers, and
user defined functions (UDFs) using standard JavaScript. This allows your application logic to operate over
data without worrying about the mismatch between the application and the database schema. The
DocumentDB API provides full transactional execution of JavaScript application logic directly inside the

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/documentdb-introduction.md
https://azure.microsoft.com/support/legal/sla/cosmos-db/
http://www.vldb.org/pvldb/vol8/p1668-shukla.pdf

 How do you manage data with the DocumentDB API?

database engine. The deep integration of JavaScript enables the execution of INSERT, REPLACE, DELETE,
and SELECT operations from within a JavaScript program as an isolated transaction. Learn more in
DocumentDB server-side programming.

Tunable consistency levels: Select from five well defined consistency levels to achieve optimal trade-off
between consistency and performance. For queries and read operations, Azure Cosmos DB offers five
distinct consistency levels: strong, bounded-staleness, session, consistent prefix, and eventual. These
granular, well-defined consistency levels allow you to make sound trade-offs between consistency,
availability, and latency. Learn more in Using consistency levels to maximize availability and performance.

Fully managed: Eliminate the need to manage database and machine resources. As a fully-managed
Microsoft Azure service, you do not need to manage virtual machines, deploy and configure software,
manage scaling, or deal with complex data-tier upgrades. Every database is automatically backed up and
protected against regional failures. You can easily add an Azure Cosmos DB account and provision capacity
as you need it, allowing you to focus on your application instead of operating and managing your
database.

Open by design: Get started quickly by using existing skills and tools. Programming against the
DocumentDB API is simple, approachable, and does not require you to adopt new tools or adhere to
custom extensions to JSON or JavaScript. You can access all of the database functionality including CRUD,
query, and JavaScript processing over a simple RESTful HTTP interface. The DocumentDB API embraces
existing formats, languages, and standards while offering high value database capabilities on top of them.

Automatic indexing: By default, Azure Cosmos DB automatically indexes all the documents in the
database and does not expect or require any schema or creation of secondary indices. Don't want to index
everything? Don't worry, you can opt out of paths in your JSON files too.

The DocumentDB API helps manages JSON data through well-defined database resources. These resources are
replicated for high availability and are uniquely addressable by their logical URI. DocumentDB offers a simple
HTTP based RESTful programming model for all resources.

The Azure Cosmos DB database account is a unique namespace that gives you access to Azure Cosmos DB. Before
you can create a database account, you must have an Azure subscription, which gives you access to a variety of
Azure services.

All resources within Azure Cosmos DB are modeled and stored as JSON documents. Resources are managed as
items, which are JSON documents containing metadata, and as feeds which are collections of items. Sets of items
are contained within their respective feeds.

The image below shows the relationships between the Azure Cosmos DB resources:

NOTE

How can I develop apps with the DocumentDB API?

DOWNLOAD DOCUMENTATION

.NET SDK .NET library

Node.js SDK Node.js library

A database account consists of a set of databases, each containing multiple collections, each of which can contain
stored procedures, triggers, UDFs, documents, and related attachments. A database also has associated users,
each with a set of permissions to access various other collections, stored procedures, triggers, UDFs, documents,
or attachments. While databases, users, permissions, and collections are system-defined resources with well-
known schemas - documents, stored procedures, triggers, UDFs, and attachments contain arbitrary, user defined
JSON content.

Since the DocumentDB API was previously available as the Azure DocumentDB service, you can continue to provision,
monitor, and manage accounts created via the Azure Resource Management REST API or tools using either the Azure
DocumentDB or Azure Cosmos DB resource names. We use the names interchangeably when referring to the Azure
DocumentDB APIs.

Azure Cosmos DB exposes resources through the DocumentDB REST API that can be called by any language
capable of making HTTP/HTTPS requests. Additionally, we offer programming libraries for several popular
languages for the DocumentDB API. The client libraries simplify many aspects of working with the API by handling
details such as address caching, exception management, automatic retries and so forth. Libraries are currently
available for the following languages and platforms:

http://go.microsoft.com/fwlink/?LinkID=402989
https://msdn.microsoft.com/library/azure/dn948556.aspx
http://go.microsoft.com/fwlink/?LinkID=402990
http://azure.github.io/azure-documentdb-node/

Java SDK Java library

JavaScript SDK JavaScript library

n/a Server-side JavaScript SDK

Python SDK Python library

n/a API for MongoDB

DOWNLOAD DOCUMENTATION

SQL query

Transactions and JavaScript execution

Are there any online courses on Azure Cosmos DB?

Using the Azure Cosmos DB Emulator, you can develop and test your application locally with the DocumentDB
API, without creating an Azure subscription or incurring any costs. When you're satisfied with how your
application is working in the emulator, you can switch to using an Azure Cosmos DB account in the cloud.

Beyond basic create, read, update, and delete operations, the DocumentDB API provides a rich SQL query interface
for retrieving JSON documents and server side support for transactional execution of JavaScript application logic.
The query and script execution interfaces are available through all platform libraries as well as the REST APIs.

The DocumentDB API supports querying documents using a SQL language, which is rooted in the JavaScript type
system, and expressions with support for relational, hierarchical, and spatial queries. The DocumentDB query
language is a simple yet powerful interface to query JSON documents. The language supports a subset of ANSI
SQL grammar and adds deep integration of JavaScript object, arrays, object construction, and function invocation.
DocumentDB provides its query model without any explicit schema or indexing hints from the developer.

User Defined Functions (UDFs) can be registered with the DocumentDB API and referenced as part of a SQL query,
thereby extending the grammar to support custom application logic. These UDFs are written as JavaScript
programs and executed within the database.

For .NET developers, the DocumentDB .NET SDK also offers a LINQ query provider.

The DocumentDB API allows you to write application logic as named programs written entirely in JavaScript.
These programs are registered for a collection and can issue database operations on the documents within a
given collection. JavaScript can be registered for execution as a trigger, stored procedure or user defined function.
Triggers and stored procedures can create, read, update, and delete documents whereas user defined functions
execute as part of the query execution logic without write access to the collection.

JavaScript execution within the DocumentDB API is modeled after the concepts supported by relational database
systems, with JavaScript as a modern replacement for Transact-SQL. All JavaScript logic is executed within an
ambient ACID transaction with snapshot isolation. During the course of its execution, if the JavaScript throws an
exception, then the entire transaction is aborted.

Yes, there's a Microsoft Virtual Academy course on Azure DocumentDB.

http://go.microsoft.com/fwlink/?LinkID=402380
http://azure.github.io/azure-documentdb-java/
http://go.microsoft.com/fwlink/?LinkID=402991
http://azure.github.io/azure-documentdb-js/
http://azure.github.io/azure-documentdb-js-server/
https://pypi.python.org/pypi/pydocumentdb
http://azure.github.io/azure-documentdb-python/
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.aspx
https://mva.microsoft.com/en-US/training-courses/azure-documentdb-planetscale-nosql-16847

Next steps
Already have an Azure account? Then you can get started with Azure Cosmos DB by following our quick starts,
which will walk you through creating an account and getting started with Cosmos DB.

Introduction to Azure Cosmos DB: API for
MongoDB
5/30/2017 • 3 min to read • Edit Online

What is the benefit of using Azure Cosmos DB for MongoDB
applications?

Azure Cosmos DB is Microsoft's globally distributed, multi-model database service for mission-critical
applications. Azure Cosmos DB provides turn-key global distribution, elastic scaling of throughput and storage
worldwide, single-digit millisecond latencies at the 99th percentile, five well-defined consistency levels, and
guaranteed high availability, all backed by industry-leading SLAs. Azure Cosmos DB automatically indexes data
without requiring you to deal with schema and index management. It is multi-model and supports document,
key-value, graph, and columnar data models.

Cosmos DB databases can be used as the data store for apps written for MongoDB. This means that by using
existing drivers, your application written for MongoDB can now communicate with Cosmos DB and use Cosmos
DB databases instead of MongoDB databases. In many cases, you can switch from using MongoDB to Cosmos DB
by simply changing a connection string. Using this functionality, you can easily build and run MongoDB database
applications in the Azure cloud with Azure Cosmos DB's global distribution and comprehensive industry leading
SLAs, while continuing to use familiar skills and tools for MongoDB.

Elastically scalable throughput and storage: Easily scale up or down your MongoDB database to meet your
application needs. Your data is stored on solid state disks (SSD) for low predictable latencies. Cosmos DB
supports MongoDB collections that can scale to virtually unlimited storage sizes and provisioned throughput.
You can elastically scale Cosmos DB with predictable performance seamlessly as your application grows.

Multi-region replication: Cosmos DB transparently replicates your data to all regions you've associated with
your MongoDB account, enabling you to develop applications that require global access to data while providing
tradeoffs between consistency, availability and performance, all with corresponding guarantees. Cosmos DB
provides transparent regional failover with multi-homing APIs, and the ability to elastically scale throughput and
storage across the globe. Learn more in Distribute data globally.

MongoDB compatibility: You can use your existing MongoDB expertise, application code, and tooling. You can
develop applications using MongoDB and deploy them to production using the fully managed globally
distributed Cosmos DB service.

No server management: You don't have to manage and scale your MongoDB databases. Cosmos DB is a fully
managed service, which means you do not have to manage any infrastructure or Virtual Machines yourself.
Cosmos DB is available in 30+ Azure Regions.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/mongodb-introduction.md
https://azure.microsoft.com/support/legal/sla/cosmos-db/
http://www.vldb.org/pvldb/vol8/p1668-shukla.pdf
https://docs.mongodb.com/manual/introduction/
https://docs.mongodb.org/ecosystem/drivers/
https://azure.microsoft.com/support/legal/sla/cosmos-db
https://azure.microsoft.com/regions/services/

How to get started

Next steps

Tunable consistency levels: Select from five well defined consistency levels to achieve optimal trade-off
between consistency and performance. For queries and read operations, Cosmos DB offers five distinct
consistency levels: strong, bounded-staleness, session, consistent prefix, and eventual. These granular, well-
defined consistency levels allow you to make sound trade-offs between consistency, availability, and latency.
Learn more in Using consistency levels to maximize availability and performance.

Automatic indexing: By default, Cosmos DB automatically indexes all the properties within documents in your
MongoDB database and does not expect or require any schema or creation of secondary indices.

Enterprise grade - Azure Cosmos DB supports multiple local replicas to deliver 99.99% availability and data
protection in the face of local and regional failures. Azure Cosmos DB has enterprise grade compliance
certifications and security features.

Learn more in this Azure Friday video with Scott Hanselman and Azure Cosmos DB Principal Engineering
Manager, Kirill Gavrylyuk.

Follow the MongoDB quickstarts to create a Cosmos DB account and migrate your existing Mongo DB
application to use Cosmos DB, or build a new one:

Migrate an existing Node.js MongoDB web app.
Build a MongoDB API web app with .NET and the Azure portal
Build a MongoDB API console app with Java and the Azure portal

Information about Azure Cosmos DB's MongoDB API is integrated into the overall Azure Cosmos DB
documentation, but here are a few pointers to get you started:

Follow the Connect to a MongoDB account tutorial to learn how to get your account connection string
information.
Follow the Use MongoChef with Azure Cosmos DB tutorial to learn how to create a connection between your
Azure Cosmos DB database and MongoDB app in MongoChef.
Follow the Migrate data to Azure Cosmos DB with protocol support for MongoDB tutorial to import your data
to an API for MongoDB database.
Connect to an API for MongoDB account using Robomongo.
Learn how many RUs your operations are using with the GetLastRequestStatistics command and the Azure
portal metrics.
Learn how to configure read preferences for globally distributed apps.

https://www.microsoft.com/trustcenter

Introduction to Azure Cosmos DB: Table API
6/9/2017 • 2 min to read • Edit Online

Premium and standard Table APIs

AZURE TABLE STORAGE
AZURE COSMOS DB: TABLE STORAGE
(PREVIEW)

Latency Fast, but no upper bounds on latency Single-digit millisecond latency for
reads and writes, backed with <10 ms
latency reads and <15 ms latency
writes at the 99th percentile, at any
scale, anywhere in the world

Throughput Highly scalable, but no dedicated
throughput model. Tables have a
scalability limit of 20,000 operations/s

Highly scalable with dedicated reserved
throughput per table, that is backed
by SLAs. Accounts have no upper limit
on throughput, and support >10
million operations/s per table

Azure Cosmos DB is Microsoft's globally distributed, multi-model database service for mission-critical
applications. Azure Cosmos DB provides turn-key global distribution, elastic scaling of throughput and storage
worldwide, single-digit millisecond latencies at the 99th percentile, five well-defined consistency levels, and
guaranteed high availability, all backed by industry-leading SLAs. Azure Cosmos DB automatically indexes data
without requiring you to deal with schema and index management. It is multi-model and supports document,
key-value, graph, and columnar data models.

Azure Cosmos DB provides the Table API (preview) for applications that need a key-value store with flexible
schema, predictable performance, global distribution, and high throughput. The Table API provides the same
functionality as Azure Table storage, but leverages the benefits of the Azure Cosmos DB engine.

You can continue to use Azure Table storage for tables with high storage and lower throughput requirements.
Azure Cosmos DB will introduce support for storage-optimized tables in a future update, and existing and new
Azure Table storage accounts will be upgraded to Azure Cosmos DB.

If you currently use Azure Table storage, you gain the following benefits by moving to Azure Cosmos DB's
"premium table" preview:

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/table-introduction.md
https://azure.microsoft.com/support/legal/sla/cosmos-db/
http://www.vldb.org/pvldb/vol8/p1668-shukla.pdf

Global Distribution Single region with one optional
readable secondary read region for
HA. You cannot initiate failover

Turn-key global distribution from one
to 30+ regions, Support for automatic
and manual failovers at any time,
anywhere in the world

Indexing Only primary index on PartitionKey
and RowKey. No secondary indexes

Automatic and complete indexing on
all properties, no index management

Query Query execution uses index for
primary key, and scans otherwise.

Queries can take advantage of
automatic indexing on properties for
fast query times. Azure Cosmos DB's
database engine is capable of
supporting aggregates, geo-spatial,
and sorting.

Consistency Strong within primary region, Eventual
with secondary region

five well-defined consistency levels to
trade off availability, latency,
throughput, and consistency based on
your application needs

Pricing Storage-optimized Throughput-optimized

SLAs 99.9% availability 99.99% availability within a single
region, and ability to add more regions
for higher availability. Industry-leading
comprehensive SLAs on general
availability

AZURE TABLE STORAGE
AZURE COSMOS DB: TABLE STORAGE
(PREVIEW)

How to get started

Next steps

Create an Azure Cosmos DB account in the Azure portal, and get started with our Quickstart for Table API using
.NET.

Here are a few pointers to get you started:

Get started with Azure Cosmos DB's Table API using existing NET Table SDK.
Learn about Global distribution with Azure Cosmos DB.
Learn about Provisioned throughput in Azure Cosmos DB.

https://azure.microsoft.com/support/legal/sla/cosmos-db/
https://portal.azure.com

Introduction to Azure Cosmos DB: Graph API
6/14/2017 • 7 min to read • Edit Online

Graph database

Azure Cosmos DB is the globally distributed, multi-model database service from Microsoft for mission-critical
applications. Azure Cosmos DB provides turn-key global distribution, elastic scaling of throughput and storage
worldwide, single-digit millisecond latencies at the 99th percentile, five well-defined consistency levels, and
guaranteed high availability, which are all backed by industry-leading SLAs. Azure Cosmos DB automatically
indexes data without requiring you to deal with schema and index management. It is multi-model and supports
document, key-value, graph, and columnar data models.

The Azure Cosmos DB Graph API provides:

Graph modeling
Traversal APIs
Turn-key global distribution
Elastic scaling of storage and throughput with less than 10 ms read latencies and less than 15 ms at the 99th
percentile
Automatic indexing with instant query availability
Tunable consistency levels
Comprehensive SLAs including 99.99% availability

To query Azure Cosmos DB, you can use the Apache TinkerPop graph traversal language, Gremlin, or other
TinkerPop-compatible graph systems like Apache Spark GraphX.

This article provides an overview of the Azure Cosmos DB Graph API and explains how you can use it to store
massive graphs with billions of vertices and edges. You can query the graphs with millisecond latency and
evolve the graph structure and schema easily.

Data as it appears in the real world is naturally connected. Traditional data modeling focuses on entities. For
many applications, there is also a need to model or to model both entities and relationships naturally.

A graph is a structure that's composed of vertices and edges. Both vertices and edges can have an arbitrary
number of properties. Vertices denote discrete objects such as a person, a place, or an event. Edges denote
relationships between vertices. For example, a person might know another person, be involved in an event, and
recently been at a location. Properties express information about the vertices and edges. Example properties
include a vertex that has a name, age, and edge, which has a timestamp and/or a weight. More formally, this
model is known as a property graph. Azure Cosmos DB supports the property graph model.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/graph-introduction.md
https://azure.microsoft.com/support/legal/sla/cosmos-db/
http://www.vldb.org/pvldb/vol8/p1668-shukla.pdf
http://tinkerpop.apache.org
http://tinkerpop.apache.org/docs/current/reference/#graph-traversal-steps
http://mathworld.wolfram.com/Graph.html
http://mathworld.wolfram.com/GraphVertex.html
http://mathworld.wolfram.com/GraphEdge.html
http://tinkerpop.apache.org/docs/current/reference/#intro

Planet-scale graphs with Azure Cosmos DB

For example, the following sample graph shows relationships among people, mobile devices, interests, and
operating systems.

Graphs are useful to understand a wide range of datasets in science, technology, and business. Graph databases
let you model and store graphs naturally and efficiently, which makes them useful for many scenarios. Graph
databases are typically NoSQL databases because these use cases often also need schema flexibility and rapid
iteration.

Graphs offer a novel and powerful data modeling technique. But this fact by itself is not a sufficient reason to
use a graph database. For many use cases and patterns that involve graph traversals, graphs outperform
traditional SQL and NoSQL databases by orders of magnitude. This difference in performance is further
amplified when traversing more than one relationship, like friend-of-a-friend.

You can combine the fast traversals that graph databases provide with graph algorithms, like depth-first search,
breadth-first search, and Dijkstra’s algorithm, to solve problems in various domains like social networking,
content management, geospatial, and recommendations.

Azure Cosmos DB is a fully managed graph database that offers global distribution, elastic scaling of storage
and throughput, automatic indexing and query, tunable consistency levels, and support for the TinkerPop
standard.

Azure Cosmos DB offers the following differentiated capabilities when compared to other graph databases in
the market:

Elastically scalable throughput and storage

Graphs in the real world need to scale beyond the capacity of a single server. With Azure Cosmos DB, you
can scale your graphs seamlessly across multiple servers. You can also scale the throughput of your
graph independently based on your access patterns. Azure Cosmos DB supports graph databases that
can scale to virtually unlimited storage sizes and provisioned throughput.

Multi-region replication

Azure Cosmos DB transparently replicates your graph data to all regions that you've associated with your
account. Replication enables you to develop applications that require global access to data. There are
tradeoffs in the areas of consistency, availability, and performance and corresponding guarantees. Azure
Cosmos DB provides transparent regional failover with multi-homing APIs. You can elastically scale
throughput and storage across the globe.

Fast queries and traversals with familiar Gremlin syntax

Store heterogeneous vertices and edges and query these documents through a familiar Gremlin syntax.
Azure Cosmos DB utilizes a highly concurrent, lock-free, log-structured indexing technology to
automatically index all content. This capability enables rich real-time queries and traversals without the
need to specify schema hints, secondary indexes, or views. Learn more in Query Graphs using Gremlin.

Fully managed

Azure Cosmos DB eliminates the need to manage database and machine resources. As a fully managed
Microsoft Azure service, you do not need to manage virtual machines, deploy and configure software,
manage scaling, or deal with complex data-tier upgrades. Every graph is automatically backed up and
protected against regional failures. You can easily add an Azure Cosmos DB account and provision
capacity as you need it so that you can focus on your application instead of operating and managing your
database.

Automatic indexing

By default, Azure Cosmos DB automatically indexes all the properties within nodes and edges in the
graph and does not expect or require any schema or creation of secondary indices.

Getting started

DOWNLOAD DOCUMENTATION

Java Gremlin JavaDoc

Node.js Gremlin-JavaScript on Github

Gremlin console TinkerPop docs

DOWNLOAD DOCUMENTATION

.NET Microsoft.Azure.Graphs

Scenarios for graph support of Azure Cosmos DB

Compatibility with Apache TinkerPop

Azure Cosmos DB natively supports the open-source Apache TinkerPop standard and can be integrated
with other TinkerPop-enabled graph systems. So, you can easily migrate from another graph database,
like Titan or Neo4j, or use Azure Cosmos DB with graph analytics frameworks like Apache Spark GraphX.

Tunable consistency levels

Select from five well-defined consistency levels to achieve optimal trade-off between consistency and
performance. For queries and read operations, Azure Cosmos DB offers five distinct consistency levels:
strong, bounded-staleness, session, consistent prefix, and eventual. These granular, well-defined
consistency levels allow you to make sound tradeoffs among consistency, availability, and latency. Learn
more in Using consistency levels to maximize availability and performance in DocumentDB.

Azure Cosmos DB also can use multiple models, like document and graph, within the same
containers/databases. You can use a document collection to store graph data side by side with documents. You
can use both SQL queries over JSON and Gremlin queries to query the same data as a graph.

You can use the Azure command-line interface (CLI), Azure Powershell, or the Azure portal with support for
graph API to create Azure Cosmos DB accounts. After you create accounts, the Azure portal provides a service
endpoint, like https://<youraccount>.graphs.azure.com , that provides a WebSocket front end for Gremlin. You can
configure your TinkerPop-compatible tools, like the Gremin Console, to connect to this endpoint and build
applications in Java, Node.js, or any Gremlin client driver.

The following table shows popular Gremlin drivers that you can use against Azure Cosmos DB:

Azure Cosmos DB also provides a .NET library that has Gremlin extension methods on top of the Azure Cosmos
DB SDKs via NuGet. This library provides an "in-process" Gremlin server that you can use to connect directly to
DocumentDB data partitions.

By using the Azure Cosmos DB Emulator, you can use the Graph API to develop and test locally without creating
an Azure subscription or incurring any costs. When you're satisfied with how your application is working in the
Emulator, you can switch to using an Azure Cosmos DB account in the cloud.

Here are some scenarios where graph support of Azure Cosmos DB can be used:

Social networks

By combining data about your customers and their interactions with other people, you can develop
personalized experiences, predict customer behavior, or connect people with others with similar interests.

http://tinkerpop.apache.org/docs/current/reference/#gremlin-console
https://mvnrepository.com/artifact/com.tinkerpop.gremlin/gremlin-java
http://tinkerpop.apache.org/javadocs/current/full/
https://www.npmjs.com/package/gremlin
https://github.com/jbmusso/gremlin-javascript
https://tinkerpop.apache.org/downloads.html
http://tinkerpop.apache.org/docs/current/reference/#gremlin-console
https://www.nuget.org/packages/Microsoft.Azure.Graphs/
https://msdn.microsoft.com/library/azure/dn948556.aspx

Next steps

Azure Cosmos DB can be used to manage social networks and track customer preferences and data.

Recommendation engines

This scenario is commonly used in the retail industry. By combining information about products, users,
and user interactions, like purchasing, browsing, or rating an item, you can build customized
recommendations. The low latency, elastic scale, and native graph support of Azure Cosmos DB is ideal
for modeling these interactions.

Geospatial

Many applications in telecommunications, logistics, and travel planning need to find a location of interest
within an area or locate the shortest/optimal route between two locations. Azure Cosmos DB is a natural
fit for these problems.

Internet of Things

With the network and connections between IoT devices modeled as a graph, you can build a better
understanding of the state of your devices and assets and learn how changes in one part of the network
can potentially affect another part.

To learn more about graph support in Azure Cosmos DB, see:

Get started with the Azure Cosmos DB graph tutorial.
Learn about how to query graphs in Azure Cosmos DB using Gremlin.

Azure Cosmos DB database security
5/30/2017 • 7 min to read • Edit Online

What's new in Azure Cosmos DB security?

How do I secure my database?

This article discusses database security best practices and key features offered by Azure Cosmos DB to help you
prevent, detect, and respond to database breaches.

Encryption at rest is now available for documents stored in Azure Cosmos DB in all Azure regions except
government regions, Azure in China, and Azure in Germany. The remaining regions will be enabled next week,
along with encryption at rest on backups. Encryption at rest is applied automatically for both new and existing
customers in these regions. There is no need to configure anything; and you get the same great latency,
throughput, availability, and functionality as before with the benefit of knowing your data is safe and secure with
encryption at rest.

Data security is a shared responsibility between you, the customer, and your database provider. Depending on the
database provider you choose, the amount of responsibility you carry can vary. If you choose an on-premises
solution, you need to provide everything from end-point protection to physical security of your hardware - which is
no easy task. If you choose a PaaS cloud database provider such as Azure Cosmos DB, your area of concern shrinks
considerably. The following image, borrowed from Microsoft's Shared Responsibilities for Cloud Computing white
paper, shows how your responsibility decreases with a PaaS provider like Azure Cosmos DB.

The diagram above shows high-level cloud security components, but what items do you need to worry about
specifically for your database solution? And how can you compare solutions to each other?

We recommend the following checklist of requirements on which to compare database systems:

Network security and firewall settings

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/database-security.md
https://aka.ms/sharedresponsibility

How does Azure Cosmos DB secure my database?

SECURITY REQUIREMENT AZURE COSMOS DB'S SECURITY APPROACH

Network security Using an IP firewall is the first layer of protection to secure
your database. Azure Cosmos DB supports policy driven IP-
based access controls for inbound firewall support. The IP-
based access controls are similar to the firewall rules used by
traditional database systems, but they are expanded so that
an Azure Cosmos DB database account is only accessible from
an approved set of machines or cloud services.

Azure Cosmos DB enables you to enable a specific IP address
(168.61.48.0), an IP range (168.61.48.0/8), and combinations
of IPs and ranges.

All requests originating from machines outside this allowed list
are blocked by Azure Cosmos DB. Requests from approved
machines and cloud services then must complete the
authentication process to be given access control to the
resources.

Learn more in Azure Cosmos DB firewall support.

User authentication and fine grained user controls
Ability to replicate data globally for regional failures
Ability to perform failovers from one data center to another
Local data replication within a data center
Automatic data backups
Restoration of deleted data from backups
Protect and isolate sensitive data
Monitoring for attacks
Responding to attacks
Ability to geo-fence data to adhere to data governance restrictions
Physical protection of servers in protected data centers

And although it may seem obvious, recent large-scale database breaches remind us of the simple but critical
importance of the following requirements:

Patched servers that are kept up to date
HTTPS by default/SSL encryption
Administrative accounts with strong passwords

Let's look back at the preceding list - how many of those security requirements does Azure Cosmos DB provide?
Every single one.

Let's dig into each one in detail.

http://thehackernews.com/2017/01/mongodb-database-security.html

Authorization Azure Cosmos DB uses hash-based message authentication
code (HMAC) for authorization.

Each request is hashed using the secret account key, and the
subsequent base-64 encoded hash is sent with each call to
Azure Cosmos DB. To validate the request, the Azure Cosmos
DB service uses the correct secret key and properties to
generate a hash, then it compares the value with the one in
the request. If the two values match, the operation is
authorized successfully and the request is processed,
otherwise there is an authorization failure and the request is
rejected.

You can use either a master key, or a resource token allowing
fine-grained access to a resource such as a document.

Learn more in Securing access to Azure Cosmos DB resources.

Users and permissions Using the master key for the account, you can create user
resources and permission resources per database. A resource
token is associated with a permission in a database and
determines whether the user has access (read-write, read-
only, or no access) to an application resource in the database.
Application resources include collections, documents,
attachments, stored procedures, triggers, and UDFs. The
resource token is then used during authentication to provide
or deny access to the resource.

Learn more in Securing access to Azure Cosmos DB resources.

Active directory integration (RBAC) You can also provide access to the database account using
Access control (IAM) in the Azure portal. IAM provides role-
based access control and integrates with Active Directory. You
can use built in roles or custom roles for individuals and
groups as shown in the following image.

Global replication Azure Cosmos DB offers turnkey global distribution, which
enables you to replicate your data to any one of Azure's
world-wide datacenters with the click of a button. Global
replication lets you scale globally and provide low-latency
access to your data around the world.

In the context of security, global replication insures data
protection against regional failures.

Learn more in Distribute data globally.

SECURITY REQUIREMENT AZURE COSMOS DB'S SECURITY APPROACH

Regional failovers If you have replicated your data in more than one data center,
Azure Cosmos DB automatically rolls over your operations
should a regional data center go offline. You can create a
prioritized list of failover regions using the regions in which
your data is replicated.

Learn more in Regional Failovers in Azure Cosmos DB.

Local replication Even within a single data center, Azure Cosmos DB
automatically replicates data for high availability giving you
the choice of consistency levels. This guarantees a 99.99%
uptime availability SLA and comes with a financial guarantee -
something no other database service can provide.

Automated online backups Azure Cosmos DB databases are backed up regularly and
stored in a georedundant store.

Learn more in Automatic online backup and restore with
Azure Cosmos DB.

Restore deleted data The automated online backups can be used to recover data
you may have accidentally deleted up to ~30 days after the
event.

Learn more in Automatic online backup and restore with
Azure Cosmos DB

Protect and isolate sensitive data All data in the regions listed in What's new? is now encrypted
at rest.

PII and other confidential data can be isolated to specific
collections and read-write, or read-only access can be limited
to specific users.

Monitor for attacks By using audit logging and activity logs, you can monitor your
account for normal and abnormal activity. You can view what
operations were performed on your resources, who initiated
the operation, when the operation occurred, the status of the
operation, and much more.

SECURITY REQUIREMENT AZURE COSMOS DB'S SECURITY APPROACH

https://azure.microsoft.com/support/legal/sla/cosmos-db

Respond to attacks Once you have contacted Azure support to report a potential
attack, a 5-step incident response process is kicked off. The
goal of the 5-step process is to restore normal service security
and operations as quickly as possible after an issue is detected
and an investigation is started.

Learn more in Microsoft Azure Security Response in the Cloud.

Geo-fencing Azure Cosmos DB ensures data governance and compliance
for sovereign regions (for example, Germany, China, US Gov).

Protected facilities Data in Azure Cosmos DB is stored on SSDs in Azure's
protected data centers.

Learn more in Microsoft global datacenters

HTTPS/SSL/TLS encryption All client-to-service Azure Cosmos DB interactions are SSL/TLS
1.2 enforced. Also, all intra datacenter and cross datacenter
replication is SSL/TLS 1.2 enforced.

Encryption at rest All data stored into Azure Cosmos DB is encrypted at rest.
Learn more in Azure Cosmos DB encryption at rest

Patched servers As a managed database, Azure Cosmos DB eliminates the
need to manage and patch servers, that's done for you,
automatically.

Administrative accounts with strong passwords It's hard to believe we even need to mention this requirement,
but unlike some of our competitors, it's impossible to have an
administrative account with no password in Azure Cosmos DB.

Security via SSL and HMAC secret based authentication is
baked in by default.

Security and data protection certifications Azure Cosmos DB has ISO 27001, European Model Clauses
(EUMC), and HIPAA certifications. Additional certifications are
in progress.

SECURITY REQUIREMENT AZURE COSMOS DB'S SECURITY APPROACH

Next steps
For more details about master keys and resource tokens, see Securing access to Azure Cosmos DB data.

For more details about Microsoft certifications, see Azure Trust Center.

https://aka.ms/securityresponsepaper
https://www.microsoft.com/en-us/cloud-platform/global-datacenters
https://www.microsoft.com/en-us/TrustCenter/Compliance/ISO-IEC-27001
https://www.microsoft.com/en-us/TrustCenter/Compliance/EU-Model-Clauses
https://www.microsoft.com/en-us/TrustCenter/Compliance/HIPAA
https://azure.microsoft.com/support/trust-center/

Common Azure Cosmos DB use cases
5/30/2017 • 9 min to read • Edit Online

Introduction

IoT and telematics

This article provides an overview of several common use cases for Cosmos DB. The recommendations in this article
serve as a starting point as you develop your application with Cosmos DB.

After reading this article, you'll be able to answer the following questions:

What are the common use cases for Cosmos DB?
What are the benefits of using Cosmos DB for retail applications?
What are the benefits of using Cosmos DB as a data store for Internet of Things (IoT) systems?
What are the benefits of using Cosmos DB for web and mobile applications?

Azure Cosmos DB is Microsoft’s globally distributed database service. The service is designed to allow customers to
elastically (and independently) scale throughput and storage across any number of geographical regions. Cosmos
DB is the first globally distributed database service in the market today to offer comprehensive service level
agreements encompassing throughput, latency, availability, and consistency.

The Cosmos DB project started in 2011 as "Project Florence" to address developer pain-points that are faced by
large Internet-scale applications inside Microsoft. Observing that these problems are not unique to Microsoft’s
applications, we decided to make Cosmos DB generally available to external developers in 2015 in the form of
Azure DocumentDB. The service is used ubiquitously internally within Microsoft, and is one of the fastest-growing
services used by Azure developers externally.

Azure Cosmos DB is a global distributed, multi-model database that is used in a wide range of applications and use
cases. It is a good choice for any application that needs low order-of-millisecond response times, and needs to
scale rapidly and globally. It supports multiple data models (key-value, documents, graphs and columnar) and
many APIs for data access including MongoDB, DocumentDB SQL, Gremlin, and Azure Tables natively, and in an
extensible manner.

The following are some attributes of Cosmos DB that make it well-suited for high-performance applications with
global ambition.

Cosmos DB natively partitions your data for high availability and scalability. Cosmos DB offers 99.99%
guarantees for availability, throughput, low latency, and consistency.
Cosmos DB has SSD backed storage with low-latency order-of-millisecond response times.
Cosmos DB's support for consistency levels like eventual, consistent prefix, session, and bounded-staleness
allows for full flexibility and low cost-to performance-ratio. No database service offers as much flexibility as
Cosmos DB in levels consistency.
Cosmos DB has a flexible data-friendly pricing model that meters storage and throughput independently.
Cosmos DB's reserved throughput model allows you to think in terms of number of reads/writes instead of
CPU/memory/IOPs of the underlying hardware.
Cosmos DB's design lets you scale to massive request volumes in the order of trillions of requests per day.

These attributes are beneficial in web, mobile, gaming, and IoT applications that need low response times and need
to handle massive amounts of reads and writes.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/use-cases.md
https://azure.microsoft.com/support/legal/sla/cosmos-db/
https://azure.microsoft.com/blog/documentdb-moving-to-general-availability/

Retail and marketing

IoT use cases commonly share some patterns in how they ingest, process, and store data. First, these systems need
to ingest bursts of data from device sensors of various locales. Next, these systems process and analyze streaming
data to derive real-time insights. The data is then archived to cold storage for batch analytics. Microsoft Azure
offers rich services that can be applied for IoT use cases including Azure Cosmos DB, Azure Event Hubs, Azure
Stream Analytics, Azure Notification Hub, Azure Machine Learning, Azure HDInsight, and PowerBI.

Bursts of data can be ingested by Azure Event Hubs as it offers high throughput data ingestion with low latency.
Data ingested that needs to be processed for real-time insight can be funneled to Azure Stream Analytics for real-
time analytics. Data can be loaded into Cosmos DB for adhoc querying. Once the data is loaded into Cosmos DB,
the data is ready to be queried. The data in Cosmos DB can be used as reference data as part of real-time analytics.
In addition, data can further be refined and processed by connecting Cosmos DB data to HDInsight for Pig, Hive or
Map/Reduce jobs. Refined data is then loaded back to Cosmos DB for reporting.

For a sample IoT solution using Cosmos DB, EventHubs and Storm, see the hdinsight-storm-examples repository
on GitHub.

For more information on Azure offerings for IoT, see Create the Internet of Your Things.

Cosmos DB is used extensively in Microsoft's own e-commerce platforms, that run the Windows Store and XBox
Live. It is also used in the retail industry for storing catalog data. Catalog data usage scenarios involve storing and
querying a set of attributes for entities such as people, places, and products. Some examples of catalog data are
user accounts, product catalogs, device registries for IoT, and bill of materials systems. Attributes for this data may
vary and can change over time to fit application requirements.

Consider an example of a product catalog for an automotive parts supplier. Every part may have its own attributes
in addition to the common attributes that all parts share. Furthermore, attributes for a specific part can change the
following year when a new model is released. Cosmos DB supports flexible schemas and hierarchical data, and thus
it is well suited for storing product catalog data.

https://github.com/hdinsight/hdinsight-storm-examples/
http://www.microsoft.com/server-cloud/internet-of-things.aspx

Gaming

In addition, data stored in Cosmos DB can be integrated with HDInsight for big data analytics via Pig, Hive, or
Map/Reduce jobs. For details on the Hadoop Connector for Cosmos DB, see Run a Hadoop job with Cosmos DB
and HDInsight.

The database tier is a crucial component of gaming applications. Modern games perform graphical processing on
mobile/console clients, but rely on the cloud to deliver customized and personalized content like in-game stats,
social media integration, and high-score leaderboards. Games often require single-millisecond latencies for reads
and writes to provide an engaging in-game experience. A game database needs to be fast and be able to handle
massive spikes in request rates during new game launches and feature updates.

Cosmos DB is used by games like The Walking Dead: No Man's Land by Next Games, and Halo 5: Guardians.
Cosmos DB provides the following benefits to game developers:

Cosmos DB allows performance to be scaled up or down elastically. This allows games to handle updating
profile and stats from dozens to millions of simultaneous gamers by making a single API call.
Cosmos DB supports millisecond reads and writes to help avoid any lags during game play.
Cosmos DB's automatic indexing allows for filtering against multiple different properties in real-time, e.g. locate
players by their internal player IDs, or their GameCenter, Facebook, Google IDs, or query based on player
membership in a guild. This is possible without building complex indexing or sharding infrastructure.
Social features including in-game chat messages, player guild memberships, challenges completed, high-score
leaderboards, and social graphs are easier to implement with a flexible schema.
Cosmos DB as a managed platform-as-a-service (PaaS) required minimal setup and management work to allow
for rapid iteration, and reduce time to market.

https://azure.microsoft.com/blog/the-walking-dead-no-mans-land-game-soars-to-1-with-azure-documentdb/
http://www.nextgames.com/
https://azure.microsoft.com/blog/how-halo-5-guardians-implemented-social-gameplay-using-azure-documentdb/

Web and mobile applications

Social Applications

Cosmos DB is commonly used within web and mobile applications, and is particularly well suited for modeling
social interactions, integrating with third-party services, and for building rich personalized experiences. The
Cosmos DB SDKs can be used build rich iOS and Android applications using the popular Xamarin framework.

A common use case for Cosmos DB is to store and query user generated content (UGC) for web and mobile
applications, particularly social media applications. Some examples of UGC are chat sessions, tweets, blog posts,
ratings, and comments. Often, the UGC in social media applications is a blend of free form text, properties, tags,
and relationships that are not bounded by rigid structure. Content such as chats, comments, and posts can be
stored in Cosmos DB without requiring transformations or complex object to relational mapping layers. Data
properties can be added or modified easily to match requirements as developers iterate over the application code,
thus promoting rapid development.

Applications that integrate with third-party social networks must respond to changing schemas from these
networks. As data is automatically indexed by default in Cosmos DB, data is ready to be queried at any time. Hence,
these applications have the flexibility to retrieve projections as per their respective needs.

Many of the social applications run at global scale and can exhibit unpredictable usage patterns. Flexibility in
scaling the data store is essential as the application layer scales to match usage demand. You can scale out by
adding additional data partitions under a Cosmos DB account. In addition, you can also create additional Cosmos
DB accounts across multiple regions. For Cosmos DB service region availability, see Azure Regions.

https://azure.microsoft.com/regions/#services

Personalization

Next steps

Nowadays, modern applications come with complex views and experiences. These are typically dynamic, catering
to user preferences or moods and branding needs. Hence, applications need to be able to retrieve personalized
settings effectively to render UI elements and experiences quickly.

JSON, a format supported by Cosmos DB, is an effective format to represent UI layout data as it is not only
lightweight, but also can be easily interpreted by JavaScript. Cosmos DB offers tunable consistency levels that allow
fast reads with low latency writes. Hence, storing UI layout data including personalized settings as JSON
documents in Cosmos DB is an effective means to get this data across the wire.

To get started with Azure Cosmos DB, follow our quick starts which will walk you through creating an account and
getting started with Cosmos DB.

Or, if you'd like to read more about customers using Cosmos DB, the following customer stories are available:

Jet.com. E-commerce challenger eyes the top spot, runs on the Microsoft cloud, leverages Cosmos DB at a
global scale.

https://jet.com

Asos.com. Asos.com is a British online fashion and beauty store. Primarily aimed at young adults, Asos sells over
850 brands as well as its own range of clothing and accessories.
Toyota. Toyota Motor Corporation is a Japanese automotive manufacturer. Toyota leveraged Cosmos DB for a
global IoT app.
Citrix. Citrix develops single-sign-on solution using Azure Service Fabric and Azure Cosmos DB
TEXA TEXA’s revolutionary IoT solution for vehicle owners helps save time, money, gas—and possibly lives.
Domino's Pizza. Domino's Pizza Inc. is an American pizza restaurant chain.
Johnson Controls. Johnson Controls is a global diversified technology and multi industrial leader serving a wide
range of customers in more than 150 countries.
Microsoft Windows, Universal Store, Azure IoT Hub, Xbox Live, and other Internet-scale services. How Microsoft
builds massively scalable services using Azure DocumentDB.
Microsoft Data and Analytics team. Microsoft’s Data and Analytics team achieves planet-scale big-data
collection with Azure Cosmos DB
Sulekha.com. Sulekha uses Azure Cosmos DB to connect customers and businesses across India .
NewOrbit. NewOrbit takes flight with Azure Cosmos DB.
Affinio. Affinio switches from AWS to Azure Cosmos DB to harness social data at scale.
Next Games. The Walking Dead: No Man's Land game soars to #1 supported by Azure Cosmos DB.
Halo. How Halo 5 implemented social gameplay using Azure Cosmos DB.
Cortana Analytics Gallery. Cortana Analytics Gallery - a scalable community site built on Azure Cosmos DB.
Breeze. Leading Integrator Gives Multinational Firms Global Insight in Minutes with Flexible Cloud Technologies.
News Republic. Adding intelligence to the news to provide information with purpose for engaged citizens.
SGS International. For consistent color across the globe, major brands turn to SGS. And SGS turns to Azure.
Telenor. Global leader Telenor uses the cloud to move with the speed of a startup.
XOMNI. The store of the future runs on speedy search and the easy flow of data.
Nucleo. Azure-based software platform breaks down barriers between businesses and customers
Weka. Weka Smart Fridge improves vaccine management so more people can be protected against diseases
Orange Tribes. There’s more to that food app than meets the eye, or the mouth.
Real Madrid. Real Madrid brings the stadium closer to 450 million fans around the globe, with the Microsoft
Cloud.
Tuku. TUKU makes car buying fun with help from Azure services

http://www.asos.com/
https://www.toyota.com/
https://customers.microsoft.com/story/citrix
https://customers.microsoft.com/story/texaspa
https://www.dominos.com
http://www.johnsoncontrols.com
https://azure.microsoft.com/blog/how-azure-documentdb-planet-scale-nosql-helps-run-microsoft-s-own-businesses/
https://customers.microsoft.com/story/microsoftdataandanalytics
https://customers.microsoft.com/story/sulekha-uses-azure-documentdb-to-connect-customers-and-businesses-across-india
https://customers.microsoft.com/story/neworbit-takes-flight-with-azure-documentdb
https://customers.microsoft.com/doclink/affinio-switches-from-aws-to-azure-documentdb-to-harness-social-data-at-scale
https://azure.microsoft.com//blog/the-walking-dead-no-mans-land-game-soars-to-1-with-azure-documentdb/
https://azure.microsoft.com/blog/how-halo-5-guardians-implemented-social-gameplay-using-azure-documentdb/
https://azure.microsoft.com/blog/cortana-analytics-gallery-a-scalable-community-site-built-on-azure-documentdb/
https://customers.microsoft.com/Pages/CustomerStory.aspx?recid=18602
https://customers.microsoft.com/Pages/CustomerStory.aspx?recid=18639
https://customers.microsoft.com/Pages/CustomerStory.aspx?recid=18653
https://customers.microsoft.com/Pages/CustomerStory.aspx?recid=18608
https://customers.microsoft.com/Pages/CustomerStory.aspx?recid=18667
https://customers.microsoft.com/story/azure-based-software-platform-breaks-down-barriers-bet
https://customers.microsoft.com/story/weka-smart-fridge-improves-vaccine-management-so-more-people-can-be-protected-against-diseases
https://customers.microsoft.com/story/theres-more-to-that-food-app-than-meets-the-eye-or-the-mouth
https://customers.microsoft.com/story/real-madrid-brings-the-stadium-closer-to-450-million-f
https://customers.microsoft.com/story/tuku-makes-car-buying-fun-with-help-from-azure-services

Going social with Azure Cosmos DB
5/30/2017 • 13 min to read • Edit Online

The NoSQL road

Living in a massively-interconnected society means that, at some point in life, you become part of a social
network. We use social networks to keep in touch with friends, colleagues, family, or sometimes to share our
passion with people with common interests.

As engineers or developers, we might have wondered how do these networks store and interconnect our data, or
might have even been tasked to create or architect a new social network for a specific niche market yourselves.
That’s when the big question arises: How is all this data stored?

Let’s suppose that we are creating a new and shiny social network, where our users can post articles with related
media like, pictures, videos, or even music. Users can comment on posts and give points for ratings. There will be a
feed of posts that users will see and be able to interact with on the main website landing page. This doesn’t sound
really complex (at first), but for the sake of simplicity, let’s stop there (we could delve into custom user feeds
affected by relationships, but it exceeds the goal of this article).

So, how do we store this and where?

Many of you might have experience on SQL databases or at least have notion of relational modeling of data and
you might be tempted to start drawing something like this:

A perfectly normalized and pretty data structure… that doesn't scale.

Don’t get me wrong, I’ve worked with SQL databases all my life, they are great, but like every pattern, practice and
software platform, it’s not perfect for every scenario.

Why isn't SQL the best choice in this scenario? Let’s look at the structure of a single post, if I wanted to show that
post in a website or application, I’d have to do a query with… 8 table joins (!) just to show one single post, now,
picture a stream of posts that dynamically load and appear on the screen and you might see where I am going.

We could, of course, use a humongous SQL instance with enough power to solve thousands of queries with these
many joins to serve our content, but truly, why would we when a simpler solution exists?

This article will guide you into modeling your social platform's data with Azure's NoSQL database Azure Cosmos

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/social-media-apps.md
https://en.wikipedia.org/wiki/Relational_model
https://azure.microsoft.com/services/cosmos-db/

{
 "id":"ew12-res2-234e-544f",
 "title":"post title",
 "date":"2016-01-01",
 "body":"this is an awesome post stored on NoSQL",
 "createdBy":User,
 "images":["http://myfirstimage.png","http://mysecondimage.png"],
 "videos":[
 {"url":"http://myfirstvideo.mp4", "title":"The first video"},
 {"url":"http://mysecondvideo.mp4", "title":"The second video"}
],
 "audios":[
 {"url":"http://myfirstaudio.mp3", "title":"The first audio"},
 {"url":"http://mysecondaudio.mp3", "title":"The second audio"}
]
}

{
 "id":"1234-asd3-54ts-199a",
 "title":"Awesome post!",
 "date":"2016-01-02",
 "createdBy":User2,
 "parent":"ew12-res2-234e-544f"
}

{
 "id":"asd2-fee4-23gc-jh67",
 "title":"Ditto!",
 "date":"2016-01-03",
 "createdBy":User3,
 "parent":"ew12-res2-234e-544f"
}

{
 "id":"dfe3-thf5-232s-dse4",
 "post":"ew12-res2-234e-544f",
 "comments":2,
 "likes":10,
 "points":200
}

DB in a cost-effective way while leveraging other Azure Cosmos DB features like the Gremlin Graph API. Using a
NoSQL approach, storing data in JSON format and applying denormalization, our previously complicated post can
be transformed into a single Document:

And it can be obtained with a single query, and with no joins. This is much more simple and straightforward, and,
budget-wise, it requires fewer resources to achieve a better result.

Azure Cosmos DB makes sure that all the properties are indexed with its automatic indexing, which can even be
customized. The schema-free approach lets us store Documents with different and dynamic structures, maybe
tomorrow we want posts to have a list of categories or hashtags associated with them, Cosmos DB will handle the
new Documents with the added attributes with no extra work required by us.

Comments on a post can be treated as just other posts with a parent property (this simplifies our object mapping).

And all social interactions can be stored on a separate object as counters:

Creating feeds is just a matter of creating documents that can hold a list of post ids with a given relevance order:

https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/Denormalization
https://en.wikipedia.org/wiki/Document-oriented_database

[
 {"relevance":9, "post":"ew12-res2-234e-544f"},
 {"relevance":8, "post":"fer7-mnb6-fgh9-2344"},
 {"relevance":7, "post":"w34r-qeg6-ref6-8565"}
]

{
 "id":"234d-sd23-rrf2-552d",
 "followersOf": "dse4-qwe2-ert4-aad2",
 "followers":[
 "ewr5-232d-tyrg-iuo2",
 "qejh-2345-sdf1-ytg5",
 //...
 "uie0-4tyg-3456-rwjh"
]
}

{
 "id":"234d-sd23-rrf2-552d",
 "user": "dse4-qwe2-ert4-aad2",
 "followers":55230,
 "totalPosts":452,
 "totalPoints":11342
}

We could have a “latest” stream with posts ordered by creation date, a “hottest” stream with those posts with more
likes in the last 24 hours, we could even implement a custom stream for each user based on logic like followers and
interests, and it would still be a list of posts. It’s a matter of how to build these lists, but the reading performance
remains unhindered. Once we acquire one of these lists, we issue a single query to Cosmos DB using the IN
operator to obtain pages of posts at a time.

The feed streams could be built using Azure App Services’ background processes: Webjobs. Once a post is created,
background processing can be triggered by using Azure Storage Queues and Webjobs triggered using the Azure
Webjobs SDK, implementing the post propagation inside streams based on our own custom logic.

Points and likes over a post can be processed in a deferred manner using this same technique to create an
eventually consistent environment.

Followers are trickier. Cosmos DB has a maximum document size limit, and reading/writing large documents can
impact the scalability of your application. So you may think about storing followers as a document with this
structure:

This might work for a user with a few thousands followers, but if some celebrity joins our ranks, this approach will
lead to a large document size, and might eventually hit the document size cap.

To solve this, we can use a mixed approach. As part of the User Statistics document we can store the number of
followers:

And the actual graph of followers can be stored using Azure Cosmos DB Gremlin Graph API, to create vertexes for
each user and edges that maintain the "A-follows-B" relationships. The Graph API let's you not only obtain the
followers of a certain user but create more complex queries to even suggest people in common. If we add to the
graph the Content Categories that people like or enjoy, we can start weaving experiences that include smart content
discovery, suggesting content that those we follow like, or finding people with whom we might have much in
common.

The User Statistics document can still be used to create cards in the UI or quick profile previews.

https://azure.microsoft.com/services/app-service/
https://docs.microsoft.com/en-us/azure/app-service-web/web-sites-create-web-jobs
https://azure.microsoft.com/services/storage/
https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/app-service-web/websites-dotnet-webjobs-sdk
http://mathworld.wolfram.com/GraphVertex.html
http://mathworld.wolfram.com/GraphEdge.html

The “Ladder” pattern and data duplication

{
 "id":"dse4-qwe2-ert4-aad2",
 "name":"John",
 "surname":"Doe",
 "address":"742 Evergreen Terrace",
 "birthday":"1983-05-07",
 "email":"john@doe.com",
 "twitterHandle":"@john",
 "username":"johndoe",
 "password":"some_encrypted_phrase",
 "totalPoints":100,
 "totalPosts":24
}

As you might have noticed in the JSON document that references a post, there are multiple occurrences of a user.
And you’d have guessed right, this means that the information that represents a user, given this denormalization,
might be present in more than one place.

In order to allow for faster queries, we incur data duplication. The problem with this side-effect is that if by some
action, a user’s data changes, we need to find all the activities he ever did and update them all. Doesn’t sound very
practical, right?

We are going to solve it by identifying the Key attributes of a user that we show in our application for each activity.
If we visually show a post in our application and show just the creator’s name and picture, why store all of the
user’s data in the “createdBy” attribute? If for each comment we just show the user’s picture, we don’t really need
the rest of his information. That’s where something I call the “Ladder pattern” comes into play.

Let’s take user information as an example:

By looking at this information, we can quickly detect which is critical information and which isn’t, thus creating a
“Ladder”:

The smallest step is called a UserChunk, the minimal piece of information that identifies a user and it’s used for
data duplication. By reducing the size of the duplicated data to only the information we will “show”, we reduce the
possibility of massive updates.

The middle step is called the user, it’s the full data that will be used on most performance-dependent queries on
Cosmos DB, the most accessed and critical. It includes the information represented by a UserChunk.

The largest is the Extended User. It includes all the critical user information plus other data that doesn’t really
require to be read quickly or it’s usage is eventual (like the login process). This data can be stored outside of
Cosmos DB, in Azure SQL Database or Azure Storage Tables.

Why would we split the user and even store this information in different places? Because from a performance point
of view, the bigger the documents, the costlier the queries. Keep documents slim, with the right information to do
all your performance-dependent queries for your social network, and store the other extra information for eventual
scenarios like, full profile edits, logins, even data mining for usage analytics and Big Data initiatives. We really don’t
care if the data gathering for data mining is slower because it’s running on Azure SQL Database, we do have
concern though that our users have a fast and slim experience. A user, stored on Cosmos DB, would look like this:

{
 "id":"dse4-qwe2-ert4-aad2",
 "name":"John",
 "surname":"Doe",
 "username":"johndoe"
 "email":"john@doe.com",
 "twitterHandle":"@john"
}

{
 "id":"1234-asd3-54ts-199a",
 "title":"Awesome post!",
 "date":"2016-01-02",
 "createdBy":{
 "id":"dse4-qwe2-ert4-aad2",
 "username":"johndoe"
 }
}

The search box

The underlying knowledge

And a Post would look like:

And when an edit arises where one of the attributes of the chunk is affected, it’s easy to find the affected documents
by using queries that point to the indexed attributes (SELECT * FROM posts p WHERE p.createdBy.id ==
“edited_user_id”) and then updating the chunks.

Users will generate, luckily, a lot of content. And we should be able to provide the ability to search and find content
that might not be directly in their content streams, maybe because we don’t follow the creators, or maybe we are
just trying to find that old post we did 6 months ago.

Thankfully, and because we are using Azure DocumentDB, we can easily implement a search engine using Azure
Search in a couple of minutes and without typing a single line of code (other than obviously, the search process and
UI).

Why is this so easy?

Azure Search implements what they call Indexers, background processes that hook in your data repositories and
automagically add, update or remove your objects in the indexes. They support an Azure SQL Database indexers,
Azure Blobs indexers and thankfully, Azure Cosmos DB indexers. The transition of information from Cosmos DB to
Azure Search is straightforward, as both store information in JSON format, we just need to create our Index and
map which attributes from our Documents we want indexed and that’s it, in a matter of minutes (depends on the
size of our data), all our content will be available to be searched upon, by the best Search-as-a-Service solution in
cloud infrastructure.

For more information about Azure Search, you can visit the Hitchhiker’s Guide to Search.

After storing all this content that grows and grows every day, we might find ourselves thinking: What can I do with
all this stream of information from my users?

The answer is straightforward: Put it to work and learn from it.

But, what can we learn? A few easy examples include sentiment analysis, content recommendations based on a
user’s preferences or even an automated content moderator that ensures that all the content published by our
social network is safe for the family.

https://azure.microsoft.com/services/search/
https://msdn.microsoft.com/library/azure/dn946891.aspx
https://blogs.msdn.microsoft.com/kaevans/2015/03/06/indexing-azure-sql-database-with-azure-search/
https://docs.microsoft.com/en-us/azure/search/search-howto-indexing-azure-blob-storage
https://docs.microsoft.com/en-us/azure/search/search-create-index-portal
https://blogs.msdn.microsoft.com/mvpawardprogram/2016/02/02/a-hitchhikers-guide-to-search/
https://en.wikipedia.org/wiki/Sentiment_analysis

A planet-scale social experience

Now that I got you hooked, you’ll probably think you need some PhD in math science to extract these patterns and
information out of simple databases and files, but you’d be wrong.

Azure Machine Learning, part of the Cortana Intelligence Suite, is the a fully managed cloud service that lets you
create workflows using algorithms in a simple drag-and-drop interface, code your own algorithms in R or use
some of the already-built and ready to use APIs such as: Text Analytics, Content Moderator or Recommendations.

To achieve any of these Machine Learning scenarios, we can use Azure Data Lake to ingest the information from
different sources, and use U-SQL to process the information and generate an output that can be processed by
Azure Machine Learning.

Another available option is to use Microsoft Cognitive Services to analyze our users content; not only can we
understand them better (through analyzing what they write with Text Analytics API) , but we could also detect
unwanted or mature content and act accordingly with Computer Vision API. Cognitive Services include a lot of out-
of-the-box solutions that don't require any kind of Machine Learning knowledge to use.

There is a last, but not least, important topic I must address: scalability. When designing an architecture it's crucial
that each component can scale on its own, either because we need to process more data or because we want to
have a bigger geographical coverage (or both!). Thankfully, achieving such a complex task is a turnkey experience
with Cosmos DB.

Cosmos DB supports dynamic partitioning out-of-the-box by automatically creating partitions based on a given
partition key (defined as one of the attributes in your documents). Defining the correct partition key must be done
at design time and keeping in mind the best practices available; in the case of a social experience, your partitioning
strategy must be aligned with the way you query (reads within the same partition are desirable) and write (avoid
"hot spots" by spreading writes on multiple partitions). Some options are: partitions based on a temporal key
(day/month/week), by content category, by geographical region, by user; it all really depends on how you will query
the data and show it in your social experience.

One interesting point worth mentioning is that Cosmos DB will run your queries (including aggregates) across all
your partitions transparently, you don't need to add any logic as your data grows.

With time, you will eventually grow in traffic and your resource consumption (measured in RUs, or Request Units)
will increase. You will read and write more frequently as your userbase grows and they will start creating and
reading more content; the ability of scaling your throughput is vital. Increasing our RUs is very easy, we can do it
with a few clicks on the Azure Portal or by issuing commands through the API.

What happens if things keep getting better and users from another region, country or continent, notice your
platform and start using it, what a great surprise!

But wait... you soon realize their experience with your platform is not optimal; they are so far away from your
operational region that the latency is terrible, and you obviously don't want them to quit. If only there was an easy
way of extending your global reach... but there is!

Cosmos DB lets you replicate your data globally and transparently with a couple of clicks and automatically select

https://azure.microsoft.com/services/machine-learning/
https://www.microsoft.com/en/server-cloud/cortana-analytics-suite/overview.aspx
https://en.wikipedia.org/wiki/R_(programming_language)
https://gallery.cortanaanalytics.com/MachineLearningAPI/Text-Analytics-2
https://www.microsoft.com/moderator
https://gallery.cortanaanalytics.com/MachineLearningAPI/Recommendations-2
https://azure.microsoft.com/services/data-lake-store/
https://azure.microsoft.com/documentation/videos/data-lake-u-sql-query-execution/
https://www.microsoft.com/cognitive-services
https://www.microsoft.com/cognitive-services/en-us/text-analytics-api
https://www.microsoft.com/cognitive-services/en-us/computer-vision-api
https://azure.microsoft.com/blog/10-things-to-know-about-documentdb-partitioned-collections/
https://azure.microsoft.com/blog/planet-scale-aggregates-with-azure-documentdb/
https://docs.microsoft.com/rest/api/documentdb/replace-an-offer

Conclusion

among the available regions from your client code. This also means that you can have multiple failover regions.

When you replicate your data globally, you need to make sure that your clients can take advantage of it. If you are
using a web frontend or accesing APIs from mobile clients, you can deploy Azure Traffic Manager and clone your
Azure App Service on all the desired regions, using a Performance configuration to support your extended global
coverage. When your clients access your frontend or APIs, they will be routed to the closest App Service, which in
turn, will connect to the local Cosmos DB replica.

This article tries to shed some light into the alternatives of creating social networks completely on Azure with low-
cost services and providing great results by encouraging the use of a multi-layered storage solution and data
distribution called “Ladder”.

The truth is that there is no silver bullet for this kind of scenarios, it’s the synergy created by the combination of
great services that allow us to build great experiences: the speed and freedom of Azure Cosmos DB to provide a
great social application, the intelligence behind a first-class search solution like Azure Search, the flexibility of Azure

https://azure.microsoft.com/services/traffic-manager/
https://docs.microsoft.com/en-us/azure/app-service-web/web-sites-traffic-manager

Next steps

App Services to host not even language-agnostic applications but powerful background processes and the
expandable Azure Storage and Azure SQL Database for storing massive amounts of data and the analytic power of
Azure Machine Learning to create knowledge and intelligence that can provide feedback to our processes and help
us deliver the right content to the right users.

To learn more about use cases for Cosmos DB, see Common Cosmos DB use cases.

Azure Cosmos DB hierarchical resource model and
core concepts
5/30/2017 • 24 min to read • Edit Online

Hierarchical resource model

NOTE

The database entities that Azure Cosmos DB manages are referred to as resources. Each resource is uniquely
identified by a logical URI. You can interact with the resources using standard HTTP verbs, request/response
headers and status codes.

By reading this article, you'll be able to answer the following questions:

What is Cosmos DB's resource model?
What are system defined resources as opposed to user defined resources?
How do I address a resource?
How do I work with collections?
How do I work with stored procedures, triggers and User Defined Functions (UDFs)?

As the following diagram illustrates, the Cosmos DB hierarchical resource model consists of sets of resources
under a database account, each addressable via a logical and stable URI. A set of resources will be referred to as a
feed in this article.

Cosmos DB offers a highly efficient TCP protocol which is also RESTful in its communication model, available through the .NET
client SDK.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/documentdb-resources.md
https://msdn.microsoft.com/library/azure/dn781482.aspx

RESOURCE DESCRIPTION

Database account A database account is associated with a set of databases and a
fixed amount of blob storage for attachments. You can create
one or more database accounts using your Azure subscription.
For more information, visit our pricing page.

Database A database is a logical container of document storage
partitioned across collections. It is also a users container.

User The logical namespace for scoping permissions.

Permission An authorization token associated with a user for access to a
specific resource.

Collection A collection is a container of JSON documents and the
associated JavaScript application logic. A collection is a billable
entity, where the cost is determined by the performance level
associated with the collection. Collections can span one or
more partitions/servers and can scale to handle practically
unlimited volumes of storage or throughput.

Hierarchical resource model

To start working with resources, you must create a database account using your Azure subscription. A database
account can consist of a set of databases, each containing multiple collections, each of which in turn contain
stored procedures, triggers, UDFs, documents and related attachments. A database also has associated users,
each with a set of permissions to access collections, stored procedures, triggers, UDFs, documents or attachments.
While databases, users, permissions and collections are system-defined resources with well-known schemas,
documents and attachments contain arbitrary, user defined JSON content.

https://azure.microsoft.com/pricing/details/cosmos-db/

Stored Procedure Application logic written in JavaScript which is registered with a
collection and transactionally executed within the database
engine.

Trigger Application logic written in JavaScript executed before or after
either an insert, replace or delete operation.

UDF Application logic written in JavaScript. UDFs enable you to
model a custom query operator and thereby extend the core
DocumentDB API query language.

Document User defined (arbitrary) JSON content. By default, no schema
needs to be defined nor do secondary indices need to be
provided for all the documents added to a collection.

Attachment An attachment is a special document containing references
and associated metadata for external blob/media. The
developer can choose to have the blob managed by Cosmos
DB or store it with an external blob service provider such as
OneDrive, Dropbox, etc.

RESOURCE DESCRIPTION

System vs. user defined resources

NOTE

Resources such as database accounts, databases, collections, users, permissions, stored procedures, triggers, and
UDFs - all have a fixed schema and are called system resources. In contrast, resources such as documents and
attachments have no restrictions on the schema and are examples of user defined resources. In Cosmos DB, both
system and user defined resources are represented and managed as standard-compliant JSON. All resources,
system or user defined, have the following common properties.

Note that all system generated properties in a resource are prefixed with an underscore (_) in their JSON representation.

Property User settable or system
generated?

Purpose

_rid System generated System generated, unique and
hierarchical identifier of the resource

_etag System generated etag of the resource required for
optimistic concurrency control

_ts System generated Last updated timestamp of the
resource

_self System generated Unique addressable URI of the
resource

Wire representation of resources

Addressing a resource

VALUE OF THE _SELF DESCRIPTION

/dbs Feed of databases under a database account

/dbs/{dbName} Database with an id matching the value {dbName}

/dbs/{dbName}/colls/ Feed of collections under a database

/dbs/{dbName}/colls/{collName} Collection with an id matching the value {collName}

/dbs/{dbName}/colls/{collName}/docs Feed of documents under a collection

/dbs/{dbName}/colls/{collName}/docs/{docId} Document with an id matching the value {doc}

/dbs/{dbName}/users/ Feed of users under a database

/dbs/{dbName}/users/{userId} User with an id matching the value {user}

/dbs/{dbName}/users/{userId}/permissions Feed of permissions under a user

/dbs/{dbName}/users/{userId}/permissions/{permissionId} Permission with an id matching the value {permission}

Database accounts

id System generated User defined unique name of the
resource (with the same partition
key value). If the user does not
specify an id, an id will be system
generated

Cosmos DB does not mandate any proprietary extensions to the JSON standard or special encodings; it works with
standard compliant JSON documents.

All resources are URI addressable. The value of the _self property of a resource represents the relative URI of the
resource. The format of the URI consists of the /<feed>/{_rid} path segments:

Each resource has a unique user defined name exposed via the id property. Note: for documents, if the user does
not specify an id, our supported SDKs will automatically generate a unique id for the document. The id is a user
defined string, of up to 256 characters that is unique within the context of a specific parent resource.

Each resource also has a system generated hierarchical resource identifier (also referred to as an RID), which is
available via the _rid property. The RID encodes the entire hierarchy of a given resource and it is a convenient
internal representation used to enforce referential integrity in a distributed manner. The RID is unique within a
database account and it is internally used by Cosmos DB for efficient routing without requiring cross partition
lookups. The values of the _self and the _rid properties are both alternate and canonical representations of a
resource.

The DocumentDB REST APIs support addressing of resources and routing of requests by both the id and the _rid
properties.

You can provision one or more Cosmos DB database accounts using your Azure subscription.

Database account properties

Databases

Elastic scale of a Cosmos DB database

You can create and manage Cosmos DB database accounts via the Azure Portal at http://portal.azure.com/. Creating
and managing a database account requires administrative access and can only be performed under your Azure
subscription.

As part of provisioning and managing a database account you can configure and read the following properties:

Property Name Description

Consistency Policy Set this property to configure the default consistency level
for all the collections under your database account. You
can override the consistency level on a per request basis
using the [x-ms-consistency-level] request header.

Note that this property only applies to the
user defined resources. All system defined resources are
configured to support reads/queries with strong
consistency.

Authorization Keys These are the primary and secondary master and readonly
keys that provide administrative access to all of the
resources under the database account.

Note that in addition to provisioning, configuring and managing your database account from the Azure Portal, you
can also programmatically create and manage Cosmos DB database accounts by using the Azure Cosmos DB REST
APIs as well as client SDKs.

A Cosmos DB database is a logical container of one or more collections and users, as shown in the following
diagram. You can create any number of databases under a Cosmos DB database account subject to offer limits.

A Database is a logical container of users and collections

A database can contain virtually unlimited document storage partitioned within collections.

A Cosmos DB database is elastic by default – ranging from a few GB to petabytes of SSD backed document storage
and provisioned throughput.

https://portal.azure.com/
https://msdn.microsoft.com/library/azure/dn781481.aspx
https://msdn.microsoft.com/library/azure/dn781482.aspx

 Collections

Elastic SSD backed document storage

Automatic indexing of collections

Configuring the indexing policy of a collection

Unlike a database in traditional RDBMS, a database in Cosmos DB is not scoped to a single machine. With Cosmos
DB, as your application’s scale needs to grow, you can create more collections, databases, or both. Indeed, various
first party applications within Microsoft have been using Cosmos DB at a consumer scale by creating extremely
large Cosmos DB databases each containing thousands of collections with terabytes of document storage. You can
grow or shrink a database by adding or removing collections to meet your application’s scale requirements.

You can create any number of collections within a database subject to the offer. Each collection has SSD backed
storage and throughput provisioned for you depending on the selected performance tier.

A Cosmos DB database is also a container of users. A user, in-turn, is a logical namespace for a set of permissions
that provides fine-grained authorization and access to collections, documents and attachments.

As with other resources in the Cosmos DB resource model, databases can be created, replaced, deleted, read or
enumerated easily using either Azure Cosmos DB REST APIs or any of the client SDKs. Cosmos DB guarantees
strong consistency for reading or querying the metadata of a database resource. Deleting a database automatically
ensures that you cannot access any of the collections or users contained within it.

A Cosmos DB collection is a container for your JSON documents.

A collection is intrinsically elastic - it automatically grows and shrinks as you add or remove documents. Collections
are logical resources and can span one or more physical partitions or servers. The number of partitions within a
collection is determined by Cosmos DB based on the storage size and the provisioned throughput of your
collection. Every partition in Cosmos DB has a fixed amount of SSD-backed storage associated with it, and is
replicated for high availability. Partition management is fully managed by Azure Cosmos DB, and you do not have
to write complex code or manage your partitions. Cosmos DB collections are practically unlimited in terms of
storage and throughput.

Cosmos DB is a true schema-free database system. It does not assume or require any schema for the JSON
documents. As you add documents to a collection, Cosmos DB automatically indexes them and they are available
for you to query. Automatic indexing of documents without requiring schema or secondary indexes is a key
capability of Cosmos DB and is enabled by write-optimized, lock-free and log-structured index maintenance
techniques. Cosmos DB supports sustained volume of extremely fast writes while still serving consistent queries.
Both document and index storage are used to calculate the storage consumed by each collection. You can control
the storage and performance trade-offs associated with indexing by configuring the indexing policy for a collection.

The indexing policy of each collection allows you to make performance and storage trade-offs associated with
indexing. The following options are available to you as part of indexing configuration:

Choose whether the collection automatically indexes all of the documents or not. By default, all documents are
automatically indexed. You can choose to turn off automatic indexing and selectively add only specific
documents to the index. Conversely, you can selectively choose to exclude only specific documents. You can
achieve this by setting the automatic property to be true or false on the indexingPolicy of a collection and using
the [x-ms-indexingdirective] request header while inserting, replacing or deleting a document.
Choose whether to include or exclude specific paths or patterns in your documents from the index. You can
achieve this by setting includedPaths and excludedPaths on the indexingPolicy of a collection respectively. You
can also configure the storage and performance trade-offs for range and hash queries for specific path patterns.
Choose between synchronous (consistent) and asynchronous (lazy) index updates. By default, the index is
updated synchronously on each insert, replace or delete of a document to the collection. This enables the queries
to honor the same consistency level as that of the document reads. While Cosmos DB is write optimized and

https://msdn.microsoft.com/library/azure/dn781481.aspx
https://msdn.microsoft.com/library/azure/dn781482.aspx

Querying a collection

TIP

Multi-document transactions

supports sustained volumes of document writes along with synchronous index maintenance and serving
consistent queries, you can configure certain collections to update their index lazily. Lazy indexing boosts the
write performance further and is ideal for bulk ingestion scenarios for primarily read-heavy collections.

The indexing policy can be changed by executing a PUT on the collection. This can be achieved either through the
client SDK, the Azure Portal or the Azure DocumentDB API REST APIs.

The documents within a collection can have arbitrary schemas and you can query documents within a collection
without providing any schema or secondary indices upfront. You can query the collection using the DocumentDB
API SQL syntax, which provides rich hierarchical, relational, and spatial operators and extensibility via JavaScript-
based UDFs. JSON grammar allows for modeling JSON documents as trees with labels as the tree nodes. This is
exploited both by DocumentDB API’s automatic indexing techniques as well as DocumentDB API's SQL dialect. The
DocumetDB API query language consists of three main aspects:

1. A small set of query operations that map naturally to the tree structure including hierarchical queries and
projections.

2. A subset of relational operations including composition, filter, projections, aggregates and self joins.
3. Pure JavaScript based UDFs that work with (1) and (2).

The Cosmos DB query model attempts to strike a balance between functionality, efficiency and simplicity. The
Cosmos DB database engine natively compiles and executes the SQL query statements. You can query a collection
using the Azure Cosmos DB REST APIs or any of the client SDKs. The .NET SDK comes with a LINQ provider.

You can try out DocumentDB API and run SQL queries against our dataset in the Query Playground.

Database transactions provide a safe and predictable programming model for dealing with concurrent changes to
the data. In RDBMS, the traditional way to write business logic is to write stored-procedures and/or triggers and
ship it to the database server for transactional execution. In RDBMS, the application programmer is required to deal
with two disparate programming languages:

The (non-transactional) application programming language (e.g. JavaScript, Python, C#, Java, etc.)
T-SQL, the transactional programming language which is natively executed by the database

By virtue of its deep commitment to JavaScript and JSON directly within the database engine, Cosmos DB provides
an intuitive programming model for executing JavaScript based application logic directly on the collections in terms
of stored procedures and triggers. This allows for both of the following:

Efficient implementation of concurrency control, recovery, automatic indexing of the JSON object graphs directly
in the database engine
Naturally expressing control flow, variable scoping, assignment and integration of exception handling primitives
with database transactions directly in terms of the JavaScript programming language

The JavaScript logic registered at a collection level can then issue database operations on the documents of the
given collection. Cosmos DB implicitly wraps the JavaScript based stored procedures and triggers within an
ambient ACID transactions with snapshot isolation across documents within a collection. During the course of its
execution, if the JavaScript throws an exception, then the entire transaction is aborted. The resulting programming
model is a very simple yet powerful. JavaScript developers get a “durable” programming model while still using
their familiar language constructs and library primitives.

The ability to execute JavaScript directly within the database engine in the same address space as the buffer pool

https://msdn.microsoft.com/library/azure/dn781482.aspx
https://portal.azure.com
https://msdn.microsoft.com/library/azure/dn781481.aspx
https://msdn.microsoft.com/library/azure/dn782250.aspx
https://msdn.microsoft.com/library/azure/dn781481.aspx
https://msdn.microsoft.com/library/azure/dn781482.aspx
https://www.documentdb.com/sql/demo

function businessLogic(name, author) {
 var context = getContext();
 var collectionManager = context.getCollection();
 var collectionLink = collectionManager.getSelfLink()

 // create a new document.
 collectionManager.createDocument(collectionLink,
 {id: name, author: author},
 function(err, documentCreated) {
 if(err) throw new Error(err.message);

 // filter documents by author
 var filterQuery = "SELECT * from root r WHERE r.author = 'George R.'";
 collectionManager.queryDocuments(collectionLink,
 filterQuery,
 function(err, matchingDocuments) {
 if(err) throw new Error(err.message);

 context.getResponse().setBody(matchingDocuments.length);

 // Replace the author name for all documents that satisfied the query.
 for (var i = 0; i < matchingDocuments.length; i++) {
 matchingDocuments[i].author = "George R. R. Martin";
 // we don’t need to execute a callback because they are in parallel
 collectionManager.replaceDocument(matchingDocuments[i]._self,
 matchingDocuments[i]);
 }
 })
 })
};

client.createStoredProcedureAsync(collection._self, {id: "CRUDProc", body: businessLogic})
 .then(function(createdStoredProcedure) {
 return client.executeStoredProcedureAsync(createdStoredProcedure.resource._self,
 "NoSQL Distilled",
 "Martin Fowler");
 })
 .then(function(result) {
 console.log(result);
 },
 function(error) {
 console.log(error);
 });

enables performant and transactional execution of database operations against the documents of a collection.
Furthermore, Cosmos DB database engine makes a deep commitment to the JSON and JavaScript eliminates any
impedance mismatch between the type systems of application and the database.

After creating a collection, you can register stored procedures, triggers and UDFs with a collection using the Azure
DocumentDB API REST APIs or any of the client SDKs. After registration, you can reference and execute them.
Consider the following stored procedure written entirely in JavaScript, the code below takes two arguments (book
name and author name) and creates a new document, queries for a document and then updates it – all within an
implicit ACID transaction. At any point during the execution, if a JavaScript exception is thrown, the entire
transaction aborts.

The client can “ship” the above JavaScript logic to the database for transactional execution via HTTP POST. For more
information about using HTTP methods, see RESTful interactions with Azure Cosmos DB resources.

Notice that because the database natively understands JSON and JavaScript, there is no type system mismatch, no
“OR mapping” or code generation magic required.

Stored procedures and triggers interact with a collection and the documents in a collection through a well-defined

https://msdn.microsoft.com/library/azure/dn781481.aspx
https://msdn.microsoft.com/library/azure/dn781482.aspx
https://msdn.microsoft.com/library/azure/mt622086.aspx

Stored procedures, triggers and User Defined Functions (UDF)

Registering a stored procedure

var storedProc = {
 id: "validateAndCreate",
 body: function (documentToCreate) {
 documentToCreate.id = documentToCreate.id.toUpperCase();

 var collectionManager = getContext().getCollection();
 collectionManager.createDocument(collectionManager.getSelfLink(),
 documentToCreate,
 function(err, documentCreated) {
 if(err) throw new Error('Error while creating document: ' + err.message;
 getContext().getResponse().setBody('success - created ' +
 documentCreated.name);
 });
 }
};

client.createStoredProcedureAsync(collection._self, storedProc)
 .then(function (createdStoredProcedure) {
 console.log("Successfully created stored procedure");
 }, function(error) {
 console.log("Error");
 });

Executing a stored procedure

object model, which exposes the current collection context.

Collections in DocumentDB API can be created, deleted, read or enumerated easily using either the DocumentDB
API REST APIs or any of the client SDKs. DocumentDB API always provides strong consistency for reading or
querying the metadata of a collection. Deleting a collection automatically ensures that you cannot access any of the
documents, attachments, stored procedures, triggers, and UDFs contained within it.

As described in the previous section, you can write application logic to run directly within a transaction inside of the
database engine. The application logic can be written entirely in JavaScript and can be modeled as a stored
procedure, trigger or a UDF. The JavaScript code within a stored procedure or a trigger can insert, replace, delete,
read or query documents within a collection. On the other hand, the JavaScript within a UDF cannot insert, replace,
or delete documents. UDFs enumerate the documents of a query's result set and produce another result set. For
multi-tenancy, Cosmos DB enforces a strict reservation based resource governance. Each stored procedure, trigger
or a UDF gets a fixed quantum of operating system resources to do its work. Furthermore, stored procedures,
triggers or UDFs cannot link against external JavaScript libraries and are blacklisted if they exceed the resource
budgets allocated to them. You can register, unregister stored procedures, triggers or UDFs with a collection by
using the REST APIs. Upon registration a stored procedure, trigger, or a UDF is pre-compiled and stored as byte
code which gets executed later. The following section illustrate how you can use the Cosmos DB JavaScript SDK to
register, execute, and unregister a stored procedure, trigger, and a UDF. The JavaScript SDK is a simple wrapper
over the Cosmos DB REST APIs.

Registration of a stored procedure creates a new stored procedure resource on a collection via HTTP POST.

Execution of a stored procedure is done by issuing an HTTP POST against an existing stored procedure resource by
passing parameters to the procedure in the request body.

https://msdn.microsoft.com/library/azure/dn781481.aspx
https://msdn.microsoft.com/library/azure/dn781482.aspx
https://msdn.microsoft.com/library/azure/dn781481.aspx

var inputDocument = {id : "document1", author: "G. G. Marquez"};
client.executeStoredProcedureAsync(createdStoredProcedure.resource._self, inputDocument)
 .then(function(executionResult) {
 assert.equal(executionResult, "success - created DOCUMENT1");
 }, function(error) {
 console.log("Error");
 });

Unregistering a stored procedure

client.deleteStoredProcedureAsync(createdStoredProcedure.resource._self)
 .then(function (response) {
 return;
 }, function(error) {
 console.log("Error");
 });

Registering a pre-trigger

var preTrigger = {
 id: "upperCaseId",
 body: function() {
 var item = getContext().getRequest().getBody();
 item.id = item.id.toUpperCase();
 getContext().getRequest().setBody(item);
 },
 triggerType: TriggerType.Pre,
 triggerOperation: TriggerOperation.All
}

client.createTriggerAsync(collection._self, preTrigger)
 .then(function (createdPreTrigger) {
 console.log("Successfully created trigger");
 }, function(error) {
 console.log("Error");
 });

Executing a pre-trigger

client.createDocumentAsync(collection._self, { id: "doc1", key: "Love in the Time of Cholera" }, { preTriggerInclude: "upperCaseId" })
 .then(function(createdDocument) {
 assert.equal(createdDocument.resource.id, "DOC1");
 }, function(error) {
 console.log("Error");
 });

Unregistering a pre-trigger

Unregistering a stored procedure is simply done by issuing an HTTP DELETE against an existing stored procedure
resource.

Registration of a trigger is done by creating a new trigger resource on a collection via HTTP POST. You can specify if
the trigger is a pre or a post trigger and the type of operation it can be associated with (e.g. Create, Replace, Delete,
or All).

Execution of a trigger is done by specifying the name of an existing trigger at the time of issuing the
POST/PUT/DELETE request of a document resource via the request header.

Unregistering a trigger is simply done via issuing an HTTP DELETE against an existing trigger resource.

client.deleteTriggerAsync(createdPreTrigger._self);
 .then(function(response) {
 return;
 }, function(error) {
 console.log("Error");
 });

Registering a UDF

var udf = {
 id: "mathSqrt",
 body: function(number) {
 return Math.sqrt(number);
 },
};
client.createUserDefinedFunctionAsync(collection._self, udf)
 .then(function (createdUdf) {
 console.log("Successfully created stored procedure");
 }, function(error) {
 console.log("Error");
 });

Executing a UDF as part of the query

var filterQuery = "SELECT udf.mathSqrt(r.Age) AS sqrtAge FROM root r WHERE r.FirstName='John'";
client.queryDocuments(collection._self, filterQuery).toArrayAsync();
 .then(function(queryResponse) {
 var queryResponseDocuments = queryResponse.feed;
 }, function(error) {
 console.log("Error");
 });

Unregistering a UDF

client.deleteUserDefinedFunctionAsync(createdUdf._self)
 .then(function(response) {
 return;
 }, function(error) {
 console.log("Error");
 });

Documents

Registration of a UDF is done by creating a new UDF resource on a collection via HTTP POST.

A UDF can be specified as part of the SQL query and is used as a way to extend the core SQL query language of
DocumentDB API.

Unregistering a UDF is simply done by issuing an HTTP DELETE against an existing UDF resource.

Although the snippets above showed the registration (POST), unregistration (PUT), read/list (GET) and execution
(POST) via the DocumentDB API JavaScript SDK, you can also use the REST APIs or other client SDKs.

You can insert, replace, delete, read, enumerate and query arbitrary JSON documents in a collection. Cosmos DB
does not mandate any schema and does not require secondary indexes in order to support querying over
documents in a collection. The maximum size for a document is 2 MB.

Being a truly open database service, Cosmos DB does not invent any specialized data types (e.g. date time) or
specific encodings for JSON documents. Note that Cosmos DB does not require any special JSON conventions to

https://msdn.microsoft.com/library/azure/dn782250.aspx
https://github.com/Azure/azure-documentdb-js
https://msdn.microsoft.com/library/azure/dn781481.aspx
https://msdn.microsoft.com/library/azure/dn781482.aspx

Attachments and media

Users

codify the relationships among various documents; the SQL syntax of Cosmos DB provides very powerful
hierarchical and relational query operators to query and project documents without any special annotations or
need to codify relationships among documents using distinguished properties.

As with all other resources, documents can be created, replaced, deleted, read, enumerated and queried easily using
either REST APIs or any of the client SDKs. Deleting a document instantly frees up the quota corresponding to all of
the nested attachments. The read consistency level of documents follows the consistency policy on the database
account. This policy can be overridden on a per-request basis depending on data consistency requirements of your
application. When querying documents, the read consistency follows the indexing mode set on the collection. For
“consistent”, this follows the account’s consistency policy.

Cosmos DB allows you to store binary blobs/media either with Cosmos DB (maximum of 2 GB per account) or to
your own remote media store. It also allows you to represent the metadata of a media in terms of a special
document called attachment. An attachment in Cosmos DB is a special (JSON) document that references the
media/blob stored elsewhere. An attachment is simply a special document that captures the metadata (e.g. location,
author etc.) of a media stored in a remote media storage.

Consider a social reading application which uses Cosmos DB to store ink annotations, and metadata including
comments, highlights, bookmarks, ratings, likes/dislikes etc. associated for an e-book of a given user.

The content of the book itself is stored in the media storage either available as part of Cosmos DB database
account or a remote media store.
An application may store each user’s metadata as a distinct document -- e.g. Joe’s metadata for book1 is stored
in a document referenced by /colls/joe/docs/book1.
Attachments pointing to the content pages of a given book of a user are stored under the corresponding
document e.g. /colls/joe/docs/book1/chapter1, /colls/joe/docs/book1/chapter2 etc.

Note that the examples listed above use friendly ids to convey the resource hierarchy. Resources are accessed via
the REST APIs through unique resource ids.

For the media that is managed by Cosmos DB, the _media property of the attachment will reference the media by
its URI. Cosmos DB will ensure to garbage collect the media when all of the outstanding references are dropped.
Cosmos DB automatically generates the attachment when you upload the new media and populates the _media to
point to the newly added media. If you choose to store the media in a remote blob store managed by you (e.g.
OneDrive, Azure Storage, DropBox etc), you can still use attachments to reference the media. In this case, you will
create the attachment yourself and populate its _media property.

As with all other resources, attachments can be created, replaced, deleted, read or enumerated easily using either
REST APIs or any of the client SDKs. As with documents, the read consistency level of attachments follows the
consistency policy on the database account. This policy can be overridden on a per-request basis depending on data
consistency requirements of your application. When querying for attachments, the read consistency follows the
indexing mode set on the collection. For “consistent”, this follows the account’s consistency policy.  

A Cosmos DB user represents a logical namespace for grouping permissions. A Cosmos DB user may correspond to
a user in an identity management system or a predefined application role. For Cosmos DB, a user simply represents
an abstraction to group a set of permissions under a database.

For implementing multi-tenancy in your application, you can create users in Cosmos DB which corresponds to your
actual users or the tenants of your application. You can then create permissions for a given user that correspond to
the access control over various collections, documents, attachments, etc.

As your applications need to scale with your user growth, you can adopt various ways to shard your data. You can

https://msdn.microsoft.com/library/azure/dn781482.aspx

Permissions

model each of your users as follows:

Each user maps to a database.
Each user maps to a collection.
Documents corresponding to multiple users go to a dedicated collection.
Documents corresponding to multiple users go to a set of collections.

Regardless of the specific sharding strategy you choose, you can model your actual users as users in Cosmos DB
database and associate fine grained permissions to each user.

Sharding strategies and modeling users

Like all other resources, users in Cosmos DB can be created, replaced, deleted, read or enumerated easily using
either REST APIs or any of the client SDKs. Cosmos DB always provides strong consistency for reading or querying
the metadata of a user resource. It is worth pointing out that deleting a user automatically ensures that you cannot
access any of the permissions contained within it. Even though the Cosmos DB reclaims the quota of the
permissions as part of the deleted user in the background, the deleted permissions is available instantly again for
you to use.

From an access control perspective, resources such as database accounts, databases, users and permission are
considered administrative resources since these require administrative permissions. On the other hand, resources
including the collections, documents, attachments, stored procedures, triggers, and UDFs are scoped under a given
database and considered application resources. Corresponding to the two types of resources and the roles that
access them (namely the administrator and user), the authorization model defines two types of access keys: master
key and resource key. The master key is a part of the database account and is provided to the developer (or
administrator) who is provisioning the database account. This master key has administrator semantics, in that it can
be used to authorize access to both administrative and application resources. In contrast, a resource key is a
granular access key that allows access to a specific application resource. Thus, it captures the relationship between
the user of a database and the permissions the user has for a specific resource (e.g. collection, document,
attachment, stored procedure, trigger, or UDF).

The only way to obtain a resource key is by creating a permission resource under a given user. Note that In order to
create or retrieve a permission, a master key must be presented in the authorization header. A permission resource
ties the resource, its access and the user. After creating a permission resource, the user only needs to present the
associated resource key in order to gain access to the relevant resource. Hence, a resource key can be viewed as a
logical and compact representation of the permission resource.

As with all other resources, permissions in Cosmos DB can be created, replaced, deleted, read or enumerated easily
using either REST APIs or any of the client SDKs. Cosmos DB always provides strong consistency for reading or
querying the metadata of a permission.

Next steps
Learn more about working with resources by using HTTP commands in RESTful interactions with Cosmos DB
resources.

https://msdn.microsoft.com/library/azure/mt622086.aspx

SQL query and SQL syntax in Azure Cosmos DB
6/9/2017 • 51 min to read • Edit Online

Getting started with SQL commands in Cosmos DB

Microsoft Azure Cosmos DB supports querying documents using SQL (Structured Query Language) as a JSON
query language. Cosmos DB is truly schema-free. By virtue of its commitment to the JSON data model directly
within the database engine, it provides automatic indexing of JSON documents without requiring explicit
schema or creation of secondary indexes.

While designing the query language for Cosmos DB we had two goals in mind:

Instead of inventing a new JSON query language, we wanted to support SQL. SQL is one of the most familiar
and popular query languages. Cosmos DB SQL provides a formal programming model for rich queries over
JSON documents.
As a JSON document database capable of executing JavaScript directly in the database engine, we wanted to
use JavaScript's programming model as the foundation for our query language. The DocumentDB API SQL
is rooted in JavaScript's type system, expression evaluation, and function invocation. This in-turn provides a
natural programming model for relational projections, hierarchical navigation across JSON documents, self
joins, spatial queries, and invocation of user defined functions (UDFs) written entirely in JavaScript, among
other features.

We believe that these capabilities are key to reducing the friction between the application and the database and
are crucial for developer productivity.

We recommend getting started by watching the following video, where Aravind Ramachandran shows Cosmos
DB's querying capabilities, and by visiting our Query Playground, where you can try out Cosmos DB and run
SQL queries against our dataset.

Then, return to this article, where we'll start with a SQL query tutorial that walks you through some simple
JSON documents and SQL commands.

To see Cosmos DB SQL at work, let's begin with a few simple JSON documents and walk through some simple
queries against it. Consider these two JSON documents about two families. Note that with Cosmos DB, we do
not need to create any schemas or secondary indices explicitly. We simply need to insert the JSON documents
to a Cosmos DB collection and subsequently query. Here we have a simple JSON document for the Andersen
family, the parents, children (and their pets), address and registration information. The document has strings,
numbers, booleans, arrays and nested properties.

Document

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/documentdb-sql-query.md
http://www.documentdb.com/sql/demo

{
 "id": "AndersenFamily",
 "lastName": "Andersen",
 "parents": [
 { "firstName": "Thomas" },
 { "firstName": "Mary Kay"}
],
 "children": [
 {
 "firstName": "Henriette Thaulow",
 "gender": "female",
 "grade": 5,
 "pets": [{ "givenName": "Fluffy" }]
 }
],
 "address": { "state": "WA", "county": "King", "city": "seattle" },
 "creationDate": 1431620472,
 "isRegistered": true
}

{
 "id": "WakefieldFamily",
 "parents": [
 { "familyName": "Wakefield", "givenName": "Robin" },
 { "familyName": "Miller", "givenName": "Ben" }
],
 "children": [
 {
 "familyName": "Merriam",
 "givenName": "Jesse",
 "gender": "female", "grade": 1,
 "pets": [
 { "givenName": "Goofy" },
 { "givenName": "Shadow" }
]
 },
 {
 "familyName": "Miller",
 "givenName": "Lisa",
 "gender": "female",
 "grade": 8 }
],
 "address": { "state": "NY", "county": "Manhattan", "city": "NY" },
 "creationDate": 1431620462,
 "isRegistered": false
}

SELECT *
FROM Families f
WHERE f.id = "AndersenFamily"

Here's a second document with one subtle difference – givenName and familyName are used instead of firstName

and lastName .

Document

Now let's try a few queries against this data to understand some of the key aspects of DocumentDB API SQL.
For example, the following query will return the documents where the id field matches AndersenFamily . Since it's
a SELECT * , the output of the query is the complete JSON document:

Query

[{
 "id": "AndersenFamily",
 "lastName": "Andersen",
 "parents": [
 { "firstName": "Thomas" },
 { "firstName": "Mary Kay"}
],
 "children": [
 {
 "firstName": "Henriette Thaulow", "gender": "female", "grade": 5,
 "pets": [{ "givenName": "Fluffy" }]
 }
],
 "address": { "state": "WA", "county": "King", "city": "seattle" },
 "creationDate": 1431620472,
 "isRegistered": true
}]

SELECT {"Name":f.id, "City":f.address.city} AS Family
FROM Families f
WHERE f.address.city = f.address.state

[{
 "Family": {
 "Name": "WakefieldFamily",
 "City": "NY"
 }
}]

SELECT c.givenName
FROM Families f
JOIN c IN f.children
WHERE f.id = 'WakefieldFamily'
ORDER BY f.address.city ASC

[
 { "givenName": "Jesse" },
 { "givenName": "Lisa"}
]

Results

Now consider the case where we need to reformat the JSON output in a different shape. This query projects a
new JSON object with two selected fields, Name and City, when the address' city has the same name as the
state. In this case, "NY, NY" matches.

Query

Results

The next query returns all the given names of children in the family whose id matches WakefieldFamily ordered
by the city of residence.

Query

Results

We would like to draw attention to a few noteworthy aspects of the Cosmos DB query language through the

Cosmos DB indexing

Basics of an Azure Cosmos DB SQL query

examples we've seen so far:

Since DocumentDB API SQL works on JSON values, it deals with tree shaped entities instead of rows and
columns. Therefore, the language lets you refer to nodes of the tree at any arbitrary depth, like
Node1.Node2.Node3…..Nodem , similar to relational SQL referring to the two part reference of <table>.<column> .

The structured query language works with schema-less data. Therefore, the type system needs to be bound
dynamically. The same expression could yield different types on different documents. The result of a query is
a valid JSON value, but is not guaranteed to be of a fixed schema.
Cosmos DB only supports strict JSON documents. This means the type system and expressions are restricted
to deal only with JSON types. Please refer to the JSON specification for more details.
A Cosmos DB collection is a schema-free container of JSON documents. The relations in data entities within
and across documents in a collection are implicitly captured by containment and not by primary key and
foreign key relations. This is an important aspect worth pointing out in light of the intra-document joins
discussed later in this article.

Before we get into the DocumentDB API SQL syntax, it is worth exploring the indexing design in Cosmos DB API
API.

The purpose of database indexes is to serve queries in their various forms and shapes with minimum resource
consumption (like CPU and input/output) while providing good throughput and low latency. Often, the choice
of the right index for querying a database requires much planning and experimentation. This approach poses a
challenge for schema-less databases where the data doesn’t conform to a strict schema and evolves rapidly.

Therefore, when we designed the Cosmos DB indexing subsystem, we set the following goals:

Index documents without requiring schema: The indexing subsystem does not require any schema
information or make any assumptions about schema of the documents.
Support for efficient, rich hierarchical, and relational queries: The index supports the Cosmos DB query
language efficiently, including support for hierarchical and relational projections.
Support for consistent queries in face of a sustained volume of writes: For high write throughput workloads
with consistent queries, the index is updated incrementally, efficiently, and online in the face of a sustained
volume of writes. The consistent index update is crucial to serve the queries at the consistency level in which
the user configured the document service.
Support for multi-tenancy: Given the reservation based model for resource governance across tenants, index
updates are performed within the budget of system resources (CPU, memory, and input/output operations
per second) allocated per replica.
Storage efficiency: For cost effectiveness, the on-disk storage overhead of the index is bounded and
predictable. This is crucial because Cosmos DB allows the developer to make cost based tradeoffs between
index overhead in relation to the query performance.

Refer to the Azure Cosmos DB samples on MSDN for samples showing how to configure the indexing policy for
a collection. Let’s now get into the details of the Azure Cosmos DB SQL syntax.

Every query consists of a SELECT clause and optional FROM and WHERE clauses per ANSI-SQL standards.
Typically, for each query, the source in the FROM clause is enumerated. Then the filter in the WHERE clause is
applied on the source to retrieve a subset of JSON documents. Finally, the SELECT clause is used to project the
requested JSON values in the select list.

http://www.json.org/
https://github.com/Azure/azure-documentdb-net

SELECT <select_list>
[FROM <from_specification>]
[WHERE <filter_condition>]
[ORDER BY <sort_specification]

FROM clause

Sub-documents

SELECT *
FROM Families.children

The FROM <from_specification> clause is optional unless the source is filtered or projected later in the query. The
purpose of this clause is to specify the data source upon which the query must operate. Commonly the whole
collection is the source, but one can specify a subset of the collection instead.

A query like SELECT * FROM Families indicates that the entire Families collection is the source over which to
enumerate. A special identifier ROOT can be used to represent the collection instead of using the collection
name. The following list contains the rules that are enforced per query:

The collection can be aliased, such as SELECT f.id FROM Families AS f or simply SELECT f.id FROM Families f . Here f

is the equivalent of Families . AS is an optional keyword to alias the identifier.
Note that once aliased, the original source cannot be bound. For example, SELECT Families.id FROM Families f is
syntactically invalid since the identifier "Families" cannot be resolved anymore.
All properties that need to be referenced must be fully qualified. In the absence of strict schema adherence,
this is enforced to avoid any ambiguous bindings. Therefore, SELECT id FROM Families f is syntactically invalid
since the property id is not bound.

The source can also be reduced to a smaller subset. For instance, to enumerating only a sub-tree in each
document, the sub-root could then become the source, as shown in the following example.

Query

Results

[
 [
 {
 "firstName": "Henriette Thaulow",
 "gender": "female",
 "grade": 5,
 "pets": [
 {
 "givenName": "Fluffy"
 }
]
 }
],
 [
 {
 "familyName": "Merriam",
 "givenName": "Jesse",
 "gender": "female",
 "grade": 1
 },
 {
 "familyName": "Miller",
 "givenName": "Lisa",
 "gender": "female",
 "grade": 8
 }
]
]

SELECT *
FROM Families.address.state

[
 "WA",
 "NY"
]

WHERE clause

While the above example used an array as the source, an object could also be used as the source, which is
what's shown in the following example. Any valid JSON value (not undefined) that can be found in the source
will be considered for inclusion in the result of the query. If some families don’t have an address.state value, they
will be excluded in the query result.

Query

Results

The WHERE clause (WHERE <filter_condition>) is optional. It specifies the condition(s) that the JSON documents
provided by the source must satisfy in order to be included as part of the result. Any JSON document must
evaluate the specified conditions to "true" to be considered for the result. The WHERE clause is used by the
index layer in order to determine the absolute smallest subset of source documents that can be part of the
result.

The following query requests documents that contain a name property whose value is AndersenFamily . Any other
document that does not have a name property, or where the value does not match AndersenFamily is excluded.

Query

SELECT f.address
FROM Families f
WHERE f.id = "AndersenFamily"

[{
 "address": {
 "state": "WA",
 "county": "King",
 "city": "seattle"
 }
}]

Arithmetic +,-,*,/,%

Bitwise |, &, ^, <<, >>, >>> (zero-fill right shift)

Logical AND, OR, NOT

Comparison =, !=, <, >, <=, >=, <>

String || (concatenate)

SELECT *
FROM Families.children[0] c
WHERE c.grade % 2 = 1 -- matching grades == 5, 1

SELECT *
FROM Families.children[0] c
WHERE c.grade ^ 4 = 1 -- matching grades == 5

SELECT *
FROM Families.children[0] c
WHERE c.grade >= 5 -- matching grades == 5

Results

The previous example showed a simple equality query. DocumentDB API SQL also supports a variety of scalar
expressions. The most commonly used are binary and unary expressions. Property references from the source
JSON object are also valid expressions.

The following binary operators are currently supported and can be used in queries as shown in the following
examples:

Let’s take a look at some queries using binary operators.

The unary operators +,-, ~ and NOT are also supported, and can be used inside queries as shown in the
following example:

SELECT *
FROM Families.children[0] c
WHERE NOT(c.grade = 5) -- matching grades == 1

SELECT *
FROM Families.children[0] c
WHERE (-c.grade = -5) -- matching grades == 5

Equality and comparison operators

O
p

U
n
d
e
fi
n
e
d

N
u
ll

B
o
o
l
e
a
n

N
u
m
b
e
r

S
t
ri
n
g

O
b
j
e
c
t

A
r
r
a
y

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

N
u
ll

U
n
d
e
fi
n
e
d

O
K

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

B
o
o
l
e
a
n

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

O
K

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

In addition to binary and unary operators, property references are also allowed. For example,
SELECT * FROM Families f WHERE f.isRegistered returns the JSON document containing the property isRegistered

where the property's value is equal to the JSON true value. Any other values (false, null, Undefined, <number> ,
<string> , <object> , <array> , etc.) leads to the source document being excluded from the result.

The following table shows the result of equality comparisons in DocumentDB API SQL between any two JSON
types.

N
u
m
b
e
r

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

O
K

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

S
t
r
i
n
g

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

O
K

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

O
b
j
e
c
t

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

O
K

U
n
d
e
fi
n
e
d

A
r
r
a
y

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

U
n
d
e
fi
n
e
d

O
K

BETWEEN keyword

SELECT *
FROM Families.children[0] c
WHERE c.grade BETWEEN 1 AND 5

For other comparison operators such as >, >=, !=, < and <=, the following rules apply:

Comparison across types results in Undefined.
Comparison between two objects or two arrays results in Undefined.

If the result of the scalar expression in the filter is Undefined, the corresponding document would not be
included in the result, since Undefined doesn't logically equate to "true".

You can also use the BETWEEN keyword to express queries against ranges of values like in ANSI SQL. BETWEEN
can be used against strings or numbers.

For example, this query returns all family documents in which the first child's grade is between 1-5 (both
inclusive).

Unlike in ANSI-SQL, you can also use the BETWEEN clause in the FROM clause like in the following example.

SELECT (c.grade BETWEEN 0 AND 10)
FROM Families.children[0] c

Logical (AND, OR and NOT) operators

OR TRUE FALSE UNDEFINED

True True True True

False True False Undefined

Undefined True Undefined Undefined

AND TRUE FALSE UNDEFINED

True True False Undefined

False False False False

Undefined Undefined False Undefined

NOT

True False

False True

Undefined Undefined

IN keyword

SELECT *
FROM Families
WHERE Families.id IN ('AndersenFamily', 'WakefieldFamily')

For faster query execution times, remember to create an indexing policy that uses a range index type against
any numeric properties/paths that are filtered in the BETWEEN clause.

The main difference between using BETWEEN in DocumentDB API and ANSI SQL is that you can express range
queries against properties of mixed types – for example, you might have "grade" be a number (5) in some
documents and strings in others ("grade4"). In these cases, like in JavaScript, a comparison between two
different types results in "undefined", and the document will be skipped.

Logical operators operate on Boolean values. The logical truth tables for these operators are shown in the
following tables.

The IN keyword can be used to check whether a specified value matches any value in a list. For example, this
query returns all family documents where the id is one of "WakefieldFamily" or "AndersenFamily".

This example returns all documents where the state is any of the specified values.

SELECT *
FROM Families
WHERE Families.address.state IN ("NY", "WA", "CA", "PA", "OH", "OR", "MI", "WI", "MN", "FL")

Ternary (?) and Coalesce (??) operators

 SELECT (c.grade < 5)? "elementary": "other" AS gradeLevel
 FROM Families.children[0] c

SELECT (c.grade < 5)? "elementary": ((c.grade < 9)? "junior": "high") AS gradeLevel
FROM Families.children[0] c

SELECT f.lastName ?? f.surname AS familyName
FROM Families f

Quoted property accessor

SELECT f["lastName"]
FROM Families f
WHERE f["id"] = "AndersenFamily"

SELECT clause

The Ternary and Coalesce operators can be used to build conditional expressions, similar to popular
programming languages like C# and JavaScript.

The Ternary (?) operator can be very handy when constructing new JSON properties on the fly. For example,
now you can write queries to classify the class levels into a human readable form like
Beginner/Intermediate/Advanced as shown below.

You can also nest the calls to the operator like in the query below.

As with other query operators, if the referenced properties in the conditional expression are missing in any
document, or if the types being compared are different, then those documents will be excluded in the query
results.

The Coalesce (??) operator can be used to efficiently check for the presence of a property (a.k.a. is defined) in a
document. This is useful when querying against semi-structured or data of mixed types. For example, this query
returns the "lastName" if present, or the "surname" if it isn't present.

You can also access properties using the quoted property operator [] . For example, SELECT c.grade and
SELECT c["grade"] are equivalent. This syntax is useful when you need to escape a property that contains spaces,

special characters, or happens to share the same name as a SQL keyword or reserved word.

The SELECT clause (SELECT <select_list>) is mandatory and specifies what values will be retrieved from the query,
just like in ANSI-SQL. The subset that's been filtered on top of the source documents are passed onto the
projection phase, where the specified JSON values are retrieved and a new JSON object is constructed, for each
input passed onto it.

The following example shows a typical SELECT query.

Query

SELECT f.address
FROM Families f
WHERE f.id = "AndersenFamily"

[{
 "address": {
 "state": "WA",
 "county": "King",
 "city": "seattle"
 }
}]

Nested properties

SELECT f.address.state, f.address.city
FROM Families f
WHERE f.id = "AndersenFamily"

[{
 "state": "WA",
 "city": "seattle"
}]

SELECT { "state": f.address.state, "city": f.address.city, "name": f.id }
FROM Families f
WHERE f.id = "AndersenFamily"

[{
 "$1": {
 "state": "WA",
 "city": "seattle",
 "name": "AndersenFamily"
 }
}]

Results

In the following example, we are projecting two nested properties f.address.state and f.address.city .

Query

Results

Projection also supports JSON expressions as shown in the following example.

Query

Results

Let's look at the role of $1 here. The SELECT clause needs to create a JSON object and since no key is
provided, we use implicit argument variable names starting with $1 . For example, this query returns two
implicit argument variables, labeled $1 and $2 .

Query

SELECT { "state": f.address.state, "city": f.address.city },
 { "name": f.id }
FROM Families f
WHERE f.id = "AndersenFamily"

[{
 "$1": {
 "state": "WA",
 "city": "seattle"
 },
 "$2": {
 "name": "AndersenFamily"
 }
}]

Aliasing

SELECT
 { "state": f.address.state, "city": f.address.city } AS AddressInfo,
 { "name": f.id } NameInfo
FROM Families f
WHERE f.id = "AndersenFamily"

[{
 "AddressInfo": {
 "state": "WA",
 "city": "seattle"
 },
 "NameInfo": {
 "name": "AndersenFamily"
 }
}]

Scalar expressions

SELECT "Hello World"

Results

Now let's extend the example above with explicit aliasing of values. AS is the keyword used for aliasing. Note
that it's optional as shown while projecting the second value as NameInfo .

In case a query has two properties with the same name, aliasing must be used to rename one or both of the
properties so that they are disambiguated in the projected result.

Query

Results

In addition to property references, the SELECT clause also supports scalar expressions like constants, arithmetic
expressions, logical expressions, etc. For example, here's a simple "Hello World" query.

Query

Results

[{
 "$1": "Hello World"
}]

SELECT ((2 + 11 % 7)-2)/3

[{
 "$1": 1.33333
}]

SELECT f.address.city = f.address.state AS AreFromSameCityState
FROM Families f

[
 {
 "AreFromSameCityState": false
 },
 {
 "AreFromSameCityState": true
 }
]

Object and array creation

SELECT [f.address.city, f.address.state] AS CityState
FROM Families f

Here's a more complex example that uses a scalar expression.

Query

Results

In the following example, the result of the scalar expression is a Boolean.

Query

Results

Another key feature of DocumentDB API SQL is array/object creation. In the previous example, note that we
created a new JSON object. Similarly, one can also construct arrays as shown in the following examples.

Query

Results

[
 {
 "CityState": [
 "seattle",
 "WA"
]
 },
 {
 "CityState": [
 "NY",
 "NY"
]
 }
]

VALUE keyword

SELECT VALUE "Hello World"

[
 "Hello World"
]

SELECT VALUE f.address
FROM Families f

[
 {
 "state": "WA",
 "county": "King",
 "city": "seattle"
 },
 {
 "state": "NY",
 "county": "Manhattan",
 "city": "NY"
 }
]

The VALUE keyword provides a way to return JSON value. For example, the query shown below returns the
scalar "Hello World" instead of {$1: "Hello World"} .

Query

Results

The following query returns the JSON value without the "address" label in the results.

Query

Results

The following example extends this to show how to return JSON primitive values (the leaf level of the JSON
tree).

Query

SELECT VALUE f.address.state
FROM Families f

[
 "WA",
 "NY"
]

* Operator

SELECT *
FROM Families f
WHERE f.id = "AndersenFamily"

[{
 "id": "AndersenFamily",
 "lastName": "Andersen",
 "parents": [
 { "firstName": "Thomas" },
 { "firstName": "Mary Kay"}
],
 "children": [
 {
 "firstName": "Henriette Thaulow", "gender": "female", "grade": 5,
 "pets": [{ "givenName": "Fluffy" }]
 }
],
 "address": { "state": "WA", "county": "King", "city": "seattle" },
 "creationDate": 1431620472,
 "isRegistered": true
}]

TOP Operator

SELECT TOP 1 *
FROM Families f

Results

The special operator (*) is supported to project the document as-is. When used, it must be the only projected
field. While a query like SELECT * FROM Families f is valid, SELECT VALUE * FROM Families f and
SELECT *, f.id FROM Families f are not valid.

Query

Results

The TOP keyword can be used to limit the number of values from a query. When TOP is used in conjunction
with the ORDER BY clause, the result set is limited to the first N number of ordered values; otherwise, it returns
the first N number of results in an undefined order. As a best practice, in a SELECT statement, always use an
ORDER BY clause with the TOP clause. This is the only way to predictably indicate which rows are affected by
TOP.

Query

Results

[{
 "id": "AndersenFamily",
 "lastName": "Andersen",
 "parents": [
 { "firstName": "Thomas" },
 { "firstName": "Mary Kay"}
],
 "children": [
 {
 "firstName": "Henriette Thaulow", "gender": "female", "grade": 5,
 "pets": [{ "givenName": "Fluffy" }]
 }
],
 "address": { "state": "WA", "county": "King", "city": "seattle" },
 "creationDate": 1431620472,
 "isRegistered": true
}]

Aggregate Functions

SELECT COUNT(1)
FROM Families f

[{
 "$1": 2
}]

SELECT VALUE COUNT(1)
FROM Families f

[2]

TOP can be used with a constant value (as shown above) or with a variable value using parameterized queries.
For more details, please see parameterized queries below.

You can also perform aggregations in the SELECT clause. Aggregate functions perform a calculation on a set of
values and return a single value. For example, the following query returns the count of family documents within
the collection.

Query

Results

You can also return the scalar value of the aggregate by using the VALUE keyword. For example, the following
query returns the count of values as a single number:

Query

Results

You can also perform aggregates in combination with filters. For example, the following query returns the count
of documents with the address in the state of Washington.

Query

SELECT VALUE COUNT(1)
FROM Families f
WHERE f.address.state = "WA"

[{
 "$1": 1
}]

USAGE DESCRIPTION

COUNT Returns the number of items in the expression.

SUM Returns the sum of all the values in the expression.

MIN Returns the minimum value in the expression.

MAX Returns the maximum value in the expression.

AVG Returns the average of the values in the expression.

NOTE

ORDER BY clause

SELECT f.id, f.address.city
FROM Families f
ORDER BY f.address.city

Results

The following tables shows the list of supported aggregate functions in DocumentDB API. SUM and AVG are
performed over numeric values, whereas COUNT , MIN , and MAX can be performed over numbers, strings,
Booleans, and nulls.

Aggregates can also be performed over the results of an array iteration. For more details, see Array Iteration in
Queries.

When using the Azure Portal's Query Explorer, note that aggregation queries may return the partially aggregated results
over a query page. The SDKs will produce a single cumulative value across all pages.

In order to perform aggregation queries using code, you need .NET SDK 1.12.0, .NET Core SDK 1.1.0, or Java SDK 1.9.5 or
above.

Like in ANSI-SQL, you can include an optional Order By clause while querying. The clause can include an
optional ASC/DESC argument to specify the order in which results must be retrieved.

For example, here's a query that retrieves families in order of the resident city's name.

Query

Results

[
 {
 "id": "WakefieldFamily",
 "city": "NY"
 },
 {
 "id": "AndersenFamily",
 "city": "Seattle"
 }
]

SELECT f.id, f.creationDate
FROM Families f
ORDER BY f.creationDate DESC

[
 {
 "id": "WakefieldFamily",
 "creationDate": 1431620462
 },
 {
 "id": "AndersenFamily",
 "creationDate": 1431620472
 }
]

Advanced database concepts and SQL queries
Iteration

SELECT *
FROM Families.children

And here's a query that retrieves families in order of creation date, which is stored as a number representing
the epoch time, i.e, elapsed time since Jan 1, 1970 in seconds.

Query

Results

A new construct was added via the IN keyword in DocumentDB API SQL to provide support for iterating over
JSON arrays. The FROM source provides support for iteration. Let's start with the following example:

Query

Results

[
 [
 {
 "firstName": "Henriette Thaulow",
 "gender": "female",
 "grade": 5,
 "pets": [{ "givenName": "Fluffy"}]
 }
],
 [
 {
 "familyName": "Merriam",
 "givenName": "Jesse",
 "gender": "female",
 "grade": 1
 },
 {
 "familyName": "Miller",
 "givenName": "Lisa",
 "gender": "female",
 "grade": 8
 }
]
]

SELECT *
FROM c IN Families.children

[
 {
 "firstName": "Henriette Thaulow",
 "gender": "female",
 "grade": 5,
 "pets": [{ "givenName": "Fluffy" }]
 },
 {
 "familyName": "Merriam",
 "givenName": "Jesse",
 "gender": "female",
 "grade": 1
 },
 {
 "familyName": "Miller",
 "givenName": "Lisa",
 "gender": "female",
 "grade": 8
 }
]

Now let's look at another query that performs iteration over children in the collection. Note the difference in the
output array. This example splits children and flattens the results into a single array.

Query

Results

This can be further used to filter on each individual entry of the array as shown in the following example.

Query

SELECT c.givenName
FROM c IN Families.children
WHERE c.grade = 8

[{
 "givenName": "Lisa"
}]

SELECT COUNT(child)
FROM child IN Families.children

[
 {
 "$1": 3
 }
]

Joins

SELECT f.id
FROM Families f
JOIN f.NonExistent

[{
}]

Results

You can also perform aggregation over the result of array iteration. For example, the following query counts the
number of children among all families.

Query

Results

In a relational database, the need to join across tables is very important. It's the logical corollary to designing
normalized schemas. Contrary to this, DocumentDB API deals with the denormalized data model of schema-
free documents. This is the logical equivalent of a "self-join".

The syntax that the language supports is JOIN JOIN ... JOIN . Overall, this returns a set of N-tuples (tuple with N
values). Each tuple has values produced by iterating all collection aliases over their respective sets. In other
words, this is a full cross product of the sets participating in the join.

The following examples show how the JOIN clause works. In the following example, the result is empty since
the cross product of each document from source and an empty set is empty.

Query

Results

In the following example, the join is between the document root and the children sub-root. It's a cross product
between two JSON objects. The fact that children is an array is not effective in the JOIN since we are dealing
with a single root that is the children array. Hence the result contains only two results, since the cross product of
each document with the array yields exactly only one document.

SELECT f.id
FROM Families f
JOIN f.children

[
 {
 "id": "AndersenFamily"
 },
 {
 "id": "WakefieldFamily"
 }
]

SELECT f.id
FROM Families f
JOIN c IN f.children

[
 {
 "id": "AndersenFamily"
 },
 {
 "id": "WakefieldFamily"
 },
 {
 "id": "WakefieldFamily"
 }
]

Query

Results

The following example shows a more conventional join:

Query

Results

The first thing to note is that the from_source of the JOIN clause is an iterator. So, the flow in this case is as
follows:

Expand each child element c in the array.
Apply a cross product with the root of the document f with each child element c that was flattened in the
first step.
Finally, project the root object f name property alone.

The first document (AndersenFamily) contains only one child element, so the result set contains only a single
object corresponding to this document. The second document (WakefieldFamily) contains two children. So, the
cross product produces a separate object for each child, thereby resulting in two objects, one for each child
corresponding to this document. Note that the root fields in both these documents will be same, just as you
would expect in a cross product.

The real utility of the JOIN is to form tuples from the cross-product in a shape that's otherwise difficult to
project. Furthermore, as we will see in the example below, you could filter on the combination of a tuple that
lets' the user chose a condition satisfied by the tuples overall.

SELECT
 f.id AS familyName,
 c.givenName AS childGivenName,
 c.firstName AS childFirstName,
 p.givenName AS petName
FROM Families f
JOIN c IN f.children
JOIN p IN c.pets

[
 {
 "familyName": "AndersenFamily",
 "childFirstName": "Henriette Thaulow",
 "petName": "Fluffy"
 },
 {
 "familyName": "WakefieldFamily",
 "childGivenName": "Jesse",
 "petName": "Goofy"
 },
 {
 "familyName": "WakefieldFamily",
 "childGivenName": "Jesse",
 "petName": "Shadow"
 }
]

for-each(Family f in Families)
{
 for-each(Child c in f.children)
 {
 for-each(Pet p in c.pets)
 {
 return (Tuple(f.id AS familyName,
 c.givenName AS childGivenName,
 c.firstName AS childFirstName,
 p.givenName AS petName));
 }
 }
}

Query

Results

This example is a natural extension of the preceding example, and performs a double join. So, the cross product
can be viewed as the following pseudo-code.

AndersenFamily has one child who has one pet. So, the cross product yields one row (111) from this family.
WakefieldFamily however has two children, but only one child "Jesse" has pets. Jesse has 2 pets though. Hence
the cross product yields 112 = 2 rows from this family.

In the next example, there is an additional filter on pet . This excludes all the tuples where the pet name is not
"Shadow". Notice that we are able to build tuples from arrays, filter on any of the elements of the tuple, and
project any combination of the elements.

Query

SELECT
 f.id AS familyName,
 c.givenName AS childGivenName,
 c.firstName AS childFirstName,
 p.givenName AS petName
FROM Families f
JOIN c IN f.children
JOIN p IN c.pets
WHERE p.givenName = "Shadow"

[
 {
 "familyName": "WakefieldFamily",
 "childGivenName": "Jesse",
 "petName": "Shadow"
 }
]

JavaScript integration

User Defined Functions (UDFs)

Results

Azure Cosmos DB provides a programming model for executing JavaScript based application logic directly on
the collections in terms of stored procedures and triggers. This allows for both:

Ability to do high performance transactional CRUD operations and queries against documents in a collection
by virtue of the deep integration of JavaScript runtime directly within the database engine.
A natural modeling of control flow, variable scoping, and assignment and integration of exception handling
primitives with database transactions. For more details about Azure Cosmos DB support for JavaScript
integration, please refer to the JavaScript server side programmability documentation.

Along with the types already defined in this article, DocumentDB API SQL provides support for User Defined
Functions (UDF). In particular, scalar UDFs are supported where the developers can pass in zero or many
arguments and return a single argument result back. Each of these arguments are checked for being legal JSON
values.

The DoucmentDB API SQL syntax is extended to support custom application logic using these User Defined
Functions. UDFs can be registered with DocumentDB API and then be referenced as part of a SQL query. In fact,
the UDFs are exquisitely designed to be invoked by queries. As a corollary to this choice, UDFs do not have
access to the context object which the other JavaScript types (stored procedures and triggers) have. Since
queries execute as read-only, they can run either on primary or on secondary replicas. Therefore, UDFs are
designed to run on secondary replicas unlike other JavaScript types.

Below is an example of how a UDF can be registered at the Cosmos DB database, specifically under a document
collection.

 UserDefinedFunction regexMatchUdf = new UserDefinedFunction
 {
 Id = "REGEX_MATCH",
 Body = @"function (input, pattern) {
 return input.match(pattern) !== null;
 };",
 };

 UserDefinedFunction createdUdf = client.CreateUserDefinedFunctionAsync(
 UriFactory.CreateDocumentCollectionUri("testdb", "families"),
 regexMatchUdf).Result;

NOTE

SELECT udf.REGEX_MATCH(Families.address.city, ".*eattle")
FROM Families

[
 {
 "$1": true
 },
 {
 "$1": false
 }
]

SELECT Families.id, Families.address.city
FROM Families
WHERE udf.REGEX_MATCH(Families.address.city, ".*eattle")

[{
 "id": "AndersenFamily",
 "city": "Seattle"
}]

The preceding example creates a UDF whose name is REGEX_MATCH . It accepts two JSON string values input

and pattern and checks if the first matches the pattern specified in the second using JavaScript's string.match()
function.

We can now use this UDF in a query in a projection. UDFs must be qualified with the case-sensitive prefix "udf."
when called from within queries.

Prior to 3/17/2015, Cosmos DB supported UDF calls without the "udf." prefix like SELECT REGEX_MATCH(). This calling
pattern has been deprecated.

Query

Results

The UDF can also be used inside a filter as shown in the example below, also qualified with the "udf." prefix :

Query

Results

In essence, UDFs are valid scalar expressions and can be used in both projections and filters.

 UserDefinedFunction seaLevelUdf = new UserDefinedFunction()
 {
 Id = "SEALEVEL",
 Body = @"function(city) {
 switch (city) {
 case 'seattle':
 return 520;
 case 'NY':
 return 410;
 case 'Chicago':
 return 673;
 default:
 return -1;
 }"
 };

 UserDefinedFunction createdUdf = await client.CreateUserDefinedFunctionAsync(
 UriFactory.CreateDocumentCollectionUri("testdb", "families"),
 seaLevelUdf);

SELECT f.address.city, udf.SEALEVEL(f.address.city) AS seaLevel
FROM Families f

 [
 {
 "city": "seattle",
 "seaLevel": 520
 },
 {
 "city": "NY",
 "seaLevel": 410
 }
]

Operator evaluation

To expand on the power of UDFs, let's look at another example with conditional logic:

Below is an example that exercises the UDF.

Query

Results

As the preceding examples showcase, UDFs integrate the power of JavaScript language with the DocumentDB
API SQL to provide a rich programmable interface to do complex procedural, conditional logic with the help of
inbuilt JavaScript runtime capabilities.

DocumentDB API SQL provides the arguments to the UDFs for each document in the source at the current stage
(WHERE clause or SELECT clause) of processing the UDF. The result is incorporated in the overall execution
pipeline seamlessly. If the properties referred to by the UDF parameters are not available in the JSON value, the
parameter is considered as undefined and hence the UDF invocation is entirely skipped. Similarly if the result of
the UDF is undefined, it's not included in the result.

In summary, UDFs are great tools to do complex business logic as part of the query.

Cosmos DB, by the virtue of being a JSON database, draws parallels with JavaScript operators and its
evaluation semantics. While Cosmos DB tries to preserve JavaScript semantics in terms of JSON support, the
operation evaluation deviates in some instances.

Parameterized SQL queries

SELECT *
FROM Families f
WHERE f.lastName = @lastName AND f.address.state = @addressState

{
 "query": "SELECT * FROM Families f WHERE f.lastName = @lastName AND f.address.state = @addressState",
 "parameters": [
 {"name": "@lastName", "value": "Wakefield"},
 {"name": "@addressState", "value": "NY"},
]
}

{
 "query": "SELECT TOP @n * FROM Families",
 "parameters": [
 {"name": "@n", "value": 10},
]
}

Built-in functions

FUNCTION GROUP OPERATIONS

In DocumentDB API SQL, unlike in traditional SQL, the types of values are often not known until the values are
actually retrieved from database. In order to efficiently execute queries, most of the operators have strict type
requirements.

DocumentDB API SQL doesn't perform implicit conversions, unlike JavaScript. For instance, a query like
SELECT * FROM Person p WHERE p.Age = 21 matches documents which contain an Age property whose value is 21.

Any other document whose Age property matches string "21", or other possibly infinite variations like "021",
"21.0", "0021", "00021", etc. will not be matched. This is in contrast to the JavaScript where the string values are
implicitly casted to numbers (based on operator, ex: ==). This choice is crucial for efficient index matching in
DocumentDB API SQL.

Cosmos DB supports queries with parameters expressed with the familiar @ notation. Parameterized SQL
provides robust handling and escaping of user input, preventing accidental exposure of data through SQL
injection.

For example, you can write a query that takes last name and address state as parameters, and then execute it for
various values of last name and address state based on user input.

This request can then be sent to Cosmos DB as a parameterized JSON query like shown below.

The argument to TOP can be set using parameterized queries like shown below.

Parameter values can be any valid JSON (strings, numbers, Booleans, null, even arrays or nested JSON). Also
since Cosmos DB is schema-less, parameters are not validated against any type.

Cosmos DB also supports a number of built-in functions for common operations, that can be used inside
queries like user defined functions (UDFs).

Mathematical functions ABS, CEILING, EXP, FLOOR, LOG, LOG10, POWER, ROUND,
SIGN, SQRT, SQUARE, TRUNC, ACOS, ASIN, ATAN, ATN2,
COS, COT, DEGREES, PI, RADIANS, SIN, and TAN

Type checking functions IS_ARRAY, IS_BOOL, IS_NULL, IS_NUMBER, IS_OBJECT,
IS_STRING, IS_DEFINED, and IS_PRIMITIVE

String functions CONCAT, CONTAINS, ENDSWITH, INDEX_OF, LEFT, LENGTH,
LOWER, LTRIM, REPLACE, REPLICATE, REVERSE, RIGHT,
RTRIM, STARTSWITH, SUBSTRING, and UPPER

Array functions ARRAY_CONCAT, ARRAY_CONTAINS, ARRAY_LENGTH, and
ARRAY_SLICE

Spatial functions ST_DISTANCE, ST_WITHIN, ST_INTERSECTS, ST_ISVALID, and
ST_ISVALIDDETAILED

FUNCTION GROUP OPERATIONS

Mathematical functions

USAGE DESCRIPTION

[ABS (num_expr) Returns the absolute (positive) value of the specified
numeric expression.

CEILING (num_expr) Returns the smallest integer value greater than, or equal to,
the specified numeric expression.

FLOOR (num_expr) Returns the largest integer less than or equal to the
specified numeric expression.

EXP (num_expr) Returns the exponent of the specified numeric expression.

LOG (num_expr [,base]) Returns the natural logarithm of the specified numeric
expression, or the logarithm using the specified base

LOG10 (num_expr) Returns the base-10 logarithmic value of the specified
numeric expression.

ROUND (num_expr) Returns a numeric value, rounded to the closest integer
value.

TRUNC (num_expr) Returns a numeric value, truncated to the closest integer
value.

SQRT (num_expr) Returns the square root of the specified numeric expression.

SQUARE (num_expr) Returns the square of the specified numeric expression.

If you’re currently using a user defined function (UDF) for which a built-in function is now available, you should
use the corresponding built-in function as it is going to be quicker to run and more efficiently.

The mathematical functions each perform a calculation, usually based on input values that are provided as
arguments, and return a numeric value. Here’s a table of supported built-in mathematical functions.

POWER (num_expr, num_expr) Returns the power of the specified numeric expression to
the value specifed.

SIGN (num_expr) Returns the sign value (-1, 0, 1) of the specified numeric
expression.

ACOS (num_expr) Returns the angle, in radians, whose cosine is the specified
numeric expression; also called arccosine.

ASIN (num_expr) Returns the angle, in radians, whose sine is the specified
numeric expression. This is also called arcsine.

ATAN (num_expr) Returns the angle, in radians, whose tangent is the specified
numeric expression. This is also called arctangent.

ATN2 (num_expr) Returns the angle, in radians, between the positive x-axis
and the ray from the origin to the point (y, x), where x and y
are the values of the two specified float expressions.

COS (num_expr) Returns the trigonometric cosine of the specified angle, in
radians, in the specified expression.

COT (num_expr) Returns the trigonometric cotangent of the specified angle,
in radians, in the specified numeric expression.

DEGREES (num_expr) Returns the corresponding angle in degrees for an angle
specified in radians.

PI () Returns the constant value of PI.

RADIANS (num_expr) Returns radians when a numeric expression, in degrees, is
entered.

SIN (num_expr) Returns the trigonometric sine of the specified angle, in
radians, in the specified expression.

TAN (num_expr) Returns the tangent of the input expression, in the specified
expression.

USAGE DESCRIPTION

SELECT VALUE ABS(-4)

[4]

For example, you can now run queries like the following:

Query

Results

The main difference between Cosmos DB’s functions compared to ANSI SQL is that they are designed to work
well with schema-less and mixed schema data. For example, if you have a document where the Size property is
missing, or has a non-numeric value like “unknown”, then the document is skipped over, instead of returning an

Type checking functions

Usage Description

IS_ARRAY (expr) Returns a Boolean indicating if the type of the value is an
array.

IS_BOOL (expr) Returns a Boolean indicating if the type of the value is a
Boolean.

IS_NULL (expr) Returns a Boolean indicating if the type of the value is null.

IS_NUMBER (expr) Returns a Boolean indicating if the type of the value is a
number.

IS_OBJECT (expr) Returns a Boolean indicating if the type of the value is a
JSON object.

IS_STRING (expr) Returns a Boolean indicating if the type of the value is a
string.

IS_DEFINED (expr) Returns a Boolean indicating if the property has been
assigned a value.

IS_PRIMITIVE (expr) Returns a Boolean indicating if the type of the value is a
string, number, Boolean or null.

SELECT VALUE IS_NUMBER(-4)

[true]

String functions

USAGE DESCRIPTION

LENGTH (str_expr) Returns the number of characters of the specified string
expression

CONCAT (str_expr, str_expr [, str_expr]) Returns a string that is the result of concatenating two or
more string values.

error.

The type checking functions allow you to check the type of an expression within SQL queries. Type checking
functions can be used to determine the type of properties within documents on the fly when it is variable or
unknown. Here’s a table of supported built-in type checking functions.

Using these functions, you can now run queries like the following:

Query

Results

The following scalar functions perform an operation on a string input value and return a string, numeric or
Boolean value. Here's a table of built-in string functions:

https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_is_array
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_is_bool
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_is_null
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_is_number
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_is_object
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_is_string
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_is_defined
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_is_primitive
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_length
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_concat

SUBSTRING (str_expr, num_expr, num_expr) Returns part of a string expression.

STARTSWITH (str_expr, str_expr) Returns a Boolean indicating whether the first string
expression ends with the second

ENDSWITH (str_expr, str_expr) Returns a Boolean indicating whether the first string
expression ends with the second

CONTAINS (str_expr, str_expr) Returns a Boolean indicating whether the first string
expression contains the second.

INDEX_OF (str_expr, str_expr) Returns the starting position of the first occurrence of the
second string expression within the first specified string
expression, or -1 if the string is not found.

LEFT (str_expr, num_expr) Returns the left part of a string with the specified number of
characters.

RIGHT (str_expr, num_expr) Returns the right part of a string with the specified number
of characters.

LTRIM (str_expr) Returns a string expression after it removes leading blanks.

RTRIM (str_expr) Returns a string expression after truncating all trailing
blanks.

LOWER (str_expr) Returns a string expression after converting uppercase
character data to lowercase.

UPPER (str_expr) Returns a string expression after converting lowercase
character data to uppercase.

REPLACE (str_expr, str_expr, str_expr) Replaces all occurrences of a specified string value with
another string value.

REPLICATE (str_expr, num_expr) Repeats a string value a specified number of times.

REVERSE (str_expr) Returns the reverse order of a string value.

USAGE DESCRIPTION

SELECT VALUE UPPER(Families.id)
FROM Families

Using these functions, you can now run queries like the following. For example, you can return the family name
in uppercase as follows:

Query

Results

https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_substring
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_startswith
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_endswith
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_contains
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_index_of
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_left
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_right
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_ltrim
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_rtrim
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_lower
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_upper
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_replace
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_replicate
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_reverse

[
 "WAKEFIELDFAMILY",
 "ANDERSENFAMILY"
]

SELECT Families.id, CONCAT(Families.address.city, ",", Families.address.state) AS location
FROM Families

[{
 "id": "WakefieldFamily",
 "location": "NY,NY"
},
{
 "id": "AndersenFamily",
 "location": "seattle,WA"
}]

SELECT Families.id, Families.address.city
FROM Families
WHERE STARTSWITH(Families.id, "Wakefield")

[{
 "id": "WakefieldFamily",
 "city": "NY"
}]

Array functions

USAGE DESCRIPTION

ARRAY_LENGTH (arr_expr) Returns the number of elements of the specified array
expression.

ARRAY_CONCAT (arr_expr, arr_expr [, arr_expr]) Returns an array that is the result of concatenating two or
more array values.

ARRAY_CONTAINS (arr_expr, expr) Returns a Boolean indicating whether the array contains the
specified value.

ARRAY_SLICE (arr_expr, num_expr [, num_expr]) Returns part of an array expression.

Or concatenate strings like in this example:

Query

Results

String functions can also be used in the WHERE clause to filter results, like in the following example:

Query

Results

The following scalar functions perform an operation on an array input value and return numeric, Boolean or
array value. Here's a table of built-in array functions:

https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_array_length
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_array_concat
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_array_contains
https://msdn.microsoft.com/library/azure/dn782250.aspx#bk_array_slice

SELECT Families.id
FROM Families
WHERE ARRAY_CONTAINS(Families.parents, { givenName: "Robin", familyName: "Wakefield" })

[{
 "id": "WakefieldFamily"
}]

SELECT Families.id, ARRAY_LENGTH(Families.children) AS numberOfChildren
FROM Families

[{
 "id": "WakefieldFamily",
 "numberOfChildren": 2
},
{
 "id": "AndersenFamily",
 "numberOfChildren": 1
}]

Spatial functions

Usage Description

ST_DISTANCE (point_expr, point_expr) Returns the distance between the two GeoJSON Point,
Polygon, or LineString expressions.

ST_WITHIN (point_expr, polygon_expr) Returns a Boolean expression indicating whether the first
GeoJSON object (Point, Polygon, or LineString) is within the
second GeoJSON object (Point, Polygon, or LineString).

ST_INTERSECTS (spatial_expr, spatial_expr) Returns a Boolean expression indicating whether the two
specified GeoJSON objects (Point, Polygon, or LineString)
intersect.

ST_ISVALID Returns a Boolean value indicating whether the specified
GeoJSON Point, Polygon, or LineString expression is valid.

Array functions can be used to manipulate arrays within JSON. For example, here's a query that returns all
documents where one of the parents is "Robin Wakefield".

Query

Results

Here's another example that uses ARRAY_LENGTH to get the number of children per family.

Query

Results

Cosmos DB supports the following Open Geospatial Consortium (OGC) built-in functions for geospatial
querying.

ST_ISVALIDDETAILED Returns a JSON value containing a Boolean value if the
specified GeoJSON Point, Polygon, or LineString expression
is valid, and if invalid, additionally the reason as a string
value.

SELECT f.id
FROM Families f
WHERE ST_DISTANCE(f.location, {'type': 'Point', 'coordinates':[31.9, -4.8]}) < 30000

[{
 "id": "WakefieldFamily"
}]

LINQ to DocumentDB API SQL

.NET and JSON mapping

Spatial functions can be used to perform proximity queries against spatial data. For example, here's a query that
returns all family documents that are within 30 km of the specified location using the ST_DISTANCE built-in
function.

Query

Results

For more details on geospatial support in Cosmos DB, please see Working with geospatial data in Azure
Cosmos DB. That wraps up spatial functions, and the SQL syntax for Cosmos DB. Now let's take a look at how
LINQ querying works and how it interacts with the syntax we've seen so far.

LINQ is a .NET programming model that expresses computation as queries on streams of objects. Cosmos DB
provides a client side library to interface with LINQ by facilitating a conversion between JSON and .NET objects
and a mapping from a subset of LINQ queries to Cosmos DB queries.

The picture below shows the architecture of supporting LINQ queries using Cosmos DB. Using the Cosmos DB
client, developers can create an IQueryable object that directly queries the Cosmos DB query provider, which
then translates the LINQ query into a Cosmos DB query. The query is then passed to the Cosmos DB server to
retrieve a set of results in JSON format. The returned results are deserialized into a stream of .NET objects on
the client side.

The mapping between .NET objects and JSON documents is natural - each data member field is mapped to a

public class Family
{
 [JsonProperty(PropertyName="id")]
 public string Id;
 public Parent[] parents;
 public Child[] children;
 public bool isRegistered;
};

public struct Parent
{
 public string familyName;
 public string givenName;
};

public class Child
{
 public string familyName;
 public string givenName;
 public string gender;
 public int grade;
 public List<Pet> pets;
};

public class Pet
{
 public string givenName;
};

public class Address
{
 public string state;
 public string county;
 public string city;
};

// Create a Family object.
Parent mother = new Parent { familyName= "Wakefield", givenName="Robin" };
Parent father = new Parent { familyName = "Miller", givenName = "Ben" };
Child child = new Child { familyName="Merriam", givenName="Jesse", gender="female", grade=1 };
Pet pet = new Pet { givenName = "Fluffy" };
Address address = new Address { state = "NY", county = "Manhattan", city = "NY" };
Family family = new Family { Id = "WakefieldFamily", parents = new Parent [] { mother, father}, children = new Child[] { child }, isRegistered
= false };

JSON object, where the field name is mapped to the "key" part of the object and the "value" part is recursively
mapped to the value part of the object. Consider the following example. The Family object created is mapped to
the JSON document as shown below. And vice versa, the JSON document is mapped back to a .NET object.

C# Class

JSON

{
 "id": "WakefieldFamily",
 "parents": [
 { "familyName": "Wakefield", "givenName": "Robin" },
 { "familyName": "Miller", "givenName": "Ben" }
],
 "children": [
 {
 "familyName": "Merriam",
 "givenName": "Jesse",
 "gender": "female",
 "grade": 1,
 "pets": [
 { "givenName": "Goofy" },
 { "givenName": "Shadow" }
]
 },
 {
 "familyName": "Miller",
 "givenName": "Lisa",
 "gender": "female",
 "grade": 8
 }
],
 "address": { "state": "NY", "county": "Manhattan", "city": "NY" },
 "isRegistered": false
};

LINQ to SQL translation

List of supported LINQ operators

The Cosmos DB query provider performs a best effort mapping from a LINQ query into a Cosmos DB SQL
query. In the following description, we assume the reader has a basic familiarity of LINQ.

First, for the type system, we support all JSON primitive types – numeric types, boolean, string, and null. Only
these JSON types are supported. The following scalar expressions are supported.

Constant values – these includes constant values of the primitive data types at the time the query is
evaluated.
Property/array index expressions – these expressions refer to the property of an object or an array
element.

family.Id; family.children[0].familyName; family.children[0].grade; family.children[n].grade; //n is an int
variable

Arithmetic expressions - These include common arithmetic expressions on numerical and boolean
values. For the complete list, refer to the SQL specification.

2 * family.children[0].grade; x + y;

String comparison expression - these include comparing a string value to some constant string value.

mother.familyName == "Smith"; child.givenName == s; //s is a string variable

Object/array creation expression - these expressions return an object of compound value type or
anonymous type or an array of such objects. These values can be nested.

new Parent { familyName = "Smith", givenName = "Joe" }; new { first = 1, second = 2 }; //an anonymous
type with 2 fields
new int[] { 3, child.grade, 5 };

Here is a list of supported LINQ operators in the LINQ provider included with the DocumentDB .NET SDK.

SQL query operators

Select OperatorSelect Operator

input.Select(family => family.parents[0].familyName);

SELECT VALUE f.parents[0].familyName
FROM Families f

input.Select(family => family.children[0].grade + c); // c is an int variable

SELECT VALUE f.children[0].grade + c
FROM Families f

Select: Projections translate to the SQL SELECT including object construction
Where: Filters translate to the SQL WHERE, and support translation between && , || and ! to the SQL
operators
SelectMany: Allows unwinding of arrays to the SQL JOIN clause. Can be used to chain/nest expressions to
filter on array elements
OrderBy and OrderByDescending: Translates to ORDER BY ascending/descending
Count, Sum, Min, Max, and Average operators for aggregation, and their async equivalents CountAsync,
SumAsync, MinAsync, MaxAsync, and AverageAsync.
CompareTo: Translates to range comparisons. Commonly used for strings since they’re not comparable in
.NET
Take: Translates to the SQL TOP for limiting results from a query
Math Functions: Supports translation from .NET’s Abs, Acos, Asin, Atan, Ceiling, Cos, Exp, Floor, Log, Log10,
Pow, Round, Sign, Sin, Sqrt, Tan, Truncate to the equivalent SQL built-in functions.
String Functions: Supports translation from .NET’s Concat, Contains, EndsWith, IndexOf, Count, ToLower,
TrimStart, Replace, Reverse, TrimEnd, StartsWith, SubString, ToUpper to the equivalent SQL built-in
functions.
Array Functions: Supports translation from .NET’s Concat, Contains, and Count to the equivalent SQL built-
in functions.
Geospatial Extension Functions: Supports translation from stub methods Distance, Within, IsValid, and
IsValidDetailed to the equivalent SQL built-in functions.
User Defined Function Extension Function: Supports translation from the stub method
UserDefinedFunctionProvider.Invoke to the corresponding user defined function.
Miscellaneous: Supports translation of the coalesce and conditional operators. Can translate Contains to
String CONTAINS, ARRAY_CONTAINS or the SQL IN depending on context.

Here are some examples that illustrate how some of the standard LINQ query operators are translated down to
Cosmos DB queries.

The syntax is input.Select(x => f(x)) , where f is a scalar expression.

LINQ lambda expression

SQL

LINQ lambda expression

SQL

LINQ lambda expression

input.Select(family => new
{
 name = family.children[0].familyName,
 grade = family.children[0].grade + 3
});

SELECT VALUE {"name":f.children[0].familyName,
 "grade": f.children[0].grade + 3 }
FROM Families f

SelectMany operatorSelectMany operator

input.SelectMany(family => family.children);

SELECT VALUE child
FROM child IN Families.children

Where operatorWhere operator

input.Where(family=> family.parents[0].familyName == "Smith");

SELECT *
FROM Families f
WHERE f.parents[0].familyName = "Smith"

input.Where(
 family => family.parents[0].familyName == "Smith" &&
 family.children[0].grade < 3);

SELECT *
FROM Families f
WHERE f.parents[0].familyName = "Smith"
AND f.children[0].grade < 3

Composite SQL queries

SQL

The syntax is input.SelectMany(x => f(x)) , where f is a scalar expression that returns a collection type.

LINQ lambda expression

SQL

The syntax is input.Where(x => f(x)) , where f is a scalar expression which returns a Boolean value.

LINQ lambda expression

SQL

LINQ lambda expression

SQL

The above operators can be composed to form more powerful queries. Since Cosmos DB supports nested

ConcatenationConcatenation

input.Select(family=>family.parents[0])
 .Where(familyName == "Smith");

SELECT *
FROM Families f
WHERE f.parents[0].familyName = "Smith"

input.Where(family => family.children[0].grade > 3)
 .Select(family => family.parents[0].familyName);

SELECT VALUE f.parents[0].familyName
FROM Families f
WHERE f.children[0].grade > 3

input.Select(family => new { grade=family.children[0].grade}).
 Where(anon=> anon.grade < 3);

SELECT *
FROM Families f
WHERE ({grade: f.children[0].grade}.grade > 3)

input.SelectMany(family => family.parents)
 .Where(parent => parents.familyName == "Smith");

SELECT *
FROM p IN Families.parents
WHERE p.familyName = "Smith"

NestingNesting

collections, the composition can either be concatenated or nested.

The syntax is input(.|.SelectMany())(.Select()|.Where())* . A concatenated query can start with an optional SelectMany

query followed by multiple Select or Where operators.

LINQ lambda expression

SQL

LINQ lambda expression

SQL

LINQ lambda expression

SQL

LINQ lambda expression

SQL

The syntax is input.SelectMany(x=>x.Q()) where Q is a Select , SelectMany , or Where operator.

input.SelectMany(family=>
 family.parents.Select(p => p.familyName));

SELECT VALUE p.familyName
FROM Families f
JOIN p IN f.parents

input.SelectMany(family =>
 family.children.Where(child => child.familyName == "Jeff"));

SELECT *
FROM Families f
JOIN c IN f.children
WHERE c.familyName = "Jeff"

input.SelectMany(family => family.children.Where(
 child => child.familyName == family.parents[0].familyName));

SELECT *
FROM Families f
JOIN c IN f.children
WHERE c.familyName = f.parents[0].familyName

Executing SQL queries

REST API

In a nested query, the inner query is applied to each element of the outer collection. One important feature is
that the inner query can refer to the fields of the elements in the outer collection like self-joins.

LINQ lambda expression

SQL

LINQ lambda expression

SQL

LINQ lambda expression

SQL

Cosmos DB exposes resources through a REST API that can be called by any language capable of making
HTTP/HTTPS requests. Additionally, Cosmos DB offers programming libraries for several popular languages like
.NET, Node.js, JavaScript and Python. The REST API and the various libraries all support querying through SQL.
The .NET SDK supports LINQ querying in addition to SQL.

The following examples show how to create a query and submit it against a Cosmos DB database account.

Cosmos DB offers an open RESTful programming model over HTTP. Database accounts can be provisioned
using an Azure subscription. The Cosmos DB resource model consists of a sets of resources under a database
account, each of which is addressable using a logical and stable URI. A set of resources is referred to as a feed in
this document. A database account consists of a set of databases, each containing multiple collections, each of
which in-turn contain documents, UDFs, and other resource types.

POST https://<REST URI>/docs HTTP/1.1
...
x-ms-documentdb-isquery: True
Content-Type: application/query+json

{
 "query": "SELECT * FROM Families f WHERE f.id = @familyId",
 "parameters": [
 {"name": "@familyId", "value": "AndersenFamily"}
]
}

The basic interaction model with these resources is through the HTTP verbs GET, PUT, POST and DELETE with
their standard interpretation. The POST verb is used for creation of a new resource, for executing a stored
procedure or for issuing a Cosmos DB query. Queries are always read only operations with no side-effects.

The following examples show a POST for a DocumentDB API query made against a collection containing the
two sample documents we've reviewed so far. The query has a simple filter on the JSON name property. Note
the use of the x-ms-documentdb-isquery and Content-Type: application/query+json headers to denote that the
operation is a query.

Request

Results

HTTP/1.1 200 Ok
x-ms-activity-id: 8b4678fa-a947-47d3-8dd3-549a40da6eed
x-ms-item-count: 1
x-ms-request-charge: 0.32

<indented for readability, results highlighted>

{
 "_rid":"u1NXANcKogE=",
 "Documents":[
 {
 "id":"AndersenFamily",
 "lastName":"Andersen",
 "parents":[
 {
 "firstName":"Thomas"
 },
 {
 "firstName":"Mary Kay"
 }
],
 "children":[
 {
 "firstName":"Henriette Thaulow",
 "gender":"female",
 "grade":5,
 "pets":[
 {
 "givenName":"Fluffy"
 }
]
 }
],
 "address":{
 "state":"WA",
 "county":"King",
 "city":"seattle"
 },
 "_rid":"u1NXANcKogEcAAAAAAAAAA==",
 "_ts":1407691744,
 "_self":"dbs\/u1NXAA==\/colls\/u1NXANcKogE=\/docs\/u1NXANcKogEcAAAAAAAAAA==\/",
 "_etag":"00002b00-0000-0000-0000-53e7abe00000",
 "_attachments":"_attachments\/"
 }
],
 "count":1
}

The second example shows a more complex query that returns multiple results from the join.

Request

POST https://<REST URI>/docs HTTP/1.1
...
x-ms-documentdb-isquery: True
Content-Type: application/query+json

{
 "query": "SELECT
 f.id AS familyName,
 c.givenName AS childGivenName,
 c.firstName AS childFirstName,
 p.givenName AS petName
 FROM Families f
 JOIN c IN f.children
 JOIN p in c.pets",
 "parameters": []
}

HTTP/1.1 200 Ok
x-ms-activity-id: 568f34e3-5695-44d3-9b7d-62f8b83e509d
x-ms-item-count: 1
x-ms-request-charge: 7.84

<indented for readability, results highlighted>

{
 "_rid":"u1NXANcKogE=",
 "Documents":[
 {
 "familyName":"AndersenFamily",
 "childFirstName":"Henriette Thaulow",
 "petName":"Fluffy"
 },
 {
 "familyName":"WakefieldFamily",
 "childGivenName":"Jesse",
 "petName":"Goofy"
 },
 {
 "familyName":"WakefieldFamily",
 "childGivenName":"Jesse",
 "petName":"Shadow"
 }
],
 "count":3
}

Results

If a query's results cannot fit within a single page of results, then the REST API returns a continuation token
through the x-ms-continuation-token response header. Clients can paginate results by including the header in
subsequent results. The number of results per page can also be controlled through the x-ms-max-item-count

number header. If the specified query has an aggregation function like COUNT , then the query page may return
a partially aggregated value over the page of results. The clients must perform a second level aggregation over
these results to produce the final results, for example, sum over the counts returned in the individual pages to
return the total count.

To manage the data consistency policy for queries, use the x-ms-consistency-level header like all REST API
requests. For session consistency, it is required to also echo the latest x-ms-session-token Cookie header in the
query request. Note that the queried collection's indexing policy can also influence the consistency of query
results. With the default indexing policy settings, for collections the index is always current with the document
contents and query results will match the consistency chosen for data. If the indexing policy is relaxed to Lazy,

 C# (.NET) SDK

foreach (var family in client.CreateDocumentQuery(collectionLink,
 "SELECT * FROM Families f WHERE f.id = \"AndersenFamily\""))
{
 Console.WriteLine("\tRead {0} from SQL", family);
}

SqlQuerySpec query = new SqlQuerySpec("SELECT * FROM Families f WHERE f.id = @familyId");
query.Parameters = new SqlParameterCollection();
query.Parameters.Add(new SqlParameter("@familyId", "AndersenFamily"));

foreach (var family in client.CreateDocumentQuery(collectionLink, query))
{
 Console.WriteLine("\tRead {0} from parameterized SQL", family);
}

foreach (var family in (
 from f in client.CreateDocumentQuery(collectionLink)
 where f.Id == "AndersenFamily"
 select f))
{
 Console.WriteLine("\tRead {0} from LINQ query", family);
}

foreach (var family in client.CreateDocumentQuery(collectionLink)
 .Where(f => f.Id == "AndersenFamily")
 .Select(f => f))
{
 Console.WriteLine("\tRead {0} from LINQ lambda", family);
}

then queries can return stale results. For more information, refer to Azure Cosmos DB Consistency Levels.

If the configured indexing policy on the collection cannot support the specified query, the Azure Cosmos DB
server returns 400 "Bad Request". This is returned for range queries against paths configured for hash
(equality) lookups, and for paths explicitly excluded from indexing. The x-ms-documentdb-query-enable-scan header
can be specified to allow the query to perform a scan when an index is not available.

The .NET SDK supports both LINQ and SQL querying. The following example shows how to perform the simple
filter query introduced earlier in this document.

This sample compares two properties for equality within each document and uses anonymous projections.

foreach (var family in client.CreateDocumentQuery(collectionLink,
 @"SELECT {""Name"": f.id, ""City"":f.address.city} AS Family
 FROM Families f
 WHERE f.address.city = f.address.state"))
{
 Console.WriteLine("\tRead {0} from SQL", family);
}

foreach (var family in (
 from f in client.CreateDocumentQuery<Family>(collectionLink)
 where f.address.city == f.address.state
 select new { Name = f.Id, City = f.address.city }))
{
 Console.WriteLine("\tRead {0} from LINQ query", family);
}

foreach (var family in
 client.CreateDocumentQuery<Family>(collectionLink)
 .Where(f => f.address.city == f.address.state)
 .Select(f => new { Name = f.Id, City = f.address.city }))
{
 Console.WriteLine("\tRead {0} from LINQ lambda", family);
}

foreach (var pet in client.CreateDocumentQuery(collectionLink,
 @"SELECT p
 FROM Families f
 JOIN c IN f.children
 JOIN p in c.pets
 WHERE p.givenName = ""Shadow"""))
{
 Console.WriteLine("\tRead {0} from SQL", pet);
}

// Equivalent in Lambda expressions
foreach (var pet in
 client.CreateDocumentQuery<Family>(collectionLink)
 .SelectMany(f => f.children)
 .SelectMany(c => c.pets)
 .Where(p => p.givenName == "Shadow"))
{
 Console.WriteLine("\tRead {0} from LINQ lambda", pet);
}

The next sample shows joins, expressed through LINQ SelectMany.

The .NET client automatically iterates through all the pages of query results in the foreach blocks as shown
above. The query options introduced in the REST API section are also available in the .NET SDK using the
FeedOptions and FeedResponse classes in the CreateDocumentQuery method. The number of pages can be

controlled using the MaxItemCount setting.

You can also explicitly control paging by creating IDocumentQueryable using the IQueryable object, then by
reading the ResponseContinuationToken values and passing them back as RequestContinuationToken in FeedOptions .
EnableScanInQuery can be set to enable scans when the query cannot be supported by the configured indexing

policy. For partitioned collections, you can use PartitionKey to run the query against a single partition (though
Cosmos DB can automatically extract this from the query text), and EnableCrossPartitionQuery to run queries that
may need to be run against multiple partitions.

Refer to Azure Cosmos DB .NET samples for more samples containing queries.

https://github.com/Azure/azure-documentdb-net

NOTE

JavaScript server-side API

function businessLogic(name, author) {
 var context = getContext();
 var collectionManager = context.getCollection();
 var collectionLink = collectionManager.getSelfLink()

 // create a new document.
 collectionManager.createDocument(collectionLink,
 { name: name, author: author },
 function (err, documentCreated) {
 if (err) throw new Error(err.message);

 // filter documents by author
 var filterQuery = "SELECT * from root r WHERE r.author = 'George R.'";
 collectionManager.queryDocuments(collectionLink,
 filterQuery,
 function (err, matchingDocuments) {
 if (err) throw new Error(err.message);
context.getResponse().setBody(matchingDocuments.length);

 // Replace the author name for all documents that satisfied the query.
 for (var i = 0; i < matchingDocuments.length; i++) {
 matchingDocuments[i].author = "George R. R. Martin";
 // we don't need to execute a callback because they are in parallel
 collectionManager.replaceDocument(matchingDocuments[i]._self,
 matchingDocuments[i]);
 }
 })
 });
}

References

In order to perform aggregation queries, you need SDKs 1.12.0 or above. LINQ support for aggregation functions is not
supported but will be available in .NET SDK 1.13.0.

Cosmos DB provides a programming model for executing JavaScript based application logic directly on the
collections using stored procedures and triggers. The JavaScript logic registered at a collection level can then
issue database operations on the operations on the documents of the given collection. These operations are
wrapped in ambient ACID transactions.

The following example show how to use the queryDocuments in the JavaScript server API to make queries from
inside stored procedures and triggers.

1. Introduction to Azure Cosmos DB
2. Azure Cosmos DB SQL specification
3. Azure Cosmos DB .NET samples
4. Azure Cosmos DB Consistency Levels
5. ANSI SQL 2011 http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=53681
6. JSON http://json.org/
7. Javascript Specification http://www.ecma-international.org/publications/standards/Ecma-262.htm
8. LINQ http://msdn.microsoft.com/library/bb308959.aspx
9. Query evaluation techniques for large databases http://dl.acm.org/citation.cfm?id=152611

10. Query Processing in Parallel Relational Database Systems, IEEE Computer Society Press, 1994
11. Lu, Ooi, Tan, Query Processing in Parallel Relational Database Systems, IEEE Computer Society Press, 1994.

http://go.microsoft.com/fwlink/p/?LinkID=510612
https://github.com/Azure/azure-documentdb-net
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=53681
http://json.org/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://msdn.microsoft.com/library/bb308959.aspx
http://dl.acm.org/citation.cfm?id=152611

12. Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, Andrew Tomkins: Pig Latin: A Not-So-
Foreign Language for Data Processing, SIGMOD 2008.

13. G. Graefe. The Cascades framework for query optimization. IEEE Data Eng. Bull., 18(3): 1995.

Partitioning in Azure Cosmos DB using the
DocumentDB API
5/30/2017 • 7 min to read • Edit Online

Partition keys

NOTE

Microsoft Azure Cosmos DB is a global distributed, multi-model database service designed to help you achieve
fast, predictable performance and scale seamlessly along with your application as it grows.

This article provides an overview of how to work with partitioning of Cosmos DB containers with the DocumentDB
API. See partitioning and horizontal scaling for an overview of concepts and best practices for partitioning with any
Azure Cosmos DB API.

To get started with code, download the project from Github.

After reading this article, you will be able to answer the following questions:

How does partitioning work in Azure Cosmos DB?
How do I configure partitioning in Azure Cosmos DB
What are partition keys, and how do I pick the right partition key for my application?

To get started with code, download the project from Azure Cosmos DB Performance Testing Driver Sample.

In the DocumentDB API, you specify the partition key definition in the form of a JSON path. The following table
shows examples of partition key definitions and the values corresponding to each. The partition key is specified as
a path, e.g. /department represents the property department.

Partition Key Description

/department Corresponds to the value of doc.department where doc is
the item.

/properties/name Corresponds to the value of doc.properties.name where
doc is the item (nested property).

/id Corresponds to the value of doc.id (id and partition key
are the same property).

/"department name" Corresponds to the value of doc["department name"]
where doc is the item.

The syntax for partition key is similar to the path specification for indexing policy paths with the key difference that the path
corresponds to the property instead of the value, i.e. there is no wild card at the end. For example, you would specify
/department/? to index the values under department, but specify /department as the partition key definition. The partition
key is implicitly indexed and cannot be excluded from indexing using indexing policy overrides.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/documentdb-partition-data.md
https://github.com/Azure/azure-documentdb-dotnet/tree/a2d61ddb53f8ab2a23d3ce323c77afcf5a608f52/samples/documentdb-benchmark
https://github.com/Azure/azure-documentdb-dotnet/tree/a2d61ddb53f8ab2a23d3ce323c77afcf5a608f52/samples/documentdb-benchmark

 Working with the DocumentDB SDKs

Creating containers

DocumentClient client = new DocumentClient(new Uri(endpoint), authKey);
await client.CreateDatabaseAsync(new Database { Id = "db" });

// Container for device telemetry. Here the property deviceId will be used as the partition key to
// spread across partitions. Configured for 10K RU/s throughput and an indexing policy that supports
// sorting against any number or string property.
DocumentCollection myCollection = new DocumentCollection();
myCollection.Id = "coll";
myCollection.PartitionKey.Paths.Add("/deviceId");

await client.CreateDocumentCollectionAsync(
 UriFactory.CreateDatabaseUri("db"),
 myCollection,
 new RequestOptions { OfferThroughput = 20000 });

Reading and writing items

Let's look at how the choice of partition key impacts the performance of your application.

Azure Cosmos DB added support for automatic partitioning with REST API version 2015-12-16. In order to create
partitioned containers, you must download SDK versions 1.6.0 or newer in one of the supported SDK platforms
(.NET, Node.js, Java, Python, MongoDB).

The following sample shows a .NET snippet to create a container to store device telemetry data of 20,000 request
units per second of throughput. The SDK sets the OfferThroughput value (which in turn sets the x-ms-offer-throughput

request header in the REST API). Here we set the /deviceId as the partition key. The choice of partition key is saved
along with the rest of the container metadata like name and indexing policy.

For this sample, we picked deviceId since we know that (a) since there are a large number of devices, writes can be
distributed across partitions evenly and allowing us to scale the database to ingest massive volumes of data and
(b) many of the requests like fetching the latest reading for a device are scoped to a single deviceId and can be
retrieved from a single partition.

This method makes a REST API call to Cosmos DB, and the service will provision a number of partitions based on
the requested throughput. You can change the throughput of a container as your performance needs evolve.

Now, let's insert data into Cosmos DB. Here's a sample class containing a device reading, and a call to
CreateDocumentAsync to insert a new device reading into a container. This is an example leveraging the
DocumentDB API:

https://msdn.microsoft.com/library/azure/dn781481.aspx

public class DeviceReading
{
 [JsonProperty("id")]
 public string Id;

 [JsonProperty("deviceId")]
 public string DeviceId;

 [JsonConverter(typeof(IsoDateTimeConverter))]
 [JsonProperty("readingTime")]
 public DateTime ReadingTime;

 [JsonProperty("metricType")]
 public string MetricType;

 [JsonProperty("unit")]
 public string Unit;

 [JsonProperty("metricValue")]
 public double MetricValue;
 }

// Create a document. Here the partition key is extracted as "XMS-0001" based on the collection definition
await client.CreateDocumentAsync(
 UriFactory.CreateDocumentCollectionUri("db", "coll"),
 new DeviceReading
 {
 Id = "XMS-001-FE24C",
 DeviceId = "XMS-0001",
 MetricType = "Temperature",
 MetricValue = 105.00,
 Unit = "Fahrenheit",
 ReadingTime = DateTime.UtcNow
 });

// Read document. Needs the partition key and the ID to be specified
Document result = await client.ReadDocumentAsync(
 UriFactory.CreateDocumentUri("db", "coll", "XMS-001-FE24C"),
 new RequestOptions { PartitionKey = new PartitionKey("XMS-0001") });

DeviceReading reading = (DeviceReading)(dynamic)result;

// Update the document. Partition key is not required, again extracted from the document
reading.MetricValue = 104;
reading.ReadingTime = DateTime.UtcNow;

await client.ReplaceDocumentAsync(
 UriFactory.CreateDocumentUri("db", "coll", "XMS-001-FE24C"),
 reading);

// Delete document. Needs partition key
await client.DeleteDocumentAsync(
 UriFactory.CreateDocumentUri("db", "coll", "XMS-001-FE24C"),
 new RequestOptions { PartitionKey = new PartitionKey("XMS-0001") });

Querying partitioned containers

Let's read the item by its partition key and id, update it, and then as a final step, delete it by partition key and id.
Note that the reads include a PartitionKey value (corresponding to the x-ms-documentdb-partitionkey request header in
the REST API).

When you query data in partitioned containers, Cosmos DB automatically routes the query to the partitions
corresponding to the partition key values specified in the filter (if there are any). For example, this query is routed
to just the partition containing the partition key "XMS-0001".

// Query using partition key
IQueryable<DeviceReading> query = client.CreateDocumentQuery<DeviceReading>(
 UriFactory.CreateDocumentCollectionUri("db", "coll"))
 .Where(m => m.MetricType == "Temperature" && m.DeviceId == "XMS-0001");

// Query across partition keys
IQueryable<DeviceReading> crossPartitionQuery = client.CreateDocumentQuery<DeviceReading>(
 UriFactory.CreateDocumentCollectionUri("db", "coll"),
 new FeedOptions { EnableCrossPartitionQuery = true })
 .Where(m => m.MetricType == "Temperature" && m.MetricValue > 100);

Parallel query execution

// Cross-partition Order By Queries
IQueryable<DeviceReading> crossPartitionQuery = client.CreateDocumentQuery<DeviceReading>(
 UriFactory.CreateDocumentCollectionUri("db", "coll"),
 new FeedOptions { EnableCrossPartitionQuery = true, MaxDegreeOfParallelism = 10, MaxBufferedItemCount = 100})
 .Where(m => m.MetricType == "Temperature" && m.MetricValue > 100)
 .OrderBy(m => m.MetricValue);

Executing stored procedures

await client.ExecuteStoredProcedureAsync<DeviceReading>(
 UriFactory.CreateStoredProcedureUri("db", "coll", "SetLatestStateAcrossReadings"),
 new RequestOptions { PartitionKey = new PartitionKey("XMS-001") },
 "XMS-001-FE24C");

The following query does not have a filter on the partition key (DeviceId) and is fanned out to all partitions where it
is executed against the partition's index. Note that you have to specify the EnableCrossPartitionQuery (
x-ms-documentdb-query-enablecrosspartition in the REST API) to have the SDK to execute a query across partitions.

Cosmos DB supports aggregate functions COUNT , MIN , MAX , SUM and AVG over partitioned containers using
SQL starting with SDKs 1.12.0 and above. Queries must include a single aggregate operator, and must include a
single value in the projection.

The Cosmos DB SDKs 1.9.0 and above support parallel query execution options, which allow you to perform low
latency queries against partitioned collections, even when they need to touch a large number of partitions. For
example, the following query is configured to run in parallel across partitions.

You can manage parallel query execution by tuning the following parameters:

By setting MaxDegreeOfParallelism , you can control the degree of parallelism i.e., the maximum number of
simultaneous network connections to the container's partitions. If you set this to -1, the degree of parallelism is
managed by the SDK. If the MaxDegreeOfParallelism is not specified or set to 0, which is the default value, there will
be a single network connection to the container's partitions.
By setting MaxBufferedItemCount , you can trade off query latency and client-side memory utilization. If you omit
this parameter or set this to -1, the number of items buffered during parallel query execution is managed by the
SDK.

Given the same state of the collection, a parallel query will return results in the same order as in serial execution.
When performing a cross-partition query that includes sorting (ORDER BY and/or TOP), the DocumentDB SDK
issues the query in parallel across partitions and merges partially sorted results in the client side to produce
globally ordered results.

You can also execute atomic transactions against documents with the same device ID, e.g. if you're maintaining
aggregates or the latest state of a device in a single item.

Next steps

In the next section, we look at how you can move to partitioned containers from single-partition containers.

In this article, we provided an overview of how to work with partitioning of Cosmos DB containers with the
DocumentDB API. Also see partitioning and horizontal scaling for an overview of concepts and best practices for
partitioning with any Azure Cosmos DB API.

Perform scale and performance testing with Cosmos DB. See Performance and Scale Testing with Azure
Cosmos DB for a sample.
Get started coding with the SDKs or the REST API
Learn about provisioned throughput in Azure Cosmos DB

https://msdn.microsoft.com/library/azure/dn781481.aspx

Azure Cosmos DB server-side programming: Stored
procedures, database triggers, and UDFs
6/13/2017 • 25 min to read • Edit Online

Introduction to Stored Procedure and UDF Programming

Learn how Azure Cosmos DB’s language integrated, transactional execution of JavaScript lets developers write
stored procedures, triggers and user defined functions (UDFs) natively in an ECMAScript 2015 JavaScript.
This allows you to write database program application logic that can be shipped and executed directly on the
database storage partitions.

We recommend getting started by watching the following video, where Andrew Liu provides a brief introduction
to Cosmos DB's server-side database programming model.

Then, return to this article, where you'll learn the answers to the following questions:

How do I write a a stored procedure, trigger, or UDF using JavaScript?
How does Cosmos DB guarantee ACID?
How do transactions work in Cosmos DB?
What are pre-triggers and post-triggers and how do I write one?
How do I register and execute a stored procedure, trigger, or UDF in a RESTful manner by using HTTP?
What Cosmos DB SDKs are available to create and execute stored procedures, triggers, and UDFs?

This approach of “JavaScript as a modern day T-SQL” frees application developers from the complexities of type
system mismatches and object-relational mapping technologies. It also has a number of intrinsic advantages that
can be utilized to build rich applications:

Procedural Logic: JavaScript as a high level programming language, provides a rich and familiar interface to
express business logic. You can perform complex sequences of operations closer to the data.
Atomic Transactions: Cosmos DB guarantees that database operations performed inside a single stored
procedure or trigger are atomic. This lets an application combine related operations in a single batch so that
either all of them succeed or none of them succeed.
Performance: The fact that JSON is intrinsically mapped to the Javascript language type system and is also
the basic unit of storage in Cosmos DB allows for a number of optimizations like lazy materialization of
JSON documents in the buffer pool and making them available on-demand to the executing code. There are
more performance benefits associated with shipping business logic to the database:

Batching – Developers can group operations like inserts and submit them in bulk. The network traffic
latency cost and the store overhead to create separate transactions are reduced significantly.
Pre-compilation – Cosmos DB precompiles stored procedures, triggers and user defined functions
(UDFs) to avoid JavaScript compilation cost for each invocation. The overhead of building the byte code
for the procedural logic is amortized to a minimal value.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/programming.md
http://www.ecma-international.org/ecma-262/6.0/

Stored procedures
Example: Write a simple stored procedure

var helloWorldStoredProc = {
 id: "helloWorld",
 serverScript: function () {
 var context = getContext();
 var response = context.getResponse();

 response.setBody("Hello, World");
 }
}

// register the stored procedure
var createdStoredProcedure;
client.createStoredProcedureAsync('dbs/testdb/colls/testColl', helloWorldStoredProc)
 .then(function (response) {
 createdStoredProcedure = response.resource;
 console.log("Successfully created stored procedure");
 }, function (error) {
 console.log("Error", error);
 });

// execute the stored procedure
client.executeStoredProcedureAsync('dbs/testdb/colls/testColl/sprocs/helloWorld')
 .then(function (response) {
 console.log(response.result); // "Hello, World"
 }, function (err) {
 console.log("Error", error);
 });

Encapsulation: Stored procedures can be used to group business logic in one place. This has two advantages:

Sequencing – Many operations need a side-effect (“trigger”) that potentially involves doing one or many
secondary store operations. Aside from atomicity, this is more performant when moved to the server.

It adds an abstraction layer on top of the raw data, which enables data architects to evolve their
applications independently from the data. This is particularly advantageous when the data is schema-
less, due to the brittle assumptions that may need to be baked into the application if they have to deal
with data directly.
This abstraction lets enterprises keep their data secure by streamlining the access from the scripts.

The creation and execution of database triggers, stored procedure and custom query operators is supported
through the REST API, Azure Cosmos DB Studio, and client SDKs in many platforms including .NET, Node.js and
JavaScript.

This tutorial uses the Node.js SDK with Q Promises to illustrate syntax and usage of stored procedures, triggers,
and UDFs.

Let’s start with a simple stored procedure that returns a “Hello World” response.

Stored procedures are registered per collection, and can operate on any document and attachment present in that
collection. The following snippet shows how to register the helloWorld stored procedure with a collection.

Once the stored procedure is registered, we can execute it against the collection, and read the results back at the
client.

The context object provides access to all operations that can be performed on Cosmos DB storage, as well as

https://msdn.microsoft.com/library/azure/dn781481.aspx
https://github.com/mingaliu/DocumentDBStudio/releases
http://azure.github.io/azure-documentdb-node-q/

Example: Write a stored procedure to create a document

var createDocumentStoredProc = {
 id: "createMyDocument",
 serverScript: function createMyDocument(documentToCreate) {
 var context = getContext();
 var collection = context.getCollection();

 var accepted = collection.createDocument(collection.getSelfLink(),
 documentToCreate,
 function (err, documentCreated) {
 if (err) throw new Error('Error' + err.message);
 context.getResponse().setBody(documentCreated.id)
 });
 if (!accepted) return;
 }
}

// register the stored procedure
client.createStoredProcedureAsync('dbs/testdb/colls/testColl', createDocumentStoredProc)
 .then(function (response) {
 var createdStoredProcedure = response.resource;

 // run stored procedure to create a document
 var docToCreate = {
 id: "DocFromSproc",
 book: "The Hitchhiker’s Guide to the Galaxy",
 author: "Douglas Adams"
 };

 return client.executeStoredProcedureAsync('dbs/testdb/colls/testColl/sprocs/createMyDocument',
 docToCreate);
 }, function (error) {
 console.log("Error", error);
 })
.then(function (response) {
 console.log(response); // "DocFromSproc"
}, function (error) {
 console.log("Error", error);
});

access to the request and response objects. In this case, we used the response object to set the body of the
response that was sent back to the client. For more details, refer to the Azure Cosmos DB JavaScript server SDK
documentation.

Let us expand on this example and add more database related functionality to the stored procedure. Stored
procedures can create, update, read, query and delete documents and attachments inside the collection.

The next snippet shows how to use the context object to interact with Cosmos DB resources.

This stored procedure takes as input documentToCreate, the body of a document to be created in the current
collection. All such operations are asynchronous and depend on JavaScript function callbacks. The callback
function has two parameters, one for the error object in case the operation fails, and one for the created object.
Inside the callback, users can either handle the exception or throw an error. In case a callback is not provided and
there is an error, the Azure Cosmos DB runtime throws an error.

In the example above, the callback throws an error if the operation failed. Otherwise, it sets the id of the created
document as the body of the response to the client. Here is how this stored procedure is executed with input
parameters.

Note that this stored procedure can be modified to take an array of document bodies as input and create them all
in the same stored procedure execution instead of multiple network requests to create each of them individually.

http://azure.github.io/azure-documentdb-js-server/

 Database program transactions

This can be used to implement an efficient bulk importer for Cosmos DB (discussed later in this tutorial).

The example described demonstrated how to use stored procedures. We will cover triggers and user defined
functions (UDFs) later in the tutorial.

Transaction in a typical database can be defined as a sequence of operations performed as a single logical unit of
work. Each transaction provides ACID guarantees. ACID is a well-known acronym that stands for four properties -
Atomicity, Consistency, Isolation and Durability.

Briefly, atomicity guarantees that all the work done inside a transaction is treated as a single unit where either all
of it is committed or none. Consistency makes sure that the data is always in a good internal state across
transactions. Isolation guarantees that no two transactions interfere with each other – generally, most commercial
systems provide multiple isolation levels that can be used based on the application needs. Durability ensures that
any change that’s committed in the database will always be present.

In Cosmos DB, JavaScript is hosted in the same memory space as the database. Hence, requests made within
stored procedures and triggers execute in the same scope of a database session. This enables Cosmos DB to
guarantee ACID for all operations that are part of a single stored procedure/trigger. Consider the following stored
procedure definition:

// JavaScript source code
var exchangeItemsSproc = {
 id: "exchangeItems",
 serverScript: function (playerId1, playerId2) {
 var context = getContext();
 var collection = context.getCollection();
 var response = context.getResponse();

 var player1Document, player2Document;

 // query for players
 var filterQuery = 'SELECT * FROM Players p where p.id = "' + playerId1 + '"';
 var accept = collection.queryDocuments(collection.getSelfLink(), filterQuery, {},
 function (err, documents, responseOptions) {
 if (err) throw new Error("Error" + err.message);

 if (documents.length != 1) throw "Unable to find both names";
 player1Document = documents[0];

 var filterQuery2 = 'SELECT * FROM Players p where p.id = "' + playerId2 + '"';
 var accept2 = collection.queryDocuments(collection.getSelfLink(), filterQuery2, {},
 function (err2, documents2, responseOptions2) {
 if (err2) throw new Error("Error" + err2.message);
 if (documents2.length != 1) throw "Unable to find both names";
 player2Document = documents2[0];
 swapItems(player1Document, player2Document);
 return;
 });
 if (!accept2) throw "Unable to read player details, abort ";
 });

 if (!accept) throw "Unable to read player details, abort ";

 // swap the two players’ items
 function swapItems(player1, player2) {
 var player1ItemSave = player1.item;
 player1.item = player2.item;
 player2.item = player1ItemSave;

 var accept = collection.replaceDocument(player1._self, player1,
 function (err, docReplaced) {
 if (err) throw "Unable to update player 1, abort ";

 var accept2 = collection.replaceDocument(player2._self, player2,
 function (err2, docReplaced2) {
 if (err) throw "Unable to update player 2, abort"
 });

 if (!accept2) throw "Unable to update player 2, abort";
 });

 if (!accept) throw "Unable to update player 1, abort";
 }
 }
}

// register the stored procedure in Node.js client
client.createStoredProcedureAsync(collection._self, exchangeItemsSproc)
 .then(function (response) {
 var createdStoredProcedure = response.resource;
 }
);

This stored procedure uses transactions within a gaming app to trade items between two players in a single
operation. The stored procedure attempts to read two documents each corresponding to the player IDs passed in
as an argument. If both player documents are found, then the stored procedure updates the documents by

Commit and rollback

Data consistency

Bounded execution

Example: Bulk importing data into a database program

swapping their items. If any errors are encountered along the way, it throws a JavaScript exception that implicitly
aborts the transaction.

If the collection the stored procedure is registered against is a single-partition collection, then the transaction is
scoped to all the documents within the collection. If the collection is partitioned, then stored procedures are
executed in the transaction scope of a single partition key. Each stored procedure execution must then include a
partition key value corresponding to the scope the transaction must run under. For more details, see Azure
Cosmos DB Partitioning.

Transactions are deeply and natively integrated into Cosmos DB’s JavaScript programming model. Inside a
JavaScript function, all operations are automatically wrapped under a single transaction. If the JavaScript
completes without any exception, the operations to the database are committed. In effect, the “BEGIN
TRANSACTION” and “COMMIT TRANSACTION” statements in relational databases are implicit in Cosmos DB.

If there is any exception that’s propagated from the script, Cosmos DB’s JavaScript runtime will roll back the whole
transaction. As shown in the earlier example, throwing an exception is effectively equivalent to a “ROLLBACK
TRANSACTION” in Cosmos DB.

Stored procedures and triggers are always executed on the primary replica of the DocumentDB collection. This
ensures that reads from inside stored procedures offer strong consistency. Queries using user defined functions
can be executed on the primary or any secondary replica, but we ensure to meet the requested consistency level
by choosing the appropriate replica.

All Cosmos DB operations must complete within the server specified request timeout duration. This constraint also
applies to JavaScript functions (stored procedures, triggers and user-defined functions). If an operation does not
complete with that time limit, the transaction is rolled back. JavaScript functions must finish within the time limit
or implement a continuation based model to batch/resume execution.

In order to simplify development of stored procedures and triggers to handle time limits, all functions under the
collection object (for create, read, replace, and delete of documents and attachments) return a Boolean value that
represents whether that operation will complete. If this value is false, it is an indication that the time limit is about
to expire and that the procedure must wrap up execution. Operations queued prior to the first unaccepted store
operation are guaranteed to complete if the stored procedure completes in time and does not queue any more
requests.

JavaScript functions are also bounded on resource consumption. Cosmos DB reserves throughput per collection
based on the provisioned size of a database account. Throughput is expressed in terms of a normalized unit of
CPU, memory and IO consumption called request units or RUs. JavaScript functions can potentially use up a large
number of RUs within a short time, and might get rate-limited if the collection’s limit is reached. Resource
intensive stored procedures might also be quarantined to ensure availability of primitive database operations.

Below is an example of a stored procedure that is written to bulk-import documents into a collection. Note how
the stored procedure handles bounded execution by checking the Boolean return value from createDocument, and
then uses the count of documents inserted in each invocation of the stored procedure to track and resume
progress across batches.

function bulkImport(docs) {
 var collection = getContext().getCollection();
 var collectionLink = collection.getSelfLink();

 // The count of imported docs, also used as current doc index.
 var count = 0;

 // Validate input.
 if (!docs) throw new Error("The array is undefined or null.");

 var docsLength = docs.length;
 if (docsLength == 0) {
 getContext().getResponse().setBody(0);
 }

 // Call the create API to create a document.
 tryCreate(docs[count], callback);

 // Note that there are 2 exit conditions:
 // 1) The createDocument request was not accepted.
 // In this case the callback will not be called, we just call setBody and we are done.
 // 2) The callback was called docs.length times.
 // In this case all documents were created and we don’t need to call tryCreate anymore. Just call setBody and we are done.
 function tryCreate(doc, callback) {
 var isAccepted = collection.createDocument(collectionLink, doc, callback);

 // If the request was accepted, callback will be called.
 // Otherwise report current count back to the client,
 // which will call the script again with remaining set of docs.
 if (!isAccepted) getContext().getResponse().setBody(count);
 }

 // This is called when collection.createDocument is done in order to process the result.
 function callback(err, doc, options) {
 if (err) throw err;

 // One more document has been inserted, increment the count.
 count++;

 if (count >= docsLength) {
 // If we created all documents, we are done. Just set the response.
 getContext().getResponse().setBody(count);
 } else {
 // Create next document.
 tryCreate(docs[count], callback);
 }
 }
}

Database triggers
Database pre-triggers

Cosmos DB provides triggers that are executed or triggered by an operation on a document. For example, you can
specify a pre-trigger when you are creating a document – this pre-trigger will run before the document is created.
The following is an example of how pre-triggers can be used to validate the properties of a document that is being
created:

var validateDocumentContentsTrigger = {
 id: "validateDocumentContents",
 serverScript: function validate() {
 var context = getContext();
 var request = context.getRequest();

 // document to be created in the current operation
 var documentToCreate = request.getBody();

 // validate properties
 if (!("timestamp" in documentToCreate)) {
 var ts = new Date();
 documentToCreate["my timestamp"] = ts.getTime();
 }

 // update the document that will be created
 request.setBody(documentToCreate);
 },
 triggerType: TriggerType.Pre,
 triggerOperation: TriggerOperation.Create
}

// register pre-trigger
client.createTriggerAsync(collection.self, validateDocumentContentsTrigger)
 .then(function (response) {
 console.log("Created", response.resource);
 var docToCreate = {
 id: "DocWithTrigger",
 event: "Error",
 source: "Network outage"
 };

 // run trigger while creating above document
 var options = { preTriggerInclude: "validateDocumentContents" };

 return client.createDocumentAsync(collection.self,
 docToCreate, options);
 }, function (error) {
 console.log("Error", error);
 })
.then(function (response) {
 console.log(response.resource); // document with timestamp property added
}, function (error) {
 console.log("Error", error);
});

And the corresponding Node.js client-side registration code for the trigger:

Pre-triggers cannot have any input parameters. The request object can be used to manipulate the request message
associated with the operation. Here, the pre-trigger is being run with the creation of a document, and the request
message body contains the document to be created in JSON format.

When triggers are registered, users can specify the operations that it can run with. This trigger was created with
TriggerOperation.Create, which means the following is not permitted.

var options = { preTriggerInclude: "validateDocumentContents" };

client.replaceDocumentAsync(docToReplace.self,
 newDocBody, options)
.then(function (response) {
 console.log(response.resource);
}, function (error) {
 console.log("Error", error);
});

// Fails, can’t use a create trigger in a replace operation

Database post-triggers

var updateMetadataTrigger = {
 id: "updateMetadata",
 serverScript: function updateMetadata() {
 var context = getContext();
 var collection = context.getCollection();
 var response = context.getResponse();

 // document that was created
 var createdDocument = response.getBody();

 // query for metadata document
 var filterQuery = 'SELECT * FROM root r WHERE r.id = "_metadata"';
 var accept = collection.queryDocuments(collection.getSelfLink(), filterQuery,
 updateMetadataCallback);
 if(!accept) throw "Unable to update metadata, abort";

 function updateMetadataCallback(err, documents, responseOptions) {
 if(err) throw new Error("Error" + err.message);
 if(documents.length != 1) throw 'Unable to find metadata document';

 var metadataDocument = documents[0];

 // update metadata
 metadataDocument.createdDocuments += 1;
 metadataDocument.createdNames += " " + createdDocument.id;
 var accept = collection.replaceDocument(metadataDocument._self,
 metadataDocument, function(err, docReplaced) {
 if(err) throw "Unable to update metadata, abort";
 });
 if(!accept) throw "Unable to update metadata, abort";
 return;
 }
 },
 triggerType: TriggerType.Post,
 triggerOperation: TriggerOperation.All
}

Post-triggers, like pre-triggers, are associated with an operation on a document and don’t take any input
parameters. They run after the operation has completed, and have access to the response message that is sent to
the client.

The following example shows post-triggers in action:

The trigger can be registered as shown in the following sample.

// register post-trigger
client.createTriggerAsync('dbs/testdb/colls/testColl', updateMetadataTrigger)
 .then(function(createdTrigger) {
 var docToCreate = {
 name: "artist_profile_1023",
 artist: "The Band",
 albums: ["Hellujah", "Rotators", "Spinning Top"]
 };

 // run trigger while creating above document
 var options = { postTriggerInclude: "updateMetadata" };

 return client.createDocumentAsync(collection.self,
 docToCreate, options);
 }, function(error) {
 console.log("Error" , error);
 })
.then(function(response) {
 console.log(response.resource);
}, function(error) {
 console.log("Error" , error);
});

User-defined functions

var taxUdf = {
 id: "tax",
 serverScript: function tax(income) {

 if(income == undefined)
 throw 'no input';

 if (income < 1000)
 return income * 0.1;
 else if (income < 10000)
 return income * 0.2;
 else
 return income * 0.4;
 }
}

This trigger queries for the metadata document and updates it with details about the newly created document.

One thing that is important to note is the transactional execution of triggers in Cosmos DB. This post-trigger runs
as part of the same transaction as the creation of the original document. Therefore, if we throw an exception from
the post-trigger (say if we are unable to update the metadata document), the whole transaction will fail and be
rolled back. No document will be created, and an exception will be returned.

User-defined functions (UDFs) are used to extend the DocumentDB API SQL query language grammar and
implement custom business logic. They can only be called from inside queries. They do not have access to the
context object and are meant to be used as compute-only JavaScript. Therefore, UDFs can be run on secondary
replicas of the Cosmos DB service.

The following sample creates a UDF to calculate income tax based on rates for various income brackets, and then
uses it inside a query to find all people who paid more than $20,000 in taxes.

The UDF can subsequently be used in queries like in the following sample:

// register UDF
client.createUserDefinedFunctionAsync('dbs/testdb/colls/testColl', taxUdf)
 .then(function(response) {
 console.log("Created", response.resource);

 var query = 'SELECT * FROM TaxPayers t WHERE udf.tax(t.income) > 20000';
 return client.queryDocuments('dbs/testdb/colls/testColl',
 query).toArrayAsync();
 }, function(error) {
 console.log("Error" , error);
 })
.then(function(response) {
 var documents = response.feed;
 console.log(response.resource);
}, function(error) {
 console.log("Error" , error);
});

JavaScript language-integrated query API

NOTE

In addition to issuing queries using DocumentDB’s SQL grammar, the server-side SDK allows you to perform
optimized queries using a fluent JavaScript interface without any knowledge of SQL. The JavaScript query API
allows you to programmatically build queries by passing predicate functions into chainable function calls, with a
syntax familiar to ECMAScript5's Array built-ins and popular JavaScript libraries like lodash. Queries are parsed by
the JavaScript runtime to be executed efficiently using DocumentDB’s indices.

__ (double-underscore) is an alias to getContext().getCollection() .
In other words, you can use __ or getContext().getCollection() to access the JavaScript query API.

Supported functions include:

chain()value([callback] [, options])

filter(predicateFunction [, options] [, callback])

map(transformationFunction [, options] [, callback])

pluck([propertyName] [, options] [, callback])

flatten([isShallow] [, options] [, callback])

sortBy([predicate] [, options] [, callback])

sortByDescending([predicate] [, options] [, callback])

Starts a chained call which must be terminated with value().

Filters the input using a predicate function which returns true/false in order to filter in/out input
documents into the resulting set. This behaves similar to a WHERE clause in SQL.

Applies a projection given a transformation function which maps each input item to a JavaScript object
or value. This behaves similar to a SELECT clause in SQL.

This is a shortcut for a map which extracts the value of a single property from each input item.

Combines and flattens arrays from each input item in to a single array. This behaves similar to
SelectMany in LINQ.

Produce a new set of documents by sorting the documents in the input document stream in ascending
order using the given predicate. This behaves similar to a ORDER BY clause in SQL.

Produce a new set of documents by sorting the documents in the input document stream in descending
order using the given predicate. This behaves similar to a ORDER BY x DESC clause in SQL.

When included inside predicate and/or selector functions, the following JavaScript constructs get automatically

Example: Write a stored procedure using the JavaScript query API

optimized to run directly on DocumentDB indices:

Simple operators: = + - * / % | ^ & == != === !=== < > <= >= || && << >> >>>! ~
Literals, including the object literal: {}
var, return

The following JavaScript constructs do not get optimized for DocumentDB indices:

Control flow (e.g. if, for, while)
Function calls

For more information, please see our Server-Side JSDocs.

The following code sample is an example of how the JavaScript Query API can be used in the context of a stored
procedure. The stored procedure inserts a document, given by an input parameter, and updates a metadata
document, using the __.filter() method, with minSize, maxSize, and totalSize based upon the input document's size
property.

http://azure.github.io/azure-documentdb-js-server/

/**
 * Insert actual doc and update metadata doc: minSize, maxSize, totalSize based on doc.size.
 */
function insertDocumentAndUpdateMetadata(doc) {
 // HTTP error codes sent to our callback funciton by DocDB server.
 var ErrorCode = {
 RETRY_WITH: 449,
 }

 var isAccepted = __.createDocument(__.getSelfLink(), doc, {}, function(err, doc, options) {
 if (err) throw err;

 // Check the doc (ignore docs with invalid/zero size and metaDoc itself) and call updateMetadata.
 if (!doc.isMetadata && doc.size > 0) {
 // Get the meta document. We keep it in the same collection. it's the only doc that has .isMetadata = true.
 var result = __.filter(function(x) {
 return x.isMetadata === true
 }, function(err, feed, options) {
 if (err) throw err;

 // We assume that metadata doc was pre-created and must exist when this script is called.
 if (!feed || !feed.length) throw new Error("Failed to find the metadata document.");

 // The metadata document.
 var metaDoc = feed[0];

 // Update metaDoc.minSize:
 // for 1st document use doc.Size, for all the rest see if it's less than last min.
 if (metaDoc.minSize == 0) metaDoc.minSize = doc.size;
 else metaDoc.minSize = Math.min(metaDoc.minSize, doc.size);

 // Update metaDoc.maxSize.
 metaDoc.maxSize = Math.max(metaDoc.maxSize, doc.size);

 // Update metaDoc.totalSize.
 metaDoc.totalSize += doc.size;

 // Update/replace the metadata document in the store.
 var isAccepted = __.replaceDocument(metaDoc._self, metaDoc, function(err) {
 if (err) throw err;
 // Note: in case concurrent updates causes conflict with ErrorCode.RETRY_WITH, we can't read the meta again
 // and update again because due to Snapshot isolation we will read same exact version (we are in same transaction).
 // We have to take care of that on the client side.
 });
 if (!isAccepted) throw new Error("replaceDocument(metaDoc) returned false.");
 });
 if (!result.isAccepted) throw new Error("filter for metaDoc returned false.");
 }
 });
 if (!isAccepted) throw new Error("createDocument(actual doc) returned false.");
}

SQL to Javascript cheat sheet

SQL JAVASCRIPT QUERY API DESCRIPTION BELOW

SELECT *
FROM docs

__.map(function(doc) {
 return doc;
});

1

The following table presents various SQL queries and the corresponding JavaScript queries.

As with SQL queries, document property keys (e.g. doc.id) are case-sensitive.

SELECT docs.id, docs.message AS msg,
docs.actions
FROM docs

__.map(function(doc) {
 return {
 id: doc.id,
 msg: doc.message,
 actions:doc.actions
 };
});

2

SELECT *
FROM docs
WHERE docs.id="X998_Y998"

__.filter(function(doc) {
 return doc.id ==="X998_Y998";
});

3

SELECT *
FROM docs
WHERE ARRAY_CONTAINS(docs.Tags,
123)

__.filter(function(x) {
 return x.Tags && x.Tags.indexOf(123)
> -1;
});

4

SELECT docs.id, docs.message AS msg
FROM docs
WHERE docs.id="X998_Y998"

__.chain()
 .filter(function(doc) {
 return doc.id ==="X998_Y998";
 })
 .map(function(doc) {
 return {
 id: doc.id,
 msg: doc.message
 };
 })
.value();

5

SELECT VALUE tag
FROM docs
JOIN tag IN docs.Tags
ORDER BY docs._ts

__.chain()
 .filter(function(doc) {
 return doc.Tags &&
Array.isArray(doc.Tags);
 })
 .sortBy(function(doc) {
 return doc._ts;
 })
 .pluck("Tags")
 .flatten()
 .value()

6

SQL JAVASCRIPT QUERY API DESCRIPTION BELOW

Runtime support

The following descriptions explain each query in the table above.

1. Results in all documents (paginated with continuation token) as is.
2. Projects the id, message (aliased to msg), and action from all documents.
3. Queries for documents with the predicate: id = "X998_Y998".
4. Queries for documents that have a Tags property and Tags is an array containing the value 123.
5. Queries for documents with a predicate, id = "X998_Y998", and then projects the id and message (aliased to

msg).
6. Filters for documents which have an array property, Tags, and sorts the resulting documents by the _ts

timestamp system property, and then projects + flattens the Tags array.

DocumentDB JavaScript server side SDK provides support for the most of the mainstream JavaScript language
features as standardized by ECMA-262.

http://azure.github.io/azure-documentdb-js-server/
http://www.ecma-international.org/publications/standards/Ecma-262.htm

Security

Pre-compilation

Client SDK support

var markAntiquesSproc = new StoredProcedure
{
 Id = "ValidateDocumentAge",
 Body = @"
 function(docToCreate, antiqueYear) {
 var collection = getContext().getCollection();
 var response = getContext().getResponse();

 if(docToCreate.Year != undefined && docToCreate.Year < antiqueYear){
 docToCreate.antique = true;
 }

 collection.createDocument(collection.getSelfLink(), docToCreate, {},
 function(err, docCreated, options) {
 if(err) throw new Error('Error while creating document: ' + err.message);
 if(options.maxCollectionSizeInMb == 0) throw 'max collection size not found';
 response.setBody(docCreated);
 });
 }"
};

// register stored procedure
StoredProcedure createdStoredProcedure = await client.CreateStoredProcedureAsync(UriFactory.CreateDocumentCollectionUri("db", "coll"),
markAntiquesSproc);
dynamic document = new Document() { Id = "Borges_112" };
document.Title = "Aleph";
document.Year = 1949;

// execute stored procedure
Document createdDocument = await client.ExecuteStoredProcedureAsync<Document>(UriFactory.CreateStoredProcedureUri("db", "coll",
"sproc"), document, 1920);

JavaScript stored procedures and triggers are sandboxed so that the effects of one script do not leak to the other
without going through the snapshot transaction isolation at the database level. The runtime environments are
pooled but cleaned of the context after each run. Hence they are guaranteed to be safe of any unintended side
effects from each other.

Stored procedures, triggers and UDFs are implicitly precompiled to the byte code format in order to avoid
compilation cost at the time of each script invocation. This ensures invocations of stored procedures are fast and
have a low footprint.

In addition to the Node.js client, DocumentDB supports .NET, .NET Core, Java, JavaScript, and Python SDKs. Stored
procedures, triggers and UDFs can be created and executed using any of these SDKs as well. The following
example shows how to create and execute a stored procedure using the .NET client. Note how the .NET types are
passed into the stored procedure as JSON and read back.

This sample shows how to use the .NET SDK to create a pre-trigger and create a document with the trigger
enabled.

http://azure.github.io/azure-documentdb-js/
https://msdn.microsoft.com/library/azure/dn948556.aspx

Trigger preTrigger = new Trigger()
{
 Id = "CapitalizeName",
 Body = @"function() {
 var item = getContext().getRequest().getBody();
 item.id = item.id.toUpperCase();
 getContext().getRequest().setBody(item);
 }",
 TriggerOperation = TriggerOperation.Create,
 TriggerType = TriggerType.Pre
};

Document createdItem = await client.CreateDocumentAsync(UriFactory.CreateDocumentCollectionUri("db", "coll"), new Document { Id =
"documentdb" },
 new RequestOptions
 {
 PreTriggerInclude = new List<string> { "CapitalizeName" },
 });

UserDefinedFunction function = new UserDefinedFunction()
{
 Id = "LOWER",
 Body = @"function(input)
 {
 return input.toLowerCase();
 }"
};

foreach (Book book in client.CreateDocumentQuery(UriFactory.CreateDocumentCollectionUri("db", "coll"),
 "SELECT * FROM Books b WHERE udf.LOWER(b.Title) = 'war and peace'"))
{
 Console.WriteLine("Read {0} from query", book);
}

REST API

And the following example shows how to create a user defined function (UDF) and use it in a DocumentDB API
SQL query.

All DocumentDB operations can be performed in a RESTful manner. Stored procedures, triggers and user-defined
functions can be registered under a collection by using HTTP POST. The following is an example of how to register
a stored procedure:

POST https://<url>/sprocs/ HTTP/1.1
authorization: <<auth>>
x-ms-date: Thu, 07 Aug 2014 03:43:10 GMT

var x = {
 "name": "createAndAddProperty",
 "body": function (docToCreate, addedPropertyName, addedPropertyValue) {
 var collectionManager = getContext().getCollection();
 collectionManager.createDocument(
 collectionManager.getSelfLink(),
 docToCreate,
 function(err, docCreated) {
 if(err) throw new Error('Error: ' + err.message);
 docCreated[addedPropertyName] = addedPropertyValue;
 getContext().getResponse().setBody(docCreated);
 });
 }
}

POST https://<url>/sprocs/<sproc> HTTP/1.1
authorization: <<auth>>
x-ms-date: Thu, 07 Aug 2014 03:43:20 GMT

[{ "name": "TestDocument", "book": "Autumn of the Patriarch"}, "Price", 200]

HTTP/1.1 200 OK

{
 name: 'TestDocument',
 book: ‘Autumn of the Patriarch’,
 id: ‘V7tQANV3rAkDAAAAAAAAAA==‘,
 ts: 1407830727,
 self: ‘dbs/V7tQAA==/colls/V7tQANV3rAk=/docs/V7tQANV3rAkDAAAAAAAAAA==/’,
 etag: ‘6c006596-0000-0000-0000-53e9cac70000’,
 attachments: ‘attachments/’,
 Price: 200
}

The stored procedure is registered by executing a POST request against the URI dbs/testdb/colls/testColl/sprocs
with the body containing the stored procedure to create. Triggers and UDFs can be registered similarly by issuing
a POST against /triggers and /udfs respectively. This stored procedure can then be executed by issuing a POST
request against its resource link:

Here, the input to the stored procedure is passed in the request body. Note that the input is passed as a JSON
array of input parameters. The stored procedure takes the first input as a document that is a response body. The
response we receive is as follows:

Triggers, unlike stored procedures, cannot be executed directly. Instead they are executed as part of an operation
on a document. We can specify the triggers to run with a request using HTTP headers. The following is request to
create a document.

POST https://<url>/docs/ HTTP/1.1
authorization: <<auth>>
x-ms-date: Thu, 07 Aug 2014 03:43:10 GMT
x-ms-documentdb-pre-trigger-include: validateDocumentContents
x-ms-documentdb-post-trigger-include: bookCreationPostTrigger

{
 "name": "newDocument",
 “title”: “The Wizard of Oz”,
 “author”: “Frank Baum”,
 “pages”: 92
}

Sample code

Next steps

Here the pre-trigger to be run with the request is specified in the x-ms-documentdb-pre-trigger-include header.
Correspondingly, any post-triggers are given in the x-ms-documentdb-post-trigger-include header. Note that both
pre- and post-triggers can be specified for a given request.

You can find more server-side code examples (including bulk-delete, and update) on our GitHub repository.

Want to share your awesome stored procedure? Please, send us a pull-request!

Once you have one or more stored procedures, triggers, and user-defined functions created, you can load them
and view them in the Azure portal using Data Explorer.

You may also find the following references and resources useful in your path to learn more about DocumentDB
server-side programming:

Azure DocumentDB SDKs
DocumentDB Studio
JSON
JavaScript ECMA-262
Secure and Portable Database Extensibility
Service Oriented Database Architecture
Hosting the .NET Runtime in Microsoft SQL server

https://github.com/Azure/azure-documentdb-js-server/tree/master/samples/stored-procedures/bulkDelete.js
https://github.com/Azure/azure-documentdb-js-server/tree/master/samples/stored-procedures/update.js
https://github.com/Azure/azure-documentdb-js-server/tree/master/samples
https://msdn.microsoft.com/library/azure/dn781482.aspx
https://github.com/mingaliu/DocumentDBStudio/releases
http://www.json.org/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://dl.acm.org/citation.cfm?id=276339
http://dl.acm.org/citation.cfm?id=1066267&coll=Portal&dl=GUIDE
http://dl.acm.org/citation.cfm?id=1007669

Performance and scale testing with Azure Cosmos
DB
6/6/2017 • 4 min to read • Edit Online

NOTE

Run the performance testing application

NOTE

Performance and scale testing is a key step in application development. For many applications, the database tier
has a significant impact on the overall performance and scalability, and is therefore a critical component of
performance testing. Azure Cosmos DB is purpose-built for elastic scale and predictable performance, and
therefore a great fit for applications that need a high-performance database tier.

This article is a reference for developers implementing performance test suites for their Cosmos DB workloads, or
evaluating Cosmos DB for high-performance application scenarios. It focuses primarily on isolated performance
testing of the database, but also includes best practices for production applications.

After reading this article, you will be able to answer the following questions:

Where can I find a sample .NET client application for performance testing of Cosmos DB?
How do I achieve high throughput levels with Cosmos DB from my client application?

To get started with code, please download the project from Azure Cosmos DB Performance Testing Sample.

The goal of this application is to demonstrate best practices for extracting better performance out of Cosmos DB with a
small number of client machines. This was not made to demonstrate the peak capacity of the service, which can scale
limitlessly.

If you're looking for client-side configuration options to improve Cosmos DB performance, see Azure Cosmos DB
performance tips.

The quickest way to get started is to compile and run the .NET sample below, as described in the steps below. You
can also review the source code and implement similar configurations to your own client applications.

Step 1: Download the project from Azure Cosmos DB Performance Testing Sample, or fork the GitHub repository.

Step 2: Modify the settings for EndpointUrl, AuthorizationKey, CollectionThroughput and DocumentTemplate
(optional) in App.config.

Before provisioning collections with high throughput, please refer to the Pricing Page to estimate the costs per collection.
Cosmos DB bills storage and throughput independently on an hourly basis, so you can save costs by deleting or lowering
the throughput of your DocumentDB collections after testing.

Step 3: Compile and run the console app from the command line. You should see output like the following:

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/performance-testing.md
https://azure.microsoft.com/services/cosmos-db/
https://github.com/Azure/azure-documentdb-dotnet/tree/master/samples/documentdb-benchmark
https://github.com/Azure/azure-documentdb-dotnet/tree/master/samples/documentdb-benchmark
https://azure.microsoft.com/pricing/details/cosmos-db/

Summary:

Endpoint: https://docdb-scale-demo.documents.azure.com:443/
Collection : db.testdata at 50000 request units per second
Document Template*: Player.json
Degree of parallelism*: 500

DocumentDBBenchmark starting...
Creating database db
Creating collection testdata
Creating metric collection metrics
Retrying after sleeping for 00:03:34.1720000
Starting Inserts with 500 tasks
Inserted 661 docs @ 656 writes/s, 6860 RU/s (18B max monthly 1KB reads)
Inserted 6505 docs @ 2668 writes/s, 27962 RU/s (72B max monthly 1KB reads)
Inserted 11756 docs @ 3240 writes/s, 33957 RU/s (88B max monthly 1KB reads)
Inserted 17076 docs @ 3590 writes/s, 37627 RU/s (98B max monthly 1KB reads)
Inserted 22106 docs @ 3748 writes/s, 39281 RU/s (102B max monthly 1KB reads)
Inserted 28430 docs @ 3902 writes/s, 40897 RU/s (106B max monthly 1KB reads)
Inserted 33492 docs @ 3928 writes/s, 41168 RU/s (107B max monthly 1KB reads)
Inserted 38392 docs @ 3963 writes/s, 41528 RU/s (108B max monthly 1KB reads)
Inserted 43371 docs @ 4012 writes/s, 42051 RU/s (109B max monthly 1KB reads)
Inserted 48477 docs @ 4035 writes/s, 42282 RU/s (110B max monthly 1KB reads)
Inserted 53845 docs @ 4088 writes/s, 42845 RU/s (111B max monthly 1KB reads)
Inserted 59267 docs @ 4138 writes/s, 43364 RU/s (112B max monthly 1KB reads)
Inserted 64703 docs @ 4197 writes/s, 43981 RU/s (114B max monthly 1KB reads)
Inserted 70428 docs @ 4216 writes/s, 44181 RU/s (115B max monthly 1KB reads)
Inserted 75868 docs @ 4247 writes/s, 44505 RU/s (115B max monthly 1KB reads)
Inserted 81571 docs @ 4280 writes/s, 44852 RU/s (116B max monthly 1KB reads)
Inserted 86271 docs @ 4273 writes/s, 44783 RU/s (116B max monthly 1KB reads)
Inserted 91993 docs @ 4299 writes/s, 45056 RU/s (117B max monthly 1KB reads)
Inserted 97469 docs @ 4292 writes/s, 44984 RU/s (117B max monthly 1KB reads)
Inserted 99736 docs @ 4192 writes/s, 43930 RU/s (114B max monthly 1KB reads)
Inserted 99997 docs @ 4013 writes/s, 42051 RU/s (109B max monthly 1KB reads)
Inserted 100000 docs @ 3846 writes/s, 40304 RU/s (104B max monthly 1KB reads)

Summary:

Inserted 100000 docs @ 3834 writes/s, 40180 RU/s (104B max monthly 1KB reads)

DocumentDBBenchmark completed successfully.

Next steps

Step 4 (if necessary): The throughput reported (RU/s) from the tool should be the same or higher than the
provisioned throughput of the collection. If not, increasing the DegreeOfParallelism in small increments may help
you reach the limit. If the throughput from your client app plateaus, launching multiple instances of the app on the
same or different machines will help you reach the provisioned limit across the different instances. If you need
help with this step, please, write an email to askcosmosdb@microsoft.com or file a support ticket from the Azure
Portal.

Once you have the app running, you can try different Indexing policies and Consistency levels to understand their
impact on throughput and latency. You can also review the source code and implement similar configurations to
your own test suites or production applications.

In this article, we looked at how you can perform performance and scale testing with Cosmos DB using a .NET
console app. Please refer to the links below for additional information on working with Cosmos DB.

Azure Cosmos DB performance testing sample
Client configuration options to improve Azure Cosmos DB performance
Server-side partitioning in Azure Cosmos DB

https://portal.azure.com
https://github.com/Azure/azure-documentdb-dotnet/tree/master/samples/documentdb-benchmark

DocumentDB collections and performance levels
DocumentDB .NET SDK documentation on MSDN
DocumentDB .NET samples
Azure Cosmos DB blog on performance tips

https://msdn.microsoft.com/library/azure/dn948556.aspx
https://github.com/Azure/azure-documentdb-net
https://azure.microsoft.com/blog/2015/01/20/performance-tips-for-azure-documentdb-part-1-2/

Performance tips for Azure Cosmos DB
5/30/2017 • 14 min to read • Edit Online

Networking

Azure Cosmos DB is a fast and flexible distributed database that scales seamlessly with guaranteed latency and
throughput. You do not have to make major architecture changes or write complex code to scale your database
with Cosmos DB. Scaling up and down is as easy as making a single API call or SDK method call. However, because
Cosmos DB is accessed via network calls there are client-side optimizations you can make to achieve peak
performance.

So if you're asking "How can I improve my database performance?" consider the following options:

 1. Connection policy: Use direct connection mode

How a client connects to Cosmos DB has important implications on performance, especially in terms of
observed client-side latency. There are two key configuration settings available for configuring client
Connection Policy – the connection mode and the connection protocol. The two available modes are:

a. Gateway Mode (default)
b. Direct Mode

Gateway Mode is supported on all SDK platforms and is the configured default. If your application
runs within a corporate network with strict firewall restrictions, Gateway Mode is the best choice
since it uses the standard HTTPS port and a single endpoint. The performance tradeoff, however, is
that Gateway Mode involves an additional network hop every time data is read or written to Cosmos
DB. Because of this, Direct Mode offers better performance due to fewer network hops.

2. Connection policy: Use the TCP protocol

When using Direct Mode, there are two protocol options available:

TCP
HTTPS

Cosmos DB offers a simple and open RESTful programming model over HTTPS. Additionally, it offers
an efficient TCP protocol, which is also RESTful in its communication model and is available through
the .NET client SDK. Both Direct TCP and HTTPS use SSL for initial authentication and encrypting
traffic. For best performance, use the TCP protocol when possible.

When using TCP in Gateway Mode, TCP Port 443 is the Cosmos DB port, and 10250 is the MongoDB
API port. When using TCP in Direct Mode, in addition to the Gateway ports, you need to ensure the
port range between 10000 and 20000 is open because Cosmos DB uses dynamic TCP ports. If these
ports are not open and you attempt to use TCP, you receive a 503 Service Unavailable error.

The Connectivity Mode is configured during the construction of the DocumentClient instance with the
ConnectionPolicy parameter. If Direct Mode is used, the Protocol can also be set within the
ConnectionPolicy parameter.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/performance-tips.md

 await client.OpenAsync();

var serviceEndpoint = new Uri("https://contoso.documents.net");
var authKey = new "your authKey from the Azure portal";
DocumentClient client = new DocumentClient(serviceEndpoint, authKey,
new ConnectionPolicy
{
 ConnectionMode = ConnectionMode.Direct,
 ConnectionProtocol = Protocol.Tcp
});

Because TCP is only supported in Direct Mode, if Gateway Mode is used, then the HTTPS protocol is
always used to communicate with the Gateway and the Protocol value in the ConnectionPolicy is
ignored.

3. Call OpenAsync to avoid startup latency on first request

By default, the first request has a higher latency because it has to fetch the address routing table. To avoid
this startup latency on the first request, you should call OpenAsync() once during initialization as follows.

 4. Collocate clients in same Azure region for performance

When possible, place any applications calling Cosmos DB in the same region as the Cosmos DB database.
For an approximate comparison, calls to Cosmos DB within the same region complete within 1-2 ms, but the
latency between the West and East coast of the US is >50 ms. This latency can likely vary from request to
request depending on the route taken by the request as it passes from the client to the Azure datacenter
boundary. The lowest possible latency is achieved by ensuring the calling application is located within the
same Azure region as the provisioned Cosmos DB endpoint. For a list of available regions, see Azure
Regions.

https://azure.microsoft.com/regions/#services

SDK Usage

5. Increase number of threads/tasks

Since calls to Azure Cosmos DB are made over the network, you may need to vary the degree of parallelism
of your requests so that the client application spends very little time waiting between requests. For example,
if you're using .NET's Task Parallel Library, create in the order of 100s of Tasks reading or writing to Cosmos
DB.

1. Install the most recent SDK

The Cosmos DB SDKs are constantly being improved to provide the best performance. See the Cosmos DB
SDK pages to determine the most recent SDK and review improvements.

2. Use a singleton Cosmos DB client for the lifetime of your application

Note that each DocumentClient instance is thread-safe and performs efficient connection management and
address caching when operating in Direct Mode. To allow efficient connection management and better
performance by DocumentClient, it is recommended to use a single instance of DocumentClient per
AppDomain for the lifetime of the application.

 3. Increase System.Net MaxConnections per host when using Gateway mode

Cosmos DB requests are made over HTTPS/REST when using Gateway mode, and are subjected to the
default connection limit per hostname or IP address. You may need to set the MaxConnections to a higher
value (100-1000) so that the client library can utilize multiple simultaneous connections to Cosmos DB. In
the .NET SDK 1.8.0 and above, the default value for ServicePointManager.DefaultConnectionLimit is 50 and
to change the value, you can set the Documents.Client.ConnectionPolicy.MaxConnectionLimit to a higher
value.

4. Tuning parallel queries for partitioned collections

DocumentDB .NET SDK version 1.9.0 and above support parallel queries, which enable you to query a
partitioned collection in parallel (see Working with the SDKs and the related code samples for more info).
Parallel queries are designed to improve query latency and throughput over their serial counterpart. Parallel
queries provide two parameters that users can tune to custom-fit their requirements, (a)
MaxDegreeOfParallelism: to control the maximum number of partitions then can be queried in parallel, and
(b) MaxBufferedItemCount: to control the number of pre-fetched results.

(a) Tuning MaxDegreeOfParallelism\: Parallel query works by querying multiple partitions in parallel.
However, data from an individual partitioned collect is fetched serially with respect to the query. So, setting
the MaxDegreeOfParallelism to the number of partitions has the maximum chance of achieving the most
performant query, provided all other system conditions remain the same. If you don't know the number of
partitions, you can set the MaxDegreeOfParallelism to a high number, and the system chooses the minimum

https://msdn.microsoft.com//library/dd460717.aspx
https://msdn.microsoft.com/library/system.net.servicepointmanager.defaultconnectionlimit.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.connectionpolicy.maxconnectionlimit.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/master/samples/code-samples/Queries/Program.cs

 IQueryable<dynamic> authorResults = client.CreateDocumentQuery(documentCollection.SelfLink, "SELECT p.Author FROM Pages p
WHERE p.Title = 'About Seattle'", new FeedOptions { MaxItemCount = 1000 });

(number of partitions, user provided input) as the MaxDegreeOfParallelism.

It is important to note that parallel queries produce the best benefits if the data is evenly distributed across
all partitions with respect to the query. If the partitioned collection is partitioned such a way that all or a
majority of the data returned by a query is concentrated in a few partitions (one partition in worst case),
then the performance of the query would be bottlenecked by those partitions.

(b) Tuning MaxBufferedItemCount\: Parallel query is designed to pre-fetch results while the current batch
of results is being processed by the client. The pre-fetching helps in overall latency improvement of a query.
MaxBufferedItemCount is the parameter to limit the number of pre-fetched results. Setting
MaxBufferedItemCount to the expected number of results returned (or a higher number) allows the query to
receive maximum benefit from pre-fetching.

Note that pre-fetching works the same way irrespective of the MaxDegreeOfParallelism, and there is a
single buffer for the data from all partitions.

5. Turn on server-side GC

Reducing the frequency of garbage collection may help in some cases. In .NET, set gcServer to true.

6. Implement backoff at RetryAfter intervals

During performance testing, you should increase load until a small rate of requests get throttled. If throttled,
the client application should backoff on throttle for the server-specified retry interval. Respecting the backoff
ensures that you spend minimal amount of time waiting between retries. Retry policy support is included in
Version 1.8.0 and above of the DocumentDB .NET and Java, version 1.9.0 and above of the Node.js and
Python, and all supported versions of the .NET Core SDKs. For more information, see Exceeding reserved
throughput limits and RetryAfter.

7. Scale out your client-workload

If you are testing at high throughput levels (>50,000 RU/s), the client application may become the
bottleneck due to the machine capping out on CPU or Network utilization. If you reach this point, you can
continue to push the Cosmos DB account further by scaling out your client applications across multiple
servers.

8. Cache document URIs for lower read latency

 Cache document URIs whenever possible for the best read performance.

9. Tune the page size for queries/read feeds for better performance

When performing a bulk read of documents using read feed functionality (for example,
ReadDocumentFeedAsync) or when issuing a DocumentDB SQL query, the results are returned in a
segmented fashion if the result set is too large. By default, results are returned in chunks of 100 items or 1
MB, whichever limit is hit first.

To reduce the number of network round trips required to retrieve all applicable results, you can increase the
page size using x-ms-max-item-count request header to up to 1000. In cases where you need to display
only a few results, for example, if your user interface or application API returns only 10 results a time, you
can also decrease the page size to 10 to reduce the throughput consumed for reads and queries.

You may also set the page size using the available Cosmos DB SDKs. For example:

10. Increase number of threads/tasks

https://msdn.microsoft.com/library/ms229357.aspx
https://msdn.microsoft.com/library/microsoft.azure.documents.documentclientexception.retryafter.aspx

Indexing Policy

See Increase number of threads/tasks in the Networking section.

11. Use 64-bit host processing

The DocumentDB SDK works in a 32-bit host process when you are using DocumentDB .NET SDK version
1.11.4 and above. However, if you are using cross partition queries, 64-bit host processing is recommended
for improved performance. The following types of applications have 32-bit host process as the default, so in
order to change that to 64-bit, follow these steps based on the type of your application:

For Executable applications, this can be done by unchecking the Prefer 32-bit option in the Project
Properties window, on the Build tab.

For VSTest based test projects, this can be done by selecting Test->Test Settings->Default
Processor Architecture as X64, from the Visual Studio Test menu option.

For locally deployed ASP.NET Web applications, this can be done by checking the Use the 64-bit
version of IIS Express for web sites and projects, under Tools->Options->Projects and
Solutions->Web Projects.

For ASP.NET Web applications deployed on Azure, this can be done by choosing the Platform as 64-
bit in the Application Settings on the Azure portal.

var collection = new DocumentCollection { Id = "excludedPathCollection" };
collection.IndexingPolicy.IncludedPaths.Add(new IncludedPath { Path = "/*" });
collection.IndexingPolicy.ExcludedPaths.Add(new ExcludedPath { Path = "/nonIndexedContent/*");
collection = await client.CreateDocumentCollectionAsync(UriFactory.CreateDatabaseUri("db"), excluded);

1. Use lazy indexing for faster peak time ingestion rates

Cosmos DB allows you to specify – at the collection level – an indexing policy, which enables you to choose
if you want the documents in a collection to be automatically indexed or not. In addition, you may also
choose between synchronous (Consistent) and asynchronous (Lazy) index updates. By default, the index is
updated synchronously on each insert, replace, or delete of a document to the collection. Synchronously
mode enables the queries to honor the same consistency level as that of the document reads without any
delay for the index to “catch up".

Lazy indexing may be considered for scenarios in which data is written in bursts, and you want to amortize
the work required to index content over a longer period of time. Lazy indexing also allows you to use your
provisioned throughput effectively and serve write requests at peak times with minimal latency. It is
important to note, however, that when lazy indexing is enabled, query results are eventually consistent
regardless of the consistency level configured for the Cosmos DB account.

Hence, Consistent indexing mode (IndexingPolicy.IndexingMode is set to Consistent) incurs the highest
request unit charge per write, while Lazy indexing mode (IndexingPolicy.IndexingMode is set to Lazy) and no
indexing (IndexingPolicy.Automatic is set to False) have zero indexing cost at the time of write.

2. Exclude unused paths from indexing for faster writes

Cosmos DB’s indexing policy also allows you to specify which document paths to include or exclude from
indexing by leveraging Indexing Paths (IndexingPolicy.IncludedPaths and IndexingPolicy.ExcludedPaths). The
use of indexing paths can offer improved write performance and lower index storage for scenarios in which
the query patterns are known beforehand, as indexing costs are directly correlated to the number of unique
paths indexed. For example, the following code shows how to exclude an entire section of the documents
(a.k.a. a subtree) from indexing using the "*" wildcard.

Throughput

For more information, see Azure Cosmos DB indexing policies.

// Measure the performance (request units) of writes
ResourceResponse<Document> response = await client.CreateDocumentAsync(collectionSelfLink, myDocument);
Console.WriteLine("Insert of document consumed {0} request units", response.RequestCharge);
// Measure the performance (request units) of queries
IDocumentQuery<dynamic> queryable = client.CreateDocumentQuery(collectionSelfLink, queryString).AsDocumentQuery();
while (queryable.HasMoreResults)
 {
 FeedResponse<dynamic> queryResponse = await queryable.ExecuteNextAsync<dynamic>();
 Console.WriteLine("Query batch consumed {0} request units", queryResponse.RequestCharge);
 }

 HTTP Status 429,
 Status Line: RequestRateTooLarge
 x-ms-retry-after-ms :100

1. Measure and tune for lower request units/second usage

Cosmos DB offers a rich set of database operations including relational and hierarchical queries with UDFs,
stored procedures, and triggers – all operating on the documents within a database collection. The cost
associated with each of these operations varies based on the CPU, IO, and memory required to complete the
operation. Instead of thinking about and managing hardware resources, you can think of a request unit (RU)
as a single measure for the resources required to perform various database operations and service an
application request.

Request units are provisioned for each database account based on the number of capacity units that you
purchase. Request unit consumption is evaluated as a rate per second. Applications that exceed the
provisioned request unit rate for their account is limited until the rate drops below the reserved level for the
account. If your application requires a higher level of throughput, you can purchase additional capacity units.

The complexity of a query impacts how many Request Units are consumed for an operation. The number of
predicates, nature of the predicates, number of UDFs, and the size of the source data set all influence the
cost of query operations.

To measure the overhead of any operation (create, update, or delete), inspect the x-ms-request-charge
header (or the equivalent RequestCharge property in ResourceResponse or FeedResponse in the .NET SDK)
to measure the number of request units consumed by these operations.

The request charge returned in this header is a fraction of your provisioned throughput (i.e., 2000 RUs /
second). For example, if the preceding query returns 1000 1KB-documents, the cost of the operation is 1000.
As such, within one second, the server honors only two such requests before throttling subsequent requests.
For more information, see Request units and the request unit calculator.

2. Handle rate limiting/request rate too large

When a client attempts to exceed the reserved throughput for an account, there is no performance
degradation at the server and no use of throughput capacity beyond the reserved level. The server will
preemptively end the request with RequestRateTooLarge (HTTP status code 429) and return the x-ms-retry-
after-ms header indicating the amount of time, in milliseconds, that the user must wait before reattempting
the request.

The SDKs all implicitly catch this response, respect the server-specified retry-after header, and retry the
request. Unless your account is being accessed concurrently by multiple clients, the next retry will succeed.

https://www.documentdb.com/capacityplanner

Next steps

If you have more than one client cumulatively operating consistently above the request rate, the default
retry count currently set to 9 internally by the client may not suffice; in this case, the client throws a
DocumentClientException with status code 429 to the application. The default retry count can be changed by
setting the RetryOptions on the ConnectionPolicy instance. By default, the DocumentClientException with
status code 429 is returned after a cumulative wait time of 30 seconds if the request continues to operate
above the request rate. This occurs even when the current retry count is less than the max retry count, be it
the default of 9 or a user-defined value.

While the automated retry behavior helps to improve resiliency and usability for the most applications, it
might come at odds when doing performance benchmarks, especially when measuring latency. The client-
observed latency will spike if the experiment hits the server throttle and causes the client SDK to silently
retry. To avoid latency spikes during performance experiments, measure the charge returned by each
operation and ensure that requests are operating below the reserved request rate. For more information,
see Request units.

3. Design for smaller documents for higher throughput

The request charge (i.e. request processing cost) of a given operation is directly correlated to the size of the
document. Operations on large documents cost more than operations for small documents.

For a sample application used to evaluate Cosmos DB for high-performance scenarios on a few client machines,
see Performance and scale testing with Cosmos DB.

Also, to learn more about designing your application for scale and high performance, see Partitioning and scaling
in Azure Cosmos DB.

Multi-master globally replicated database
architectures with Azure Cosmos DB
5/30/2017 • 7 min to read • Edit Online

Content Publishing - an example scenario

Modeling notifications

Azure Cosmos DB supports turnkey global replication, which allows you to distribute data to multiple regions with
low latency access anywhere in the workload. This model is commonly used for publisher/consumer workloads
where there is a writer in a single geographic region and globally distributed readers in other (read) regions.

You can also use Azure Cosmos DB's global replication support to build applications in which writers and readers
are globally distributed. This document outlines a pattern that enables achieving local write and local read access
for distributed writers using Azure Cosmos DB.

Let's look at a real world scenario to describe how you can use globally distributed multi-region/multi-master read
write patterns with Azure Cosmos DB. Consider a content publishing platform built on Azure Cosmos DB. Here are
some requirements that this platform must meet for a great user experience for both publishers and consumers.

Both authors and subscribers are spread over the world
Authors must publish (write) articles to their local (closest) region
Authors have readers/subscribers of their articles who are distributed across the globe.
Subscribers should get a notification when new articles are published.
Subscribers must be able to read articles from their local region. They should also be able to add reviews to
these articles.
Anyone including the author of the articles should be able view all the reviews attached to articles from a local
region.

Assuming millions of consumers and publishers with billions of articles, soon we have to confront the problems of
scale along with guaranteeing locality of access. As with most scalability problems, the solution lies in a good
partitioning strategy. Next, let's look at how to model articles, review, and notifications as documents, configure
Azure Cosmos DB accounts, and implement a data access layer.

If you would like to learn more about partitioning and partition keys, see Partitioning and Scaling in Azure Cosmos
DB.

Notifications are data feeds specific to a user. Therefore, the access patterns for notifications documents are always
in the context of single user. For example, you would "post a notification to a user" or "fetch all notifications for a
given user". So, the optimal choice of partitioning key for this type would be UserId .

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/multi-region-writers.md

class Notification
{
 // Unique ID for Notification.
 public string Id { get; set; }

 // The user Id for which notification is addressed to.
 public string UserId { get; set; }

 // The partition Key for the resource.
 public string PartitionKey
 {
 get
 {
 return this.UserId;
 }
 }

 // Subscription for which this notification is raised.
 public string SubscriptionFilter { get; set; }

 // Subject of the notification.
 public string ArticleId { get; set; }
}

Modeling subscriptions

class Subscriptions
{
 // Unique ID for Subscription
 public string Id { get; set; }

 // Subscription source. Could be Author | Category etc.
 public string SubscriptionFilter { get; set; }

 // subscribing User.
 public string UserId { get; set; }

 public string PartitionKey
 {
 get
 {
 return this.SubscriptionFilter;
 }
 }
}

Modeling articles

Subscriptions can be created for various criteria like a specific category of articles of interest, or a specific publisher.
Hence the SubscriptionFilter is a good choice for partition key.

Once an article is identified through notifications, subsequent queries are typically based on the Article.Id .
Choosing Article.Id as partition the key thus provides the best distribution for storing articles inside an Azure
Cosmos DB collection.

class Article
{
 // Unique ID for Article
 public string Id { get; set; }

 public string PartitionKey
 {
 get
 {
 return this.Id;
 }
 }

 // Author of the article
 public string Author { get; set; }

 // Category/genre of the article
 public string Category { get; set; }

 // Tags associated with the article
 public string[] Tags { get; set; }

 // Title of the article
 public string Title { get; set; }

 //...
}

Modeling reviews

class Review
{
 // Unique ID for Review
 public string Id { get; set; }

 // Article Id of the review
 public string ArticleId { get; set; }

 public string PartitionKey
 {
 get
 {
 return this.ArticleId;
 }
 }

 //Reviewer Id
 public string UserId { get; set; }
 public string ReviewText { get; set; }

 public int Rating { get; set; } }
}

Data access layer methods

Like articles, reviews are mostly written and read in the context of article. Choosing ArticleId as a partition key
provides best distribution and efficient access of reviews associated with article.

Now let's look at the main data access methods we need to implement. Here's the list of methods that the
ContentPublishDatabase needs:

class ContentPublishDatabase
{
 public async Task CreateSubscriptionAsync(string userId, string category);

 public async Task<IEnumerable<Notification>> ReadNotificationFeedAsync(string userId);

 public async Task<Article> ReadArticleAsync(string articleId);

 public async Task WriteReviewAsync(string articleId, string userId, string reviewText, int rating);

 public async Task<IEnumerable<Review>> ReadReviewsAsync(string articleId);
}

Azure Cosmos DB account configuration

ACCOUNT NAME WRITE REGION READ REGION

contentpubdatabase-
usa.documents.azure.com

West US North Europe

contentpubdatabase-
europe.documents.azure.com

North Europe West US

To guarantee local reads and writes, we must partition data not just on partition key, but also based on the
geographical access pattern into regions. The model relies on having a geo-replicated Azure Cosmos DB database
account for each region. For example, with two regions, here's a setup for multi-region writes:

The following diagram shows how reads and writes are performed in a typical application with this setup:

Here is a code snippet showing how to initialize the clients in a DAL running in the West US region.

ConnectionPolicy writeClientPolicy = new ConnectionPolicy { ConnectionMode = ConnectionMode.Direct, ConnectionProtocol = Protocol.Tcp };
writeClientPolicy.PreferredLocations.Add(LocationNames.WestUS);
writeClientPolicy.PreferredLocations.Add(LocationNames.NorthEurope);

DocumentClient writeClient = new DocumentClient(
 new Uri("https://contentpubdatabase-usa.documents.azure.com"),
 writeRegionAuthKey,
 writeClientPolicy);

ConnectionPolicy readClientPolicy = new ConnectionPolicy { ConnectionMode = ConnectionMode.Direct, ConnectionProtocol = Protocol.Tcp };
readClientPolicy.PreferredLocations.Add(LocationNames.NorthEurope);
readClientPolicy.PreferredLocations.Add(LocationNames.WestUS);

DocumentClient readClient = new DocumentClient(
 new Uri("https://contentpubdatabase-europe.documents.azure.com"),
 readRegionAuthKey,
 readClientPolicy);

ACCOUNT NAME WRITE REGION READ REGION 1 READ REGION 2

contentpubdatabase-
usa.documents.azure.com

West US North Europe Southeast Asia

contentpubdatabase-
europe.documents.azure.com

North Europe West US Southeast Asia

contentpubdatabase-
asia.documents.azure.com

Southeast Asia North Europe West US

Data access layer implementation

With the preceding setup, the data access layer can forward all writes to the local account based on where it is
deployed. Reads are performed by reading from both accounts to get the global view of data. This approach can be
extended to as many regions as required. For example, here's a setup with three geographic regions:

Now let's look at the implementation of the data access layer (DAL) for an application with two writable regions.
The DAL must implement the following steps:

Create multiple instances of DocumentClient for each account. With two regions, each DAL instance has one
writeClient and one readClient .

Based on the deployed region of the application, configure the endpoints for writeclient and readClient . For
example, the DAL deployed in West US uses contentpubdatabase-usa.documents.azure.com for performing writes. The
DAL deployed in NorthEurope uses contentpubdatabase-europ.documents.azure.com for writes.

With the preceding setup, the data access methods can be implemented. Write operations forward the write to the
corresponding writeClient .

public async Task CreateSubscriptionAsync(string userId, string category)
{
 await this.writeClient.CreateDocumentAsync(this.contentCollection, new Subscriptions
 {
 UserId = userId,
 SubscriptionFilter = category
 });
}

public async Task WriteReviewAsync(string articleId, string userId, string reviewText, int rating)
{
 await this.writeClient.CreateDocumentAsync(this.contentCollection, new Review
 {
 UserId = userId,
 ArticleId = articleId,
 ReviewText = reviewText,
 Rating = rating
 });
}

public async Task<IEnumerable<Notification>> ReadNotificationFeedAsync(string userId)
{
 IDocumentQuery<Notification> writeAccountNotification = (
 from notification in this.writeClient.CreateDocumentQuery<Notification>(this.contentCollection)
 where notification.UserId == userId
 select notification).AsDocumentQuery();

 IDocumentQuery<Notification> readAccountNotification = (
 from notification in this.readClient.CreateDocumentQuery<Notification>(this.contentCollection)
 where notification.UserId == userId
 select notification).AsDocumentQuery();

 List<Notification> notifications = new List<Notification>();

 while (writeAccountNotification.HasMoreResults || readAccountNotification.HasMoreResults)
 {
 IList<Task<FeedResponse<Notification>>> results = new List<Task<FeedResponse<Notification>>>();

 if (writeAccountNotification.HasMoreResults)
 {
 results.Add(writeAccountNotification.ExecuteNextAsync<Notification>());
 }

 if (readAccountNotification.HasMoreResults)
 {
 results.Add(readAccountNotification.ExecuteNextAsync<Notification>());
 }

 IList<FeedResponse<Notification>> notificationFeedResult = await Task.WhenAll(results);

 foreach (FeedResponse<Notification> feed in notificationFeedResult)
 {
 notifications.AddRange(feed);
 }
 }
 return notifications;
}

public async Task<IEnumerable<Review>> ReadReviewsAsync(string articleId)
{
 IDocumentQuery<Review> writeAccountReviews = (
 from review in this.writeClient.CreateDocumentQuery<Review>(this.contentCollection)
 where review.ArticleId == articleId

For reading notifications and reviews, you must read from both regions and union the results as shown in the
following snippet:

 where review.ArticleId == articleId
 select review).AsDocumentQuery();

 IDocumentQuery<Review> readAccountReviews = (
 from review in this.readClient.CreateDocumentQuery<Review>(this.contentCollection)
 where review.ArticleId == articleId
 select review).AsDocumentQuery();

 List<Review> reviews = new List<Review>();

 while (writeAccountReviews.HasMoreResults || readAccountReviews.HasMoreResults)
 {
 IList<Task<FeedResponse<Review>>> results = new List<Task<FeedResponse<Review>>>();

 if (writeAccountReviews.HasMoreResults)
 {
 results.Add(writeAccountReviews.ExecuteNextAsync<Review>());
 }

 if (readAccountReviews.HasMoreResults)
 {
 results.Add(readAccountReviews.ExecuteNextAsync<Review>());
 }

 IList<FeedResponse<Review>> notificationFeedResult = await Task.WhenAll(results);

 foreach (FeedResponse<Review> feed in notificationFeedResult)
 {
 reviews.AddRange(feed);
 }
 }

 return reviews;
}

Next steps

Thus, by choosing a good partitioning key and static account-based partitioning, you can achieve multi-region local
writes and reads using Azure Cosmos DB.

In this article, we described how you can use globally distributed multi-region read write patterns with Azure
Cosmos DB using content publishing as a sample scenario.

Learn about how Azure Cosmos DB supports global distribution
Learn about automatic and manual failovers in Azure Cosmos DB
Learn about global consistency with Azure Cosmos DB
Develop with multiple regions using the Azure Cosmos DB - DocumentDB API
Develop with multiple regions using the Azure Cosmos DB - MongoDB API
Develop with multiple regions using the Azure Cosmos DB - Table API

Working with Dates in Azure Cosmos DB
5/30/2017 • 2 min to read • Edit Online

Storing DateTimes

public class Order
{
 [JsonProperty(PropertyName="id")]
 public string Id { get; set; }
 public DateTime OrderDate { get; set; }
 public DateTime ShipDate { get; set; }
 public double Total { get; set; }
}

await client.CreateDocumentAsync("/dbs/orderdb/colls/orders",
 new Order
 {
 Id = "09152014101",
 OrderDate = DateTime.UtcNow.AddDays(-30),
 ShipDate = DateTime.UtcNow.AddDays(-14),
 Total = 113.39
 });

{
 "id": "09152014101",
 "OrderDate": "2014-09-15T23:14:25.7251173Z",
 "ShipDate": "2014-09-30T23:14:25.7251173Z",
 "Total": 113.39
}

Azure Cosmos DB delivers schema flexibility and rich indexing via a native JSON data model. All Azure Cosmos DB
resources including databases, collections, documents, and stored procedures are modeled and stored as JSON
documents. As a requirement for being portable, JSON (and Azure Cosmos DB) supports only a small set of basic
types: String, Number, Boolean, Array, Object, and Null. However, JSON is flexible and allow developers and
frameworks to represent more complex types using these primitives and composing them as objects or arrays.

In addition to the basic types, many applications need the DateTime type to represent dates and timestamps. This
article describes how developers can store, retrieve, and query dates in Cosmos DB using the .NET SDK.

By default, the Azure Cosmos DB SDK serializes DateTime values as ISO 8601 strings. Most applications can use the
default string representation for DateTime for the following reasons:

Strings can be compared, and the relative ordering of the DateTime values is preserved when they are
transformed to strings.
This approach doesn't require any custom code or attributes for JSON conversion.
The dates as stored in JSON are human readable.
This approach can take advantage of Cosmos DB's index for fast query performance.

For example, the following snippet stores an Order object containing two DateTime properties - ShipDate and
OrderDate as a document using the .NET SDK:

This document is stored in Cosmos DB as follows:

Alternatively, you can store DateTimes as Unix timestamps, that is, as a number representing the number of elapsed

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/working-with-dates.md
http://www.json.org
https://msdn.microsoft.com/library/system.datetime(v=vs.110).aspx
http://www.iso.org/iso/catalogue_detail?csnumber=40874

Indexing DateTimes for range queries

DocumentCollection collection = new DocumentCollection { Id = "orders" };
collection.IndexingPolicy = new IndexingPolicy(new RangeIndex(DataType.String) { Precision = -1 });
await client.CreateDocumentCollectionAsync("/dbs/orderdb", collection);

Querying DateTimes in LINQ

IQueryable<Order> orders = client.CreateDocumentQuery<Order>("/dbs/orderdb/colls/orders")
 .Where(o => o.ShipDate >= DateTime.UtcNow.AddDays(-3));

// Translated to the following SQL statement and executed on Cosmos DB
SELECT * FROM root WHERE (root["ShipDate"] >= "2016-12-18T21:55:03.45569Z")

Next Steps

seconds since January 1, 1970. Cosmos DB's internal Timestamp (_ts) property follows this approach. You can use
the UnixDateTimeConverter class to serialize DateTimes as numbers.

Range queries are common with DateTime values. For example, if you need to find all orders created since
yesterday, or find all orders shipped in the last five minutes, you need to perform range queries. To execute these
queries efficiently, you must configure your collection for Range indexing on strings.

You can learn more about how to configure indexing policies at Cosmos DB Indexing Policies.

The DocumentDB .NET SDK automatically supports querying data stored in DocumentDB via LINQ. For example, the
following snippet shows a LINQ query that filters orders that were shipped in the last three days.

You can learn more about Cosmos DB's SQL query language and the LINQ provider at Querying Cosmos DB.

In this article, we looked at how to store, index, and query DateTimes in Cosmos DB.

Download and run the Code samples on GitHub
Learn more about DocumentDB API Query
Learn more about Azure Cosmos DB Indexing Policies

https://msdn.microsoft.com/library/azure/microsoft.azure.documents.unixdatetimeconverter.aspx
https://github.com/Azure/azure-documentdb-dotnet/tree/master/samples/code-samples

Modeling document data for NoSQL databases
5/30/2017 • 14 min to read • Edit Online

Embedding data

While schema-free databases, like Azure Cosmos DB, make it super easy to embrace changes to your data model
you should still spend some time thinking about your data.

How is data going to be stored? How is your application going to retrieve and query data? Is your application read
heavy, or write heavy?

After reading this article, you will be able to answer the following questions:

How should I think about a document in a document database?
What is data modeling and why should I care?
How is modeling data in a document database different to a relational database?
How do I express data relationships in a non-relational database?
When do I embed data and when do I link to data?

When you start modeling data in a document store, such as Azure Cosmos DB, try to treat your entities as self-
contained documents represented in JSON.

Before we dive in too much further, let us take a few steps back and have a look at how we might model something
in a relational database, a subject many of us are already familiar with. The following example shows how a person
might be stored in a relational database.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/modeling-data.md

SELECT p.FirstName, p.LastName, a.City, cd.Detail
FROM Person p
JOIN ContactDetail cd ON cd.PersonId = p.Id
JOIN ContactDetailType on cdt ON cdt.Id = cd.TypeId
JOIN Address a ON a.PersonId = p.Id

When working with relational databases, we've been taught for years to normalize, normalize, normalize.

Normalizing your data typically involves taking an entity, such as a person, and breaking it down in to discrete
pieces of data. In the example above, a person can have multiple contact detail records as well as multiple address
records. We even go one step further and break down contact details by further extracting common fields like a
type. Same for address, each record here has a type like Home or Business

The guiding premise when normalizing data is to avoid storing redundant data on each record and rather refer
to data. In this example, to read a person, with all their contact details and addresses, you need to use JOINS to
effectively aggregate your data at run time.

Updating a single person with their contact details and addresses requires write operations across many individual
tables.

Now let's take a look at how we would model the same data as a self-contained entity in a document database.

{
 "id": "1",
 "firstName": "Thomas",
 "lastName": "Andersen",
 "addresses": [
 {
 "line1": "100 Some Street",
 "line2": "Unit 1",
 "city": "Seattle",
 "state": "WA",
 "zip": 98012
 }
],
 "contactDetails": [
 {"email: "thomas@andersen.com"},
 {"phone": "+1 555 555-5555", "extension": 5555}
]
}

When to embed

NOTE

When not to embed

Using the approach above we have now denormalized the person record where we embedded all the
information relating to this person, such as their contact details and addresses, in to a single JSON document. In
addition, because we're not confined to a fixed schema we have the flexibility to do things like having contact details
of different shapes entirely.

Retrieving a complete person record from the database is now a single read operation against a single collection
and for a single document. Updating a person record, with their contact details and addresses, is also a single write
operation against a single document.

By denormalizing data, your application may need to issue fewer queries and updates to complete common
operations.

In general, use embedded data models when:

There are contains relationships between entities.
There are one-to-few relationships between entities.
There is embedded data that changes infrequently.
There is embedded data won't grow without bound.
There is embedded data that is integral to data in a document.

Typically denormalized data models provide better read performance.

While the rule of thumb in a document database is to denormalize everything and embed all data in to a single
document, this can lead to some situations that should be avoided.

Take this JSON snippet.

{
 "id": "1",
 "name": "What's new in the coolest Cloud",
 "summary": "A blog post by someone real famous",
 "comments": [
 {"id": 1, "author": "anon", "comment": "something useful, I'm sure"},
 {"id": 2, "author": "bob", "comment": "wisdom from the interwebs"},
 …
 {"id": 100001, "author": "jane", "comment": "and on we go ..."},
 …
 {"id": 1000000001, "author": "angry", "comment": "blah angry blah angry"},
 …
 {"id": ∞ + 1, "author": "bored", "comment": "oh man, will this ever end?"},
]
}

Post document:
{
 "id": "1",
 "name": "What's new in the coolest Cloud",
 "summary": "A blog post by someone real famous",
 "recentComments": [
 {"id": 1, "author": "anon", "comment": "something useful, I'm sure"},
 {"id": 2, "author": "bob", "comment": "wisdom from the interwebs"},
 {"id": 3, "author": "jane", "comment": "....."}
]
}

Comment documents:
{
 "postId": "1"
 "comments": [
 {"id": 4, "author": "anon", "comment": "more goodness"},
 {"id": 5, "author": "bob", "comment": "tails from the field"},
 ...
 {"id": 99, "author": "angry", "comment": "blah angry blah angry"}
]
},
{
 "postId": "1"
 "comments": [
 {"id": 100, "author": "anon", "comment": "yet more"},
 ...
 {"id": 199, "author": "bored", "comment": "will this ever end?"}
]
}

This might be what a post entity with embedded comments would look like if we were modeling a typical blog, or
CMS, system. The problem with this example is that the comments array is unbounded, meaning that there is no
(practical) limit to the number of comments any single post can have. This will become a problem as the size of the
document could grow significantly.

As the size of the document grows the ability to transmit the data over the wire as well as reading and updating the
document, at scale, will be impacted.

In this case it would be better to consider the following model.

This model has the three most recent comments embedded on the post itself, which is an array with a fixed bound
this time. The other comments are grouped in to batches of 100 comments and stored in separate documents. The
size of the batch was chosen as 100 because our fictitious application allows the user to load 100 comments at a
time.

{
 "id": "1",
 "firstName": "Thomas",
 "lastName": "Andersen",
 "holdings": [
 {
 "numberHeld": 100,
 "stock": { "symbol": "zaza", "open": 1, "high": 2, "low": 0.5 }
 },
 {
 "numberHeld": 50,
 "stock": { "symbol": "xcxc", "open": 89, "high": 93.24, "low": 88.87 }
 }
]
}

Referencing data

Another case where embedding data is not a good idea is when the embedded data is used often across documents
and will change frequently.

Take this JSON snippet.

This could represent a person's stock portfolio. We have chosen to embed the stock information in to each portfolio
document. In an environment where related data is changing frequently, like a stock trading application, embedding
data that changes frequently is going to mean that you are constantly updating each portfolio document every time
a stock is traded.

Stock zaza may be traded many hundreds of times in a single day and thousands of users could have zaza on their
portfolio. With a data model like the above we would have to update many thousands of portfolio documents many
times every day leading to a system that won't scale very well.

So, embedding data works nicely for many cases but it is clear that there are scenarios when denormalizing your
data will cause more problems than it is worth. So what do we do now?

Relational databases are not the only place where you can create relationships between entities. In a document
database you can have information in one document that actually relates to data in other documents. Now, I am not
advocating for even one minute that we build systems that would be better suited to a relational database in Azure
Cosmos DB, or any other document database, but simple relationships are fine and can be very useful.

In the JSON below we chose to use the example of a stock portfolio from earlier but this time we refer to the stock
item on the portfolio instead of embedding it. This way, when the stock item changes frequently throughout the day
the only document that needs to be updated is the single stock document.

Person document:
{
 "id": "1",
 "firstName": "Thomas",
 "lastName": "Andersen",
 "holdings": [
 { "numberHeld": 100, "stockId": 1},
 { "numberHeld": 50, "stockId": 2}
]
}

Stock documents:
{
 "id": "1",
 "symbol": "zaza",
 "open": 1,
 "high": 2,
 "low": 0.5,
 "vol": 11970000,
 "mkt-cap": 42000000,
 "pe": 5.89
},
{
 "id": "2",
 "symbol": "xcxc",
 "open": 89,
 "high": 93.24,
 "low": 88.87,
 "vol": 2970200,
 "mkt-cap": 1005000,
 "pe": 75.82
}

NOTE

What about foreign keys?

When to reference

An immediate downside to this approach though is if your application is required to show information about each
stock that is held when displaying a person's portfolio; in this case you would need to make multiple trips to the
database to load the information for each stock document. Here we've made a decision to improve the efficiency of
write operations, which happen frequently throughout the day, but in turn compromised on the read operations
that potentially have less impact on the performance of this particular system.

Normalized data models can require more round trips to the server.

Because there is currently no concept of a constraint, foreign-key or otherwise, any inter-document relationships
that you have in documents are effectively "weak links" and will not be verified by the database itself. If you want to
ensure that the data a document is referring to actually exists, then you need to do this in your application, or
through the use of server-side triggers or stored procedures on Azure Cosmos DB.

In general, use normalized data models when:

Representing one-to-many relationships.
Representing many-to-many relationships.
Related data changes frequently.
Referenced data could be unbounded.

NOTE

Where do I put the relationship?

Publisher document:
{
 "id": "mspress",
 "name": "Microsoft Press",
 "books": [1, 2, 3, ..., 100, ..., 1000]
}

Book documents:
{"id": "1", "name": "Azure Cosmos DB 101" }
{"id": "2", "name": "Azure Cosmos DB for RDBMS Users" }
{"id": "3", "name": "Taking over the world one JSON doc at a time" }
...
{"id": "100", "name": "Learn about Azure Cosmos DB" }
...
{"id": "1000", "name": "Deep Dive in to Azure Cosmos DB" }

Publisher document:
{
 "id": "mspress",
 "name": "Microsoft Press"
}

Book documents:
{"id": "1","name": "Azure Cosmos DB 101", "pub-id": "mspress"}
{"id": "2","name": "Azure Cosmos DB for RDBMS Users", "pub-id": "mspress"}
{"id": "3","name": "Taking over the world one JSON doc at a time"}
...
{"id": "100","name": "Learn about Azure Cosmos DB", "pub-id": "mspress"}
...
{"id": "1000","name": "Deep Dive in to Azure Cosmos DB", "pub-id": "mspress"}

How do I model many:many relationships?

Typically normalizing provides better write performance.

The growth of the relationship will help determine in which document to store the reference.

If we look at the JSON below that models publishers and books.

If the number of the books per publisher is small with limited growth, then storing the book reference inside the
publisher document may be useful. However, if the number of books per publisher is unbounded, then this data
model would lead to mutable, growing arrays, as in the example publisher document above.

Switching things around a bit would result in a model that still represents the same data but now avoids these large
mutable collections.

In the above example, we have dropped the unbounded collection on the publisher document. Instead we just have
a a reference to the publisher on each book document.

In a relational database many:many relationships are often modeled with join tables, which just join records from
other tables together.

Author documents:
{"id": "a1", "name": "Thomas Andersen" }
{"id": "a2", "name": "William Wakefield" }

Book documents:
{"id": "b1", "name": "Azure Cosmos DB 101" }
{"id": "b2", "name": "Azure Cosmos DB for RDBMS Users" }
{"id": "b3", "name": "Taking over the world one JSON doc at a time" }
{"id": "b4", "name": "Learn about Azure Cosmos DB" }
{"id": "b5", "name": "Deep Dive in to Azure Cosmos DB" }

Joining documents:
{"authorId": "a1", "bookId": "b1" }
{"authorId": "a2", "bookId": "b1" }
{"authorId": "a1", "bookId": "b2" }
{"authorId": "a1", "bookId": "b3" }

Author documents:
{"id": "a1", "name": "Thomas Andersen", "books": ["b1, "b2", "b3"]}
{"id": "a2", "name": "William Wakefield", "books": ["b1", "b4"]}

Book documents:
{"id": "b1", "name": "Azure Cosmos DB 101", "authors": ["a1", "a2"]}
{"id": "b2", "name": "Azure Cosmos DB for RDBMS Users", "authors": ["a1"]}
{"id": "b3", "name": "Learn about Azure Cosmos DB", "authors": ["a1"]}
{"id": "b4", "name": "Deep Dive in to Azure Cosmos DB", "authors": ["a2"]}

Hybrid data models

You might be tempted to replicate the same thing using documents and produce a data model that looks similar to
the following.

This would work. However, loading either an author with their books, or loading a book with its author, would
always require at least two additional queries against the database. One query to the joining document and then
another query to fetch the actual document being joined.

If all this join table is doing is gluing together two pieces of data, then why not drop it completely? Consider the
following.

Now, if I had an author, I immediately know which books they have written, and conversely if I had a book
document loaded I would know the ids of the author(s). This saves that intermediary query against the join table
reducing the number of server round trips your application has to make.

We've now looked embedding (or denormalizing) and referencing (or normalizing) data, each have their upsides
and each have compromises as we have seen.

It doesn't always have to be either or, don't be scared to mix things up a little.

Based on your application's specific usage patterns and workloads there may be cases where mixing embedded and
referenced data makes sense and could lead to simpler application logic with fewer server round trips while still
maintaining a good level of performance.

Author documents:
{
 "id": "a1",
 "firstName": "Thomas",
 "lastName": "Andersen",
 "countOfBooks": 3,
 "books": ["b1", "b2", "b3"],
 "images": [
 {"thumbnail": "http://....png"}
 {"profile": "http://....png"}
 {"large": "http://....png"}
]
},
{
 "id": "a2",
 "firstName": "William",
 "lastName": "Wakefield",
 "countOfBooks": 1,
 "books": ["b1"],
 "images": [
 {"thumbnail": "http://....png"}
]
}

Book documents:
{
 "id": "b1",
 "name": "Azure Cosmos DB 101",
 "authors": [
 {"id": "a1", "name": "Thomas Andersen", "thumbnailUrl": "http://....png"},
 {"id": "a2", "name": "William Wakefield", "thumbnailUrl": "http://....png"}
]
},
{
 "id": "b2",
 "name": "Azure Cosmos DB for RDBMS Users",
 "authors": [
 {"id": "a1", "name": "Thomas Andersen", "thumbnailUrl": "http://....png"},
]
}

Consider the following JSON.

Here we've (mostly) followed the embedded model, where data from other entities are embedded in the top-level
document, but other data is referenced.

If you look at the book document, we can see a few interesting fields when we look at the array of authors. There is
an id field which is the field we use to refer back to an author document, standard practice in a normalized model,
but then we also have name and thumbnailUrl. We could've just stuck with id and left the application to get any
additional information it needed from the respective author document using the "link", but because our application
displays the author's name and a thumbnail picture with every book displayed we can save a round trip to the
server per book in a list by denormalizing some data from the author.

Sure, if the author's name changed or they wanted to update their photo we'd have to go an update every book
they ever published but for our application, based on the assumption that authors don't change their names very
often, this is an acceptable design decision.

In the example there are pre-calculated aggregates values to save expensive processing on a read operation. In
the example, some of the data embedded in the author document is data that is calculated at run-time. Every time a
new book is published, a book document is created and the countOfBooks field is set to a calculated value based on
the number of book documents that exist for a particular author. This optimization would be good in read heavy
systems where we can afford to do computations on writes in order to optimize reads.

 Next steps

The ability to have a model with pre-calculated fields is made possible because Azure Cosmos DB supports multi-
document transactions. Many NoSQL stores cannot do transactions across documents and therefore advocate
design decisions, such as "always embed everything", due to this limitation. With Azure Cosmos DB, you can use
server-side triggers, or stored procedures, that insert books and update authors all within an ACID transaction. Now
you don't have to embed everything in to one document just to be sure that your data remains consistent.

The biggest takeaways from this article is to understand that data modeling in a schema-free world is just as
important as ever.

Just as there is no single way to represent a piece of data on a screen, there is no single way to model your data.
You need to understand your application and how it will produce, consume, and process the data. Then, by applying
some of the guidelines presented here you can set about creating a model that addresses the immediate needs of
your application. When your applications need to change, you can leverage the flexibility of a schema-free database
to embrace that change and evolve your data model easily.

To learn more about Azure Cosmos DB, refer to the service's documentation page.

To understand how to shard your data across multiple partitions, refer to Partitioning Data in Azure Cosmos DB.

https://azure.microsoft.com/documentation/services/cosmos-db/

Azure Cosmos DB: DocumentDB API getting started
tutorial
6/6/2017 • 15 min to read • Edit Online

Prerequisites

Step 1: Create an Azure Cosmos DB account

Welcome to the Azure Cosmos DB DocumentDB API getting started tutorial! After following this tutorial, you'll
have a console application that creates and queries DocumentDB resources.

We'll cover:

Creating and connecting to an Azure Cosmos DB account
Configuring your Visual Studio Solution
Creating an online database
Creating a collection
Creating JSON documents
Querying the collection
Replacing a document
Deleting a document
Deleting the database

Don't have time? Don't worry! The complete solution is available on GitHub. Jump to the Get the complete NoSQL
tutorial solution section for quick instructions.

Afterwards, please use the voting buttons at the top or bottom of this page to give us feedback. If you'd like us to
contact you directly, feel free to include your email address in your comments.

Now let's get started!

Please make sure you have the following:

An active Azure account. If you don't have one, you can sign up for a free account.

Visual Studio 2013 / Visual Studio 2015.
Alternatively, you can use the Azure Cosmos DB Emulator for this tutorial.

Let's create an Azure Cosmos DB account. If you already have an account you want to use, you can skip ahead to
Setup your Visual Studio Solution. If you are using the Azure Cosmos DB Emulator, please follow the steps at
Azure Cosmos DB Emulator to setup the emulator and skip ahead to Setup your Visual Studio Solution.

1. In a new window, sign in to the Azure portal.
2. In the left pane, click New, click Databases, and then click Azure Cosmos DB.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/documentdb-get-started.md
https://github.com/Azure-Samples/documentdb-dotnet-getting-started
https://azure.microsoft.com/free/
http://www.visualstudio.com/
https://portal.azure.com/

3. On the New account blade, specify the configuration that you want for the Azure Cosmos DB account.

With Azure Cosmos DB, you can choose one of four programming models: Gremlin (graph), MongoDB,
SQL (DocumentDB), and Table (key-value).

In this quick-start article we program against the DocumentDB API, so choose SQL (DocumentDB) as you
fill out the form. But if you have graph data for a social media app, or key/value (table) data, or data
migrated from a MongoDB app, realize that Azure Cosmos DB can provide a highly available, globally
distributed database service platform for all your mission-critical applications.

Complete the fields on the New account blade, using the information in the following screenshot as a
guide. When you set up your account, choose unique values that do not match those in the screenshot.

SETTING SUGGESTED VALUE DESCRIPTION

ID Unique value A unique name that identifies your
Azure Cosmos DB account. The
string documents.azure.com is
appended to the ID you provide to
create your URI, so use a unique but
identifiable ID. The ID can contain
only lowercase letters, numbers, and
the hyphen (-) character, and it must
contain from 3 through 50
characters.

API SQL (DocumentDB) We program against the
DocumentDB API later in this article.

Subscription Your subscription The Azure subscription that you
want to use for your Azure Cosmos
DB account.

Resource Group The same value as ID The new resource-group name for
your account. For simplicity, you can
use the same name as your ID.

Location The region closest to your users The geographic location in which to
host your Azure Cosmos DB account.
Choose the location that's closest to
your users to give them the fastest
access to the data.

4. Click Create to create the account.
5. On the top toolbar, click Notifications to monitor the deployment process.

6. When the deployment is complete, open the new account from the All Resources tile.

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-introduction

 Step 2: Setup your Visual Studio solution
1. Open Visual Studio 2015 on your computer.
2. On the File menu, select New, and then choose Project.
3. In the New Project dialog, select Templates / Visual C# / Console Application, name your project, and then

click OK.

4. In the Solution Explorer, right click on your new console application, which is under your Visual Studio
solution, and then click Manage NuGet Packages...

5. In the Nuget tab, click Browse, and type azure documentdb in the search box.
6. Within the results, find Microsoft.Azure.DocumentDB and click Install. The package ID for the Azure

Cosmos DB DocumentDB API Client Library is Microsoft Azure DocumentDB Client Library.

If you get a messages about reviewing changes to the solution, click OK. If you get a message about license

https://www.nuget.org/packages/Microsoft.Azure.DocumentDB/

 Step 3: Connect to an Azure Cosmos DB account

using System;
using System.Linq;
using System.Threading.Tasks;

// ADD THIS PART TO YOUR CODE
using System.Net;
using Microsoft.Azure.Documents;
using Microsoft.Azure.Documents.Client;
using Newtonsoft.Json;

IMPORTANT

public class Program
{
 // ADD THIS PART TO YOUR CODE
 private const string EndpointUrl = "<your endpoint URL>";
 private const string PrimaryKey = "<your primary key>";
 private DocumentClient client;

acceptance, click I accept.

Great! Now that we finished the setup, let's start writing some code. You can find a completed code project of this
tutorial at GitHub.

First, add these references to the beginning of your C# application, in the Program.cs file:

In order to complete the tutorial, make sure you add the dependencies above.

Now, add these two constants and your client variable underneath your public class Program.

Next, head back to the Azure Portal to retrieve your endpoint URL and primary key. The endpoint URL and primary
key are necessary for your application to understand where to connect to, and for Azure Cosmos DB to trust your
application's connection.

In the Azure Portal, navigate to your Azure Cosmos DB account, and then click Keys.

Copy the URI from the portal and paste it into <your endpoint URL> in the program.cs file. Then copy the PRIMARY
KEY from the portal and paste it into <your primary key> .

https://github.com/Azure-Samples/documentdb-dotnet-getting-started/blob/master/src/Program.cs
https://portal.azure.com

static void Main(string[] args)
{
}

// ADD THIS PART TO YOUR CODE
private async Task GetStartedDemo()
{
 this.client = new DocumentClient(new Uri(EndpointUrl), PrimaryKey);
}

static void Main(string[] args)
{
 // ADD THIS PART TO YOUR CODE
 try
 {
 Program p = new Program();
 p.GetStartedDemo().Wait();
 }
 catch (DocumentClientException de)
 {
 Exception baseException = de.GetBaseException();
 Console.WriteLine("{0} error occurred: {1}, Message: {2}", de.StatusCode, de.Message, baseException.Message);
 }
 catch (Exception e)
 {
 Exception baseException = e.GetBaseException();
 Console.WriteLine("Error: {0}, Message: {1}", e.Message, baseException.Message);
 }
 finally
 {
 Console.WriteLine("End of demo, press any key to exit.");
 Console.ReadKey();
 }

Next, we'll start the application by creating a new instance of the DocumentClient.

Below the Main method, add this new asynchronous task called GetStartedDemo, which will instantiate our new
DocumentClient.

Add the following code to run your asynchronous task from your Main method. The Main method will catch
exceptions and write them to the console.

Step 4: Create a database

// ADD THIS PART TO YOUR CODE
private void WriteToConsoleAndPromptToContinue(string format, params object[] args)
{
 Console.WriteLine(format, args);
 Console.WriteLine("Press any key to continue ...");
 Console.ReadKey();
}

private async Task GetStartedDemo()
{
 this.client = new DocumentClient(new Uri(EndpointUrl), PrimaryKey);

 // ADD THIS PART TO YOUR CODE
 await this.client.CreateDatabaseIfNotExistsAsync(new Database { Id = "FamilyDB" });

Step 5: Create a collection

WARNING

Press F5 to run your application. The console window output displays the message End of demo, press any key to exit.

confirming that the connection was made. You can then close the console window.

Congratulations! You have successfully connected to an Azure Cosmos DB account, let's now take a look at
working with Azure Cosmos DB resources.

Before you add the code for creating a database, add a helper method for writing to the console.

Copy and paste the WriteToConsoleAndPromptToContinue method after the GetStartedDemo method.

Your Azure Cosmos DB database can be created by using the CreateDatabaseIfNotExistsAsync method of the
DocumentClient class. A database is the logical container of JSON document storage partitioned across
collections.

Copy and paste the following code to your GetStartedDemo method after the client creation. This will create a
database named FamilyDB.

Press F5 to run your application.

Congratulations! You have successfully created an Azure Cosmos DB database.

CreateDocumentCollectionIfNotExistsAsync will create a new collection with reserved throughput, which has pricing
implications. For more details, please visit our pricing page.

A collection can be created by using the CreateDocumentCollectionIfNotExistsAsync method of the
DocumentClient class. A collection is a container of JSON documents and associated JavaScript application logic.

Copy and paste the following code to your GetStartedDemo method after the database creation. This will create
a document collection named FamilyCollection.

https://msdn.microsoft.com/library/microsoft.azure.documents.client.documentclient.createdatabaseifnotexistsasync.aspx
https://azure.microsoft.com/pricing/details/cosmos-db/
https://msdn.microsoft.com/library/microsoft.azure.documents.client.documentclient.createdocumentcollectionifnotexistsasync.aspx

 this.client = new DocumentClient(new Uri(EndpointUrl), PrimaryKey);

 await this.client.CreateDatabaseIfNotExistsAsync(new Database { Id = "FamilyDB" });

 // ADD THIS PART TO YOUR CODE
 await this.client.CreateDocumentCollectionIfNotExistsAsync(UriFactory.CreateDatabaseUri("FamilyDB"), new DocumentCollection { Id =
"FamilyCollection" });

Step 6: Create JSON documents

Press F5 to run your application.

Congratulations! You have successfully created an Azure Cosmos DB document collection.

A document can be created by using the CreateDocumentAsync method of the DocumentClient class.
Documents are user defined (arbitrary) JSON content. We can now insert one or more documents. If you already
have data you'd like to store in your database, you can use DocumentDB's Data Migration tool to import the data
into a database.

First, we need to create a Family class that will represent objects stored within Azure Cosmos DB in this sample.
We will also create Parent, Child, Pet, Address subclasses that are used within Family. Note that documents
must have an Id property serialized as id in JSON. Create these classes by adding the following internal sub-
classes after the GetStartedDemo method.

Copy and paste the Family, Parent, Child, Pet, and Address classes after the
WriteToConsoleAndPromptToContinue method.

https://msdn.microsoft.com/library/microsoft.azure.documents.client.documentclient.createdocumentasync.aspx

private void WriteToConsoleAndPromptToContinue(string format, params object[] args)
{
 Console.WriteLine(format, args);
 Console.WriteLine("Press any key to continue ...");
 Console.ReadKey();
}

// ADD THIS PART TO YOUR CODE
public class Family
{
 [JsonProperty(PropertyName = "id")]
 public string Id { get; set; }
 public string LastName { get; set; }
 public Parent[] Parents { get; set; }
 public Child[] Children { get; set; }
 public Address Address { get; set; }
 public bool IsRegistered { get; set; }
 public override string ToString()
 {
 return JsonConvert.SerializeObject(this);
 }
}

public class Parent
{
 public string FamilyName { get; set; }
 public string FirstName { get; set; }
}

public class Child
{
 public string FamilyName { get; set; }
 public string FirstName { get; set; }
 public string Gender { get; set; }
 public int Grade { get; set; }
 public Pet[] Pets { get; set; }
}

public class Pet
{
 public string GivenName { get; set; }
}

public class Address
{
 public string State { get; set; }
 public string County { get; set; }
 public string City { get; set; }
}

Copy and paste the CreateFamilyDocumentIfNotExists method underneath your Address class.

// ADD THIS PART TO YOUR CODE
private async Task CreateFamilyDocumentIfNotExists(string databaseName, string collectionName, Family family)
{
 try
 {
 await this.client.ReadDocumentAsync(UriFactory.CreateDocumentUri(databaseName, collectionName, family.Id));
 this.WriteToConsoleAndPromptToContinue("Found {0}", family.Id);
 }
 catch (DocumentClientException de)
 {
 if (de.StatusCode == HttpStatusCode.NotFound)
 {
 await this.client.CreateDocumentAsync(UriFactory.CreateDocumentCollectionUri(databaseName, collectionName), family);
 this.WriteToConsoleAndPromptToContinue("Created Family {0}", family.Id);
 }
 else
 {
 throw;
 }
 }
}

await this.client.CreateDatabaseIfNotExistsAsync(new Database { Id = "FamilyDB" });

await this.client.CreateDocumentCollectionIfNotExistsAsync(UriFactory.CreateDatabaseUri("FamilyDB"), new DocumentCollection { Id =
"FamilyCollection" });

// ADD THIS PART TO YOUR CODE
Family andersenFamily = new Family
{
 Id = "Andersen.1",
 LastName = "Andersen",
 Parents = new Parent[]
 {
 new Parent { FirstName = "Thomas" },
 new Parent { FirstName = "Mary Kay" }
 },
 Children = new Child[]
 {
 new Child
 {
 FirstName = "Henriette Thaulow",
 Gender = "female",
 Grade = 5,
 Pets = new Pet[]
 {
 new Pet { GivenName = "Fluffy" }
 }
 }
 },
 Address = new Address { State = "WA", County = "King", City = "Seattle" },
 IsRegistered = true
};

await this.CreateFamilyDocumentIfNotExists("FamilyDB", "FamilyCollection", andersenFamily);

Family wakefieldFamily = new Family
{
 Id = "Wakefield.7",
 LastName = "Wakefield",
 Parents = new Parent[]

And insert two documents, one each for the Andersen Family and the Wakefield Family.

Copy and paste the following code to your GetStartedDemo method after the document collection creation.

 {
 new Parent { FamilyName = "Wakefield", FirstName = "Robin" },
 new Parent { FamilyName = "Miller", FirstName = "Ben" }
 },
 Children = new Child[]
 {
 new Child
 {
 FamilyName = "Merriam",
 FirstName = "Jesse",
 Gender = "female",
 Grade = 8,
 Pets = new Pet[]
 {
 new Pet { GivenName = "Goofy" },
 new Pet { GivenName = "Shadow" }
 }
 },
 new Child
 {
 FamilyName = "Miller",
 FirstName = "Lisa",
 Gender = "female",
 Grade = 1
 }
 },
 Address = new Address { State = "NY", County = "Manhattan", City = "NY" },
 IsRegistered = false
};

await this.CreateFamilyDocumentIfNotExists("FamilyDB", "FamilyCollection", wakefieldFamily);

Step 7: Query Azure Cosmos DB resources

Press F5 to run your application.

Congratulations! You have successfully created two Azure Cosmos DB documents.

Azure Cosmos DB supports rich queries against JSON documents stored in each collection. The following sample
code shows various queries - using both Azure Cosmos DB SQL syntax as well as LINQ - that we can run against
the documents we inserted in the previous step.

Copy and paste the ExecuteSimpleQuery method after your CreateFamilyDocumentIfNotExists method.

// ADD THIS PART TO YOUR CODE
private void ExecuteSimpleQuery(string databaseName, string collectionName)
{
 // Set some common query options
 FeedOptions queryOptions = new FeedOptions { MaxItemCount = -1 };

 // Here we find the Andersen family via its LastName
 IQueryable<Family> familyQuery = this.client.CreateDocumentQuery<Family>(
 UriFactory.CreateDocumentCollectionUri(databaseName, collectionName), queryOptions)
 .Where(f => f.LastName == "Andersen");

 // The query is executed synchronously here, but can also be executed asynchronously via the IDocumentQuery<T> interface
 Console.WriteLine("Running LINQ query...");
 foreach (Family family in familyQuery)
 {
 Console.WriteLine("\tRead {0}", family);
 }

 // Now execute the same query via direct SQL
 IQueryable<Family> familyQueryInSql = this.client.CreateDocumentQuery<Family>(
 UriFactory.CreateDocumentCollectionUri(databaseName, collectionName),
 "SELECT * FROM Family WHERE Family.LastName = 'Andersen'",
 queryOptions);

 Console.WriteLine("Running direct SQL query...");
 foreach (Family family in familyQueryInSql)
 {
 Console.WriteLine("\tRead {0}", family);
 }

 Console.WriteLine("Press any key to continue ...");
 Console.ReadKey();
}

await this.CreateFamilyDocumentIfNotExists("FamilyDB", "FamilyCollection", wakefieldFamily);

// ADD THIS PART TO YOUR CODE
this.ExecuteSimpleQuery("FamilyDB", "FamilyCollection");

Copy and paste the following code to your GetStartedDemo method after the second document creation.

Press F5 to run your application.

Congratulations! You have successfully queried against an Azure Cosmos DB collection.

The following diagram illustrates how the Azure Cosmos DB SQL query syntax is called against the collection you
created, and the same logic applies to the LINQ query as well.

The FROM keyword is optional in the query because DocumentDB queries are already scoped to a single

Step 8: Replace JSON document

// ADD THIS PART TO YOUR CODE
private async Task ReplaceFamilyDocument(string databaseName, string collectionName, string familyName, Family updatedFamily)
{
 await this.client.ReplaceDocumentAsync(UriFactory.CreateDocumentUri(databaseName, collectionName, familyName), updatedFamily);
 this.WriteToConsoleAndPromptToContinue("Replaced Family {0}", familyName);
}

await this.CreateFamilyDocumentIfNotExists("FamilyDB", "FamilyCollection", wakefieldFamily);

this.ExecuteSimpleQuery("FamilyDB", "FamilyCollection");

// ADD THIS PART TO YOUR CODE
// Update the Grade of the Andersen Family child
andersenFamily.Children[0].Grade = 6;

await this.ReplaceFamilyDocument("FamilyDB", "FamilyCollection", "Andersen.1", andersenFamily);

this.ExecuteSimpleQuery("FamilyDB", "FamilyCollection");

Step 9: Delete JSON document

// ADD THIS PART TO YOUR CODE
private async Task DeleteFamilyDocument(string databaseName, string collectionName, string documentName)
{
 await this.client.DeleteDocumentAsync(UriFactory.CreateDocumentUri(databaseName, collectionName, documentName));
 Console.WriteLine("Deleted Family {0}", documentName);
}

await this.ReplaceFamilyDocument("FamilyDB", "FamilyCollection", "Andersen.1", andersenFamily);

this.ExecuteSimpleQuery("FamilyDB", "FamilyCollection");

// ADD THIS PART TO CODE
await this.DeleteFamilyDocument("FamilyDB", "FamilyCollection", "Andersen.1");

collection. Therefore, "FROM Families f" can be swapped with "FROM root r", or any other variable name you
choose. DocumentDB will infer that Families, root, or the variable name you chose, reference the current collection
by default.

Azure Cosmos DB supports replacing JSON documents.

Copy and paste the ReplaceFamilyDocument method after your ExecuteSimpleQuery method.

Copy and paste the following code to your GetStartedDemo method after the query execution, at the end of the
method. After replacing the document, this will run the same query again to view the changed document.

Press F5 to run your application.

Congratulations! You have successfully replaced an Azure Cosmos DB document.

Azure Cosmos DB supports deleting JSON documents.

Copy and paste the DeleteFamilyDocument method after your ReplaceFamilyDocument method.

Copy and paste the following code to your GetStartedDemo method after the second query execution, at the end
of the method.

Step 10: Delete the database

this.ExecuteSimpleQuery("FamilyDB", "FamilyCollection");

await this.DeleteFamilyDocument("FamilyDB", "FamilyCollection", "Andersen.1");

// ADD THIS PART TO CODE
// Clean up/delete the database
await this.client.DeleteDatabaseAsync(UriFactory.CreateDatabaseUri("FamilyDB"));

Step 11: Run your C# console application all together!

Created FamilyDB
Press any key to continue ...
Created FamilyCollection
Press any key to continue ...
Created Family Andersen.1
Press any key to continue ...
Created Family Wakefield.7
Press any key to continue ...
Running LINQ query...
 Read {"id":"Andersen.1","LastName":"Andersen","District":"WA5","Parents":[{"FamilyName":null,"FirstName":"Thomas"},
{"FamilyName":null,"FirstName":"Mary Kay"}],"Children":[{"FamilyName":null,"FirstName":"Henriette
Thaulow","Gender":"female","Grade":5,"Pets":[{"GivenName":"Fluffy"}]}],"Address":
{"State":"WA","County":"King","City":"Seattle"},"IsRegistered":true}
Running direct SQL query...
 Read {"id":"Andersen.1","LastName":"Andersen","District":"WA5","Parents":[{"FamilyName":null,"FirstName":"Thomas"},
{"FamilyName":null,"FirstName":"Mary Kay"}],"Children":[{"FamilyName":null,"FirstName":"Henriette
Thaulow","Gender":"female","Grade":5,"Pets":[{"GivenName":"Fluffy"}]}],"Address":
{"State":"WA","County":"King","City":"Seattle"},"IsRegistered":true}
Replaced Family Andersen.1
Press any key to continue ...
Running LINQ query...
 Read {"id":"Andersen.1","LastName":"Andersen","District":"WA5","Parents":[{"FamilyName":null,"FirstName":"Thomas"},
{"FamilyName":null,"FirstName":"Mary Kay"}],"Children":[{"FamilyName":null,"FirstName":"Henriette
Thaulow","Gender":"female","Grade":6,"Pets":[{"GivenName":"Fluffy"}]}],"Address":
{"State":"WA","County":"King","City":"Seattle"},"IsRegistered":true}
Running direct SQL query...
 Read {"id":"Andersen.1","LastName":"Andersen","District":"WA5","Parents":[{"FamilyName":null,"FirstName":"Thomas"},
{"FamilyName":null,"FirstName":"Mary Kay"}],"Children":[{"FamilyName":null,"FirstName":"Henriette
Thaulow","Gender":"female","Grade":6,"Pets":[{"GivenName":"Fluffy"}]}],"Address":
{"State":"WA","County":"King","City":"Seattle"},"IsRegistered":true}
Deleted Family Andersen.1
End of demo, press any key to exit.

Press F5 to run your application.

Congratulations! You have successfully deleted an Azure Cosmos DB document.

Deleting the created database will remove the database and all children resources (collections, documents, etc.).

Copy and paste the following code to your GetStartedDemo method after the document delete to delete the
entire database and all children resources.

Press F5 to run your application.

Congratulations! You have successfully deleted an Azure Cosmos DB database.

Hit F5 in Visual Studio to build the application in debug mode.

You should see the output of your get started app. The output will show the results of the queries we added and
should match the example text below.

 Get the complete tutorial solution

Next steps

Congratulations! You've completed the tutorial and have a working C# console application!

If you didn't have time to complete the steps in this tutorial, or just want to download the code samples, you can
get it from GitHub.

To build the GetStarted solution, you will need the following:

An active Azure account. If you don't have one, you can sign up for a free account.
A Azure Cosmos DB account.
The GetStarted solution available on GitHub.

To restore the references to the DocumentDB .NET SDK in Visual Studio, right-click the GetStarted solution in
Solution Explorer, and then click Enable NuGet Package Restore. Next, in the App.config file, update the
EndpointUrl and AuthorizationKey values as described in Connect to an Azure Cosmos DB account.

That's it, build it and you're on your way!

Want a more complex ASP.NET MVC tutorial? See Build a web application with ASP.NET MVC using Azure
Cosmos DB.
Want to perform scale and performance testing with Azure Cosmos DB? See Performance and Scale Testing
with Azure Cosmos DB
Learn how to monitor an Azure Cosmos DB account.
Run queries against our sample dataset in the Query Playground.
Learn more about the programming model in the Develop section of the Azure Cosmos DB documentation
page.

https://github.com/Azure-Samples/documentdb-dotnet-getting-started
https://azure.microsoft.com/free/
https://github.com/Azure-Samples/documentdb-dotnet-getting-started
https://www.documentdb.com/sql/demo
https://azure.microsoft.com/documentation/services/documentdb/

Azure Cosmos DB: Getting started with the
DocumentDB API and .NET Core
6/6/2017 • 15 min to read • Edit Online

NOTE

Prerequisites

Welcome to the Azure Cosmos DB getting started tutorial! After following this tutorial, you'll have a console
application that creates and queries DocumentDB resources.

We'll cover:

Creating and connecting to an Azure Cosmos DB account
Configuring your Visual Studio Solution
Creating an online database
Creating a collection
Creating JSON documents
Querying the collection
Replacing a document
Deleting a document
Deleting the database

Don't have time? Don't worry! The complete solution is available on GitHub. Jump to the Get the complete
solution section for quick instructions.

Want to build a Xamarin iOS, Android, or Forms application using the DocumentDB .NET Core SDK? See
Developing Xamarin mobile applications using DocumentDB.

Afterwards, please use the voting buttons at the top or bottom of this page to give us feedback. If you'd like us to
contact you directly, feel free to include your email address in your comments.

The DocumentDB .NET Core SDK used in this tutorial is not yet compatible with Universal Windows Platform (UWP) apps.
For a preview version of the .NET Core SDK that does support UWP apps, send email to askcosmosdb@microsoft.com.

Now let's get started!

Please make sure you have the following:

An active Azure account. If you don't have one, you can sign up for a free account.

Visual Studio 2017
Alternatively, you can use the Azure Cosmos DB Emulator for this tutorial.

If you're working on MacOS or Linux, you can develop .NET Core apps from the command-line by
installing the .NET Core SDK for the platform of your choice.
If you're working on Windows, you can develop .NET Core apps from the command-line by installing the
.NET Core SDK.
You can use your own editor, or download Visual Studio Code which is free and works on Windows,
Linux, and MacOS.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/documentdb-dotnetcore-get-started.md
https://github.com/Azure-Samples/documentdb-dotnet-core-getting-started
mailto:askcosmosdb@microsoft.com
https://azure.microsoft.com/free/
https://www.visualstudio.com/vs/
https://www.microsoft.com/net/core#macos
https://www.microsoft.com/net/core#windows
https://code.visualstudio.com/

Step 1: Create a DocumentDB account
Let's create an Azure Cosmos DB account. If you already have an account you want to use, you can skip ahead to
Setup your Visual Studio Solution. If you are using the Azure Cosmos DB Emulator, please follow the steps at
Azure Cosmos DB Emulator to setup the emulator and skip ahead to Setup your Visual Studio Solution.

1. In a new window, sign in to the Azure portal.
2. In the left pane, click New, click Databases, and then click Azure Cosmos DB.

3. On the New account blade, specify the configuration that you want for the Azure Cosmos DB account.

With Azure Cosmos DB, you can choose one of four programming models: Gremlin (graph), MongoDB, SQL
(DocumentDB), and Table (key-value).

In this quick-start article we program against the DocumentDB API, so choose SQL (DocumentDB) as you
fill out the form. But if you have graph data for a social media app, or key/value (table) data, or data
migrated from a MongoDB app, realize that Azure Cosmos DB can provide a highly available, globally
distributed database service platform for all your mission-critical applications.

Complete the fields on the New account blade, using the information in the following screenshot as a
guide. When you set up your account, choose unique values that do not match those in the screenshot.

https://portal.azure.com/

SETTING SUGGESTED VALUE DESCRIPTION

ID Unique value A unique name that identifies your
Azure Cosmos DB account. The
string documents.azure.com is
appended to the ID you provide to
create your URI, so use a unique but
identifiable ID. The ID can contain
only lowercase letters, numbers, and
the hyphen (-) character, and it must
contain from 3 through 50
characters.

API SQL (DocumentDB) We program against the
DocumentDB API later in this article.

Subscription Your subscription The Azure subscription that you want
to use for your Azure Cosmos DB
account.

Resource Group The same value as ID The new resource-group name for
your account. For simplicity, you can
use the same name as your ID.

Location The region closest to your users The geographic location in which to
host your Azure Cosmos DB account.
Choose the location that's closest to
your users to give them the fastest
access to the data.

4. Click Create to create the account.
5. On the top toolbar, click Notifications to monitor the deployment process.

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-introduction

 Step 2: Setup your Visual Studio solution

6. When the deployment is complete, open the new account from the All Resources tile.

1. Open Visual Studio 2017 on your computer.
2. On the File menu, select New, and then choose Project.
3. In the New Project dialog, select Templates / Visual C# / .NET Core/Console Application (.NET Core),

name your project DocumentDBGettingStarted, and then click OK.

4. In the Solution Explorer, right click on DocumentDBGettingStarted.

6. In the NuGet tab, click Browse at the top of the window, and type azure documentdb in the search box.
7. Within the results, find Microsoft.Azure.DocumentDB.Core and click Install. The package ID for the

DocumentDB Client Library for .NET Core is Microsoft.Azure.DocumentDB.Core. If you are targeting a .NET
Framework version (like net461) that is not supported by this .NET Core NuGet package, then use
Microsoft.Azure.DocumentDB that supports all .NET Framework versions starting .NET Framework 4.5.

5. Then without leaving the menu, click on Manage NuGet Packages....

https://www.nuget.org/packages/Microsoft.Azure.DocumentDB.Core
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB

 Step 3: Connect to an Azure Cosmos DB account

using System;

// ADD THIS PART TO YOUR CODE
using System.Linq;
using System.Threading.Tasks;
using System.Net;
using Microsoft.Azure.Documents;
using Microsoft.Azure.Documents.Client;
using Newtonsoft.Json;

IMPORTANT

class Program
{
 // ADD THIS PART TO YOUR CODE
 private const string EndpointUri = "<your endpoint URI>";
 private const string PrimaryKey = "<your key>";
 private DocumentClient client;

8. At the prompts, accept the NuGet package installations and the license agreement.

Great! Now that we finished the setup, let's start writing some code. You can find a completed code project of this
tutorial at GitHub.

First, add these references to the beginning of your C# application, in the Program.cs file:

In order to complete this tutorial, make sure you add the dependencies above.

Now, add these two constants and your client variable underneath your public class Program.

Next, head to the Azure Portal to retrieve your URI and primary key. The DocumentDB URI and primary key are
necessary for your application to understand where to connect to, and for DocumentDB to trust your application's
connection.

In the Azure Portal, navigate to your Azure Cosmos DB account, and then click Keys.

Copy the URI from the portal and paste it into <your endpoint URI> in the program.cs file. Then copy the PRIMARY
KEY from the portal and paste it into <your key> . If you are using the Azure Cosmos DB Emulator, use
https://localhost:8081 as the endpoint, and the well-defined authorization key from How to develop using the Azure

Cosmos DB Emulator. Make sure to remove the < and > but leave the double quotes around your endpoint and
key.

https://github.com/Azure-Samples/documentdb-dotnet-core-getting-started
https://portal.azure.com

static void Main(string[] args)
{
}

// ADD THIS PART TO YOUR CODE
private async Task GetStartedDemo()
{
 this.client = new DocumentClient(new Uri(EndpointUri), PrimaryKey);
}

static void Main(string[] args)
{
 // ADD THIS PART TO YOUR CODE
 try
 {
 Program p = new Program();
 p.GetStartedDemo().Wait();
 }
 catch (DocumentClientException de)
 {
 Exception baseException = de.GetBaseException();
 Console.WriteLine("{0} error occurred: {1}, Message: {2}", de.StatusCode, de.Message, baseException.Message);
 }
 catch (Exception e)
 {
 Exception baseException = e.GetBaseException();
 Console.WriteLine("Error: {0}, Message: {1}", e.Message, baseException.Message);
 }
 finally
 {
 Console.WriteLine("End of demo, press any key to exit.");
 Console.ReadKey();
 }

We'll start the getting started application by creating a new instance of the DocumentClient.

Below the Main method, add this new asynchronous task called GetStartedDemo, which will instantiate our new
DocumentClient.

Add the following code to run your asynchronous task from your Main method. The Main method will catch
exceptions and write them to the console.

Step 4: Create a database

// ADD THIS PART TO YOUR CODE
private void WriteToConsoleAndPromptToContinue(string format, params object[] args)
{
 Console.WriteLine(format, args);
 Console.WriteLine("Press any key to continue ...");
 Console.ReadKey();
}

private async Task GetStartedDemo()
{
 this.client = new DocumentClient(new Uri(EndpointUri), PrimaryKey);

 // ADD THIS PART TO YOUR CODE
 await this.client.CreateDatabaseIfNotExistsAsync(new Database { Id = "FamilyDB_oa" });

Step 5: Create a collection

WARNING

Press the DocumentDBGettingStarted button to build and run the application.

Congratulations! You have successfully connected to an Azure Cosmos DB account, let's now take a look at
working with Azure Cosmos DB resources.

Before you add the code for creating a database, add a helper method for writing to the console.

Copy and paste the WriteToConsoleAndPromptToContinue method underneath the GetStartedDemo
method.

Your DocumentDB database can be created by using the CreateDatabaseAsync method of the DocumentClient
class. A database is the logical container of JSON document storage partitioned across collections.

Copy and paste the following code to your GetStartedDemo method underneath the client creation. This will
create a database named FamilyDB.

Press the DocumentDBGettingStarted button to run your application.

Congratulations! You have successfully created an Azure Cosmos DB database.

CreateDocumentCollectionAsync will create a new collection with reserved throughput, which has pricing implications. For
more details, please visit our pricing page.

A collection can be created by using the CreateDocumentCollectionAsync method of the DocumentClient class. A
collection is a container of JSON documents and associated JavaScript application logic.

Copy and paste the following code to your GetStartedDemo method underneath the database creation. This will
create a document collection named FamilyCollection_oa.

https://msdn.microsoft.com/library/microsoft.azure.documents.client.documentclient.createdatabaseasync.aspx
https://azure.microsoft.com/pricing/details/cosmos-db/
https://msdn.microsoft.com/library/microsoft.azure.documents.client.documentclient.createdocumentcollectionasync.aspx

 this.client = new DocumentClient(new Uri(EndpointUri), PrimaryKey);

 await this.CreateDatabaseIfNotExists("FamilyDB_oa");

 // ADD THIS PART TO YOUR CODE
 await this.client.CreateDocumentCollectionIfNotExistsAsync(UriFactory.CreateDatabaseUri("FamilyDB_oa"), new DocumentCollection { Id =
"FamilyCollection_oa" });

Step 6: Create JSON documents

Press the DocumentDBGettingStarted button to run your application.

Congratulations! You have successfully created an Azure Cosmos DB document collection.

A document can be created by using the CreateDocumentAsync method of the DocumentClient class.
Documents are user defined (arbitrary) JSON content. We can now insert one or more documents. If you already
have data you'd like to store in your database, you can use DocumentDB's Data Migration tool.

First, we need to create a Family class that will represent objects stored within Azure Cosmos DB in this sample.
We will also create Parent, Child, Pet, Address subclasses that are used within Family. Note that documents
must have an Id property serialized as id in JSON. Create these classes by adding the following internal sub-
classes after the GetStartedDemo method.

Copy and paste the Family, Parent, Child, Pet, and Address classes underneath the
WriteToConsoleAndPromptToContinue method.

https://msdn.microsoft.com/library/microsoft.azure.documents.client.documentclient.createdocumentasync.aspx

private void WriteToConsoleAndPromptToContinue(string format, params object[] args)
{
 Console.WriteLine(format, args);
 Console.WriteLine("Press any key to continue ...");
 Console.ReadKey();
}

// ADD THIS PART TO YOUR CODE
public class Family
{
 [JsonProperty(PropertyName = "id")]
 public string Id { get; set; }
 public string LastName { get; set; }
 public Parent[] Parents { get; set; }
 public Child[] Children { get; set; }
 public Address Address { get; set; }
 public bool IsRegistered { get; set; }
 public override string ToString()
 {
 return JsonConvert.SerializeObject(this);
 }
}

public class Parent
{
 public string FamilyName { get; set; }
 public string FirstName { get; set; }
}

public class Child
{
 public string FamilyName { get; set; }
 public string FirstName { get; set; }
 public string Gender { get; set; }
 public int Grade { get; set; }
 public Pet[] Pets { get; set; }
}

public class Pet
{
 public string GivenName { get; set; }
}

public class Address
{
 public string State { get; set; }
 public string County { get; set; }
 public string City { get; set; }
}

Copy and paste the CreateFamilyDocumentIfNotExists method underneath your
CreateDocumentCollectionIfNotExists method.

// ADD THIS PART TO YOUR CODE
private async Task CreateFamilyDocumentIfNotExists(string databaseName, string collectionName, Family family)
{
 try
 {
 await this.client.ReadDocumentAsync(UriFactory.CreateDocumentUri(databaseName, collectionName, family.Id));
 this.WriteToConsoleAndPromptToContinue("Found {0}", family.Id);
 }
 catch (DocumentClientException de)
 {
 if (de.StatusCode == HttpStatusCode.NotFound)
 {
 await this.client.CreateDocumentAsync(UriFactory.CreateDocumentCollectionUri(databaseName, collectionName), family);
 this.WriteToConsoleAndPromptToContinue("Created Family {0}", family.Id);
 }
 else
 {
 throw;
 }
 }
}

await this.CreateDatabaseIfNotExists("FamilyDB_oa");

await this.CreateDocumentCollectionIfNotExists("FamilyDB_oa", "FamilyCollection_oa");

// ADD THIS PART TO YOUR CODE
Family andersenFamily = new Family
{
 Id = "Andersen.1",
 LastName = "Andersen",
 Parents = new Parent[]
 {
 new Parent { FirstName = "Thomas" },
 new Parent { FirstName = "Mary Kay" }
 },
 Children = new Child[]
 {
 new Child
 {
 FirstName = "Henriette Thaulow",
 Gender = "female",
 Grade = 5,
 Pets = new Pet[]
 {
 new Pet { GivenName = "Fluffy" }
 }
 }
 },
 Address = new Address { State = "WA", County = "King", City = "Seattle" },
 IsRegistered = true
};

await this.CreateFamilyDocumentIfNotExists("FamilyDB_oa", "FamilyCollection_oa", andersenFamily);

Family wakefieldFamily = new Family
{
 Id = "Wakefield.7",
 LastName = "Wakefield",
 Parents = new Parent[]
 {

And insert two documents, one each for the Andersen Family and the Wakefield Family.

Copy and paste the code that follows // ADD THIS PART TO YOUR CODE to your GetStartedDemo method
underneath the document collection creation.

 {
 new Parent { FamilyName = "Wakefield", FirstName = "Robin" },
 new Parent { FamilyName = "Miller", FirstName = "Ben" }
 },
 Children = new Child[]
 {
 new Child
 {
 FamilyName = "Merriam",
 FirstName = "Jesse",
 Gender = "female",
 Grade = 8,
 Pets = new Pet[]
 {
 new Pet { GivenName = "Goofy" },
 new Pet { GivenName = "Shadow" }
 }
 },
 new Child
 {
 FamilyName = "Miller",
 FirstName = "Lisa",
 Gender = "female",
 Grade = 1
 }
 },
 Address = new Address { State = "NY", County = "Manhattan", City = "NY" },
 IsRegistered = false
};

await this.CreateFamilyDocumentIfNotExists("FamilyDB_oa", "FamilyCollection_oa", wakefieldFamily);

Step 7: Query Azure Cosmos DB resources

Press the DocumentDBGettingStarted button to run your application.

Congratulations! You have successfully created two Azure Cosmos DB documents.

Azure Cosmos DB supports rich queries against JSON documents stored in each collection. The following sample
code shows various queries - using both Azure Cosmos DB SQL syntax as well as LINQ - that we can run against
the documents we inserted in the previous step.

Copy and paste the ExecuteSimpleQuery method underneath your CreateFamilyDocumentIfNotExists
method.

// ADD THIS PART TO YOUR CODE
private void ExecuteSimpleQuery(string databaseName, string collectionName)
{
 // Set some common query options
 FeedOptions queryOptions = new FeedOptions { MaxItemCount = -1 };

 // Here we find the Andersen family via its LastName
 IQueryable<Family> familyQuery = this.client.CreateDocumentQuery<Family>(
 UriFactory.CreateDocumentCollectionUri(databaseName, collectionName), queryOptions)
 .Where(f => f.LastName == "Andersen");

 // The query is executed synchronously here, but can also be executed asynchronously via the IDocumentQuery<T> interface
 Console.WriteLine("Running LINQ query...");
 foreach (Family family in familyQuery)
 {
 Console.WriteLine("\tRead {0}", family);
 }

 // Now execute the same query via direct SQL
 IQueryable<Family> familyQueryInSql = this.client.CreateDocumentQuery<Family>(
 UriFactory.CreateDocumentCollectionUri(databaseName, collectionName),
 "SELECT * FROM Family WHERE Family.LastName = 'Andersen'",
 queryOptions);

 Console.WriteLine("Running direct SQL query...");
 foreach (Family family in familyQueryInSql)
 {
 Console.WriteLine("\tRead {0}", family);
 }

 Console.WriteLine("Press any key to continue ...");
 Console.ReadKey();
}

await this.CreateFamilyDocumentIfNotExists("FamilyDB_oa", "FamilyCollection_oa", wakefieldFamily);

// ADD THIS PART TO YOUR CODE
this.ExecuteSimpleQuery("FamilyDB_oa", "FamilyCollection_oa");

Copy and paste the following code to your GetStartedDemo method underneath the second document creation.

Press the DocumentDBGettingStarted button to run your application.

Congratulations! You have successfully queried against an Azure Cosmos DB collection.

The following diagram illustrates how the Azure Cosmos DB SQL query syntax is called against the collection you
created, and the same logic applies to the LINQ query as well.

The FROM keyword is optional in the query because DocumentDB queries are already scoped to a single

Step 8: Replace JSON document

// ADD THIS PART TO YOUR CODE
private async Task ReplaceFamilyDocument(string databaseName, string collectionName, string familyName, Family updatedFamily)
{
 try
 {
 await this.client.ReplaceDocumentAsync(UriFactory.CreateDocumentUri(databaseName, collectionName, familyName), updatedFamily);
 this.WriteToConsoleAndPromptToContinue("Replaced Family {0}", familyName);
 }
 catch (DocumentClientException de)
 {
 throw;
 }
}

await this.CreateFamilyDocumentIfNotExists("FamilyDB_oa", "FamilyCollection_oa", wakefieldFamily);

this.ExecuteSimpleQuery("FamilyDB_oa", "FamilyCollection_oa");

// ADD THIS PART TO YOUR CODE
// Update the Grade of the Andersen Family child
andersenFamily.Children[0].Grade = 6;

await this.ReplaceFamilyDocument("FamilyDB_oa", "FamilyCollection_oa", "Andersen.1", andersenFamily);

this.ExecuteSimpleQuery("FamilyDB_oa", "FamilyCollection_oa");

Step 9: Delete JSON document

collection. Therefore, "FROM Families f" can be swapped with "FROM root r", or any other variable name you
choose. DocumentDB will infer that Families, root, or the variable name you chose, reference the current collection
by default.

Azure Cosmos DB supports replacing JSON documents.

Copy and paste the ReplaceFamilyDocument method underneath your ExecuteSimpleQuery method.

Copy and paste the following code to your GetStartedDemo method underneath the query execution. After
replacing the document, this will run the same query again to view the changed document.

Press the DocumentDBGettingStarted button to run your application.

Congratulations! You have successfully replaced a DocumentDB document.

Azure Cosmos DB supports deleting JSON documents.

Copy and paste the DeleteFamilyDocument method underneath your ReplaceFamilyDocument method.

// ADD THIS PART TO YOUR CODE
private async Task DeleteFamilyDocument(string databaseName, string collectionName, string documentName)
{
 try
 {
 await this.client.DeleteDocumentAsync(UriFactory.CreateDocumentUri(databaseName, collectionName, documentName));
 Console.WriteLine("Deleted Family {0}", documentName);
 }
 catch (DocumentClientException de)
 {
 throw;
 }
}

await this.ReplaceFamilyDocument("FamilyDB_oa", "FamilyCollection_oa", "Andersen.1", andersenFamily);

this.ExecuteSimpleQuery("FamilyDB_oa", "FamilyCollection_oa");

// ADD THIS PART TO CODE
await this.DeleteFamilyDocument("FamilyDB_oa", "FamilyCollection_oa", "Andersen.1");

Step 10: Delete the database

this.ExecuteSimpleQuery("FamilyDB_oa", "FamilyCollection_oa");

await this.DeleteFamilyDocument("FamilyDB_oa", "FamilyCollection_oa", "Andersen.1");

// ADD THIS PART TO CODE
// Clean up/delete the database
await this.client.DeleteDatabaseAsync(UriFactory.CreateDatabaseUri("FamilyDB_oa"));

Step 11: Run your C# console application all together!

Copy and paste the following code to your GetStartedDemo method underneath the second query execution.

Press the DocumentDBGettingStarted button to run your application.

Congratulations! You have successfully deleted an Azure Cosmos DB document.

Deleting the created database will remove the database and all children resources (collections, documents, etc.).

Copy and paste the following code to your GetStartedDemo method underneath the document delete to delete
the entire database and all children resources.

Press the DocumentDBGettingStarted button to run your application.

Congratulations! You have successfully deleted an Azure Cosmos DB database.

Press the DocumentDBGettingStarted button in Visual Studio to build the application in debug mode.

You should see the output of your get started app. The output will show the results of the queries we added and
should match the example text below.

Created FamilyDB_oa
Press any key to continue ...
Created FamilyCollection_oa
Press any key to continue ...
Created Family Andersen.1
Press any key to continue ...
Created Family Wakefield.7
Press any key to continue ...
Running LINQ query...
 Read {"id":"Andersen.1","LastName":"Andersen","District":"WA5","Parents":[{"FamilyName":null,"FirstName":"Thomas"},
{"FamilyName":null,"FirstName":"Mary Kay"}],"Children":[{"FamilyName":null,"FirstName":"Henriette
Thaulow","Gender":"female","Grade":5,"Pets":[{"GivenName":"Fluffy"}]}],"Address":
{"State":"WA","County":"King","City":"Seattle"},"IsRegistered":true}
Running direct SQL query...
 Read {"id":"Andersen.1","LastName":"Andersen","District":"WA5","Parents":[{"FamilyName":null,"FirstName":"Thomas"},
{"FamilyName":null,"FirstName":"Mary Kay"}],"Children":[{"FamilyName":null,"FirstName":"Henriette
Thaulow","Gender":"female","Grade":5,"Pets":[{"GivenName":"Fluffy"}]}],"Address":
{"State":"WA","County":"King","City":"Seattle"},"IsRegistered":true}
Replaced Family Andersen.1
Press any key to continue ...
Running LINQ query...
 Read {"id":"Andersen.1","LastName":"Andersen","District":"WA5","Parents":[{"FamilyName":null,"FirstName":"Thomas"},
{"FamilyName":null,"FirstName":"Mary Kay"}],"Children":[{"FamilyName":null,"FirstName":"Henriette
Thaulow","Gender":"female","Grade":6,"Pets":[{"GivenName":"Fluffy"}]}],"Address":
{"State":"WA","County":"King","City":"Seattle"},"IsRegistered":true}
Running direct SQL query...
 Read {"id":"Andersen.1","LastName":"Andersen","District":"WA5","Parents":[{"FamilyName":null,"FirstName":"Thomas"},
{"FamilyName":null,"FirstName":"Mary Kay"}],"Children":[{"FamilyName":null,"FirstName":"Henriette
Thaulow","Gender":"female","Grade":6,"Pets":[{"GivenName":"Fluffy"}]}],"Address":
{"State":"WA","County":"King","City":"Seattle"},"IsRegistered":true}
Deleted Family Andersen.1
End of demo, press any key to exit.

Get the complete tutorial solution

Next steps

Congratulations! You've completed the tutorial and have a working C# console application!

To build the GetStarted solution that contains all the samples in this article, you will need the following:

An active Azure account. If you don't have one, you can sign up for a free account.
A Azure Cosmos DB account.
The GetStarted solution available on GitHub.

To restore the references to the DocumentDB .NET Core SDK in Visual Studio, right-click the GetStarted solution
in Solution Explorer, and then click Enable NuGet Package Restore. Next, in the Program.cs file, update the
EndpointUrl and AuthorizationKey values as described in Connect to a DocumentDB account.

Want a more complex ASP.NET MVC tutorial? See Build a web application with ASP.NET MVC using
DocumentDB.
Want to develop a Xamarin iOS, Android, or Forms application using the DocumentDB .NET Core SDK? See
Developing Xamarin mobile applications using DocumentDB.
Want to perform scale and performance testing with Azure Cosmos DB? See Performance and Scale Testing
with Azure Cosmos DB
Learn how to monitor an Azure Cosmos DB account.
Run queries against our sample dataset in the Query Playground.
Learn more about the programming model in the Develop section of the DocumentDB documentation page.

https://azure.microsoft.com/free/
https://github.com/Azure-Samples/documentdb-dotnet-core-getting-started
https://www.documentdb.com/sql/demo
https://azure.microsoft.com/documentation/services/documentdb/

NoSQL tutorial: Build a DocumentDB Java console
application
6/9/2017 • 6 min to read • Edit Online

Prerequisites

Step 1: Create an Azure Cosmos DB account

Welcome to the NoSQL tutorial for the Azure DocumentDB Java SDK! After following this tutorial, you'll have a
console application that creates and queries DocumentDB resources.

We cover:

Creating and connecting to an Azure Cosmos DB account
Configuring your Visual Studio Solution
Creating an online database
Creating a collection
Creating JSON documents
Querying the collection
Creating JSON documents
Querying the collection
Replacing a document
Deleting a document
Deleting the database

Now let's get started!

Make sure you have the following:

An active Azure account. If you don't have one, you can sign up for a free account. Alternatively, you can use the
Azure Cosmos DB Emulator for this tutorial.
Git
Java Development Kit (JDK) 7+.
Maven.

Let's create an Azure Cosmos DB account. If you already have an account you want to use, you can skip ahead to
Clone the GitHub project. If you are using the Azure Cosmos DB Emulator, follow the steps at Azure Cosmos DB
Emulator to set up the emulator and skip ahead to Clone the GitHub project.

1. In a new window, sign in to the Azure portal.
2. In the left pane, click New, click Databases, and then click Azure Cosmos DB.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/documentdb-java-get-started.md
https://azure.microsoft.com/free/
https://git-scm.com/downloads
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org/download.cgi
https://portal.azure.com/

3. On the New account blade, specify the configuration that you want for the Azure Cosmos DB account.

With Azure Cosmos DB, you can choose one of four programming models: Gremlin (graph), MongoDB, SQL
(DocumentDB), and Table (key-value).

In this quick-start article we program against the DocumentDB API, so choose SQL (DocumentDB) as you
fill out the form. But if you have graph data for a social media app, or key/value (table) data, or data
migrated from a MongoDB app, realize that Azure Cosmos DB can provide a highly available, globally
distributed database service platform for all your mission-critical applications.

Complete the fields on the New account blade, using the information in the following screenshot as a
guide. When you set up your account, choose unique values that do not match those in the screenshot.

SETTING SUGGESTED VALUE DESCRIPTION

ID Unique value A unique name that identifies your
Azure Cosmos DB account. The
string documents.azure.com is
appended to the ID you provide to
create your URI, so use a unique but
identifiable ID. The ID can contain
only lowercase letters, numbers, and
the hyphen (-) character, and it must
contain from 3 through 50
characters.

API SQL (DocumentDB) We program against the
DocumentDB API later in this article.

Subscription Your subscription The Azure subscription that you want
to use for your Azure Cosmos DB
account.

Resource Group The same value as ID The new resource-group name for
your account. For simplicity, you can
use the same name as your ID.

Location The region closest to your users The geographic location in which to
host your Azure Cosmos DB account.
Choose the location that's closest to
your users to give them the fastest
access to the data.

4. Click Create to create the account.
5. On the top toolbar, click Notifications to monitor the deployment process.

6. When the deployment is complete, open the new account from the All Resources tile.

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-introduction

Step 2: Clone the GitHub project

git clone git@github.com:Azure-Samples/azure-cosmos-db-documentdb-java-getting-started.git

cd azure-cosmos-db-documentdb-java-getting-started

<dependency>
 <groupId>com.microsoft.azure</groupId>
 <artifactId>azure-documentdb</artifactId>
 <version>LATEST</version>
</dependency>

Step 3: Connect to an Azure Cosmos DB account

You can get started by cloning the GitHub repository for Get Started with Azure Cosmos DB and Java. For example,
from a local directory run the following to retrieve the sample project locally.

The directory contains a pom.xml for the project and a src folder containing Java source code including
Program.java which shows how perform simple operations with Azure DocumentDB like creating documents and

querying data within a collection. The pom.xml includes a dependency on the DocumentDB Java SDK on Maven.

Next, head back to the Azure Portal to retrieve your endpoint and primary master key. The Azure Cosmos DB
endpoint and primary key are necessary for your application to understand where to connect to, and for Azure
Cosmos DB to trust your application's connection.

In the Azure Portal, navigate to your Azure Cosmos DB account, and then click Keys. Copy the URI from the portal
and paste it into <your endpoint URI> in the Program.java file. Then copy the PRIMARY KEY from the portal and paste
it into <your key> .

https://github.com/Azure-Samples/documentdb-java-getting-started
https://mvnrepository.com/artifact/com.microsoft.azure/azure-documentdb
https://portal.azure.com

this.client = new DocumentClient(
 "<your endpoint URI>",
 "<your key>"
 , new ConnectionPolicy(),
 ConsistencyLevel.Session);

Step 4: Create a database

Database database = new Database();
database.setId("familydb");
this.client.createDatabase(database, null);

Step 5: Create a collection

WARNING

DocumentCollection collectionInfo = new DocumentCollection();
collectionInfo.setId("familycoll");

// Azure Cosmos DB collections can be reserved with throughput specified in request units/second.
// Here we create a collection with 400 RU/s.
RequestOptions requestOptions = new RequestOptions();
requestOptions.setOfferThroughput(400);

this.client.createCollection("/dbs/familydb", collectionInfo, requestOptions);

Step 6: Create JSON documents

Your Azure Cosmos DB database can be created by using the createDatabase method of the DocumentClient
class. A database is the logical container of JSON document storage partitioned across collections.

createCollection creates a new collection with reserved throughput, which has pricing implications. For more details, visit
our pricing page.

A collection can be created by using the createCollection method of the DocumentClient class. A collection is a
container of JSON documents and associated JavaScript application logic.

http://azure.github.io/azure-documentdb-java/com/microsoft/azure/documentdb/DocumentClient.html#createDatabase-com.microsoft.azure.documentdb.Database-com.microsoft.azure.documentdb.RequestOptions-
https://azure.microsoft.com/pricing/details/cosmos-db/
http://azure.github.io/azure-documentdb-java/com/microsoft/azure/documentdb/DocumentClient.html#createCollection-java.lang.String-com.microsoft.azure.documentdb.DocumentCollection-com.microsoft.azure.documentdb.RequestOptions-

Step 6: Create JSON documents

// Insert your Java objects as documents
Family andersenFamily = new Family();
andersenFamily.setId("Andersen.1");
andersenFamily.setLastName("Andersen")

// More initialization skipped for brevity. You can have nested references
andersenFamily.setParents(new Parent[] { parent1, parent2 });
andersenFamily.setDistrict("WA5");
Address address = new Address();
address.setCity("Seattle");
address.setCounty("King");
address.setState("WA");

andersenFamily.setAddress(address);
andersenFamily.setRegistered(true);

this.client.createDocument("/dbs/familydb/colls/familycoll", family, new RequestOptions(), true);

Step 7: Query Azure Cosmos DB resources

FeedResponse<Document> queryResults = this.client.queryDocuments(
 "/dbs/familydb/colls/familycoll",
 "SELECT * FROM Family WHERE Family.lastName = 'Andersen'",
 null);

System.out.println("Running SQL query...");
for (Document family : queryResults.getQueryIterable()) {
 System.out.println(String.format("\tRead %s", family));
}

Step 8: Replace JSON document

A document can be created by using the createDocument method of the DocumentClient class. Documents are
user-defined (arbitrary) JSON content. We can now insert one or more documents. If you already have data you'd
like to store in your database, you can use DocumentDB's Data Migration tool to import the data into a database.

Azure Cosmos DB supports rich queries against JSON documents stored in each collection. The following sample
code shows how to query documents in Azure Cosmos DB using SQL syntax with the queryDocuments method.

Azure Cosmos DB supports updating JSON documents using the replaceDocument method.

http://azure.github.io/azure-documentdb-java/com/microsoft/azure/documentdb/DocumentClient.html#createDocument-java.lang.String-java.lang.Object-com.microsoft.azure.documentdb.RequestOptions-boolean-
http://azure.github.io/azure-documentdb-java/com/microsoft/azure/documentdb/DocumentClient.html#queryDocuments-java.lang.String-com.microsoft.azure.documentdb.SqlQuerySpec-com.microsoft.azure.documentdb.FeedOptions-
http://azure.github.io/azure-documentdb-java/com/microsoft/azure/documentdb/DocumentClient.html#replaceDocument-com.microsoft.azure.documentdb.Document-com.microsoft.azure.documentdb.RequestOptions-

// Update a property
andersenFamily.Children[0].Grade = 6;

this.client.replaceDocument(
 "/dbs/familydb/colls/familycoll/docs/Andersen.1",
 andersenFamily,
 null);

Step 9: Delete JSON document

this.client.delete("/dbs/familydb/colls/familycoll/docs/Andersen.1", null);

Step 10: Delete the database

this.client.deleteDatabase("/dbs/familydb", null);

Step 11: Run your Java console application all together!

mvn package

mvn exec:java -D exec.mainClass=GetStarted.Program

Next steps

Similarly, Azure Cosmos DB supports deleting JSON documents using the deleteDocument method.

Deleting the created database removes the database and all children resources (collections, documents, etc.).

To run the application from the console, navigate to the project folder and compile using Maven:

Running mvn package downloads the latest Azure Cosmos DB library from Maven and produces
GetStarted-0.0.1-SNAPSHOT.jar . Then run the app by running:

Congratulations! You've completed this NoSQL tutorial and have a working Java console application!

Want a Java web app tutorial? See Build a web application with Java using Azure Cosmos DB.
Learn how to monitor an Azure Cosmos DB account.
Run queries against our sample dataset in the Query Playground.
Learn more about the programming model in the Develop section of the Azure Cosmos DB documentation
page.

http://azure.github.io/azure-documentdb-java/com/microsoft/azure/documentdb/DocumentClient.html#deleteDocument-java.lang.String-com.microsoft.azure.documentdb.RequestOptions-
https://www.documentdb.com/sql/demo
https://azure.microsoft.com/documentation/services/documentdb/

Node.js tutorial: DocumentDB Node.js console
application
6/6/2017 • 14 min to read • Edit Online

Prerequisites for the Node.js tutorial

Step 1: Create an Azure Cosmos DB account

Welcome to the Node.js tutorial for the Azure Cosmos DB Node.js SDK! After following this tutorial, you'll have a
console application that creates and queries Azure Cosmos DB resources.

We'll cover:

Creating and connecting to an Azure Cosmos DB account
Setting up your application
Creating a node database
Creating a collection
Creating JSON documents
Querying the collection
Replacing a document
Deleting a document
Deleting the node database

Don't have time? Don't worry! The complete solution is available on GitHub. See Get the complete solution for
quick instructions.

After you've completed the Node.js tutorial, please use the voting buttons at the top and bottom of this page to
give us feedback. If you'd like us to contact you directly, feel free to include your email address in your comments.

Now let's get started!

Please make sure you have the following:

An active Azure account. If you don't have one, you can sign up for a Free Azure Trial.

Node.js version v0.10.29 or higher.
Alternatively, you can use the Azure Cosmos DB Emulator for this tutorial.

Let's create an Azure Cosmos DB account. If you already have an account you want to use, you can skip ahead to
Setup your Node.js application. If you are using the Azure Cosmos DB Emulator, please follow the steps at Azure
Cosmos DB Emulator to setup the emulator and skip ahead to Setup your Node.js application.

1. In a new window, sign in to the Azure portal.
2. In the left pane, click New, click Databases, and then click Azure Cosmos DB.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/documentdb-nodejs-get-started.md
https://github.com/Azure-Samples/documentdb-node-getting-started
https://azure.microsoft.com/pricing/free-trial/
https://nodejs.org/
https://portal.azure.com/

3. On the New account blade, specify the configuration that you want for the Azure Cosmos DB account.

With Azure Cosmos DB, you can choose one of four programming models: Gremlin (graph), MongoDB, SQL
(DocumentDB), and Table (key-value).

In this quick-start article we program against the DocumentDB API, so choose SQL (DocumentDB) as you
fill out the form. But if you have graph data for a social media app, or key/value (table) data, or data
migrated from a MongoDB app, realize that Azure Cosmos DB can provide a highly available, globally
distributed database service platform for all your mission-critical applications.

Complete the fields on the New account blade, using the information in the following screenshot as a
guide. When you set up your account, choose unique values that do not match those in the screenshot.

SETTING SUGGESTED VALUE DESCRIPTION

ID Unique value A unique name that identifies your
Azure Cosmos DB account. The
string documents.azure.com is
appended to the ID you provide to
create your URI, so use a unique but
identifiable ID. The ID can contain
only lowercase letters, numbers, and
the hyphen (-) character, and it must
contain from 3 through 50
characters.

API SQL (DocumentDB) We program against the
DocumentDB API later in this article.

Subscription Your subscription The Azure subscription that you
want to use for your Azure Cosmos
DB account.

Resource Group The same value as ID The new resource-group name for
your account. For simplicity, you can
use the same name as your ID.

Location The region closest to your users The geographic location in which to
host your Azure Cosmos DB account.
Choose the location that's closest to
your users to give them the fastest
access to the data.

4. Click Create to create the account.
5. On the top toolbar, click Notifications to monitor the deployment process.

6. When the deployment is complete, open the new account from the All Resources tile.

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-introduction

Step 2: Setup your Node.js application

Step 3: Set your app's configurations

1. Open your favorite terminal.
2. Locate the folder or directory where you'd like to save your Node.js application.
3. Create two empty JavaScript files with the following commands:

4. Install the documentdb module via npm. Use the following command:

Windows:

Linux/OS X:

fsutil file createnew app.js 0

fsutil file createnew config.js 0

touch app.js

touch config.js

npm install documentdb --save

Great! Now that you've finished setting up, let's start writing some code.

Open config.js in your favorite text editor.

Then, copy and paste the code snippet below and set properties config.endpoint and config.primaryKey to your
DocumentDB endpoint uri and primary key. Both these configurations can be found in the Azure Portal.

https://portal.azure.com

// ADD THIS PART TO YOUR CODE
var config = {}

config.endpoint = "~your DocumentDB endpoint uri here~";
config.primaryKey = "~your primary key here~";

config.endpoint = "~your DocumentDB endpoint uri here~";
config.primaryKey = "~your primary key here~";

// ADD THIS PART TO YOUR CODE
config.database = {
 "id": "FamilyDB"
};

config.collection = {
 "id": "FamilyColl"
};

config.documents = {
 "Andersen": {
 "id": "Anderson.1",
 "lastName": "Andersen",
 "parents": [{
 "firstName": "Thomas"
 }, {

Copy and paste the database id , collection id , and JSON documents to your config object below where you set your
config.endpoint and config.authKey properties. If you already have data you'd like to store in your database, you can

use Azure Cosmos DB's Data Migration tool rather than adding the document definitions.

 "firstName": "Mary Kay"
 }],
 "children": [{
 "firstName": "Henriette Thaulow",
 "gender": "female",
 "grade": 5,
 "pets": [{
 "givenName": "Fluffy"
 }]
 }],
 "address": {
 "state": "WA",
 "county": "King",
 "city": "Seattle"
 }
 },
 "Wakefield": {
 "id": "Wakefield.7",
 "parents": [{
 "familyName": "Wakefield",
 "firstName": "Robin"
 }, {
 "familyName": "Miller",
 "firstName": "Ben"
 }],
 "children": [{
 "familyName": "Merriam",
 "firstName": "Jesse",
 "gender": "female",
 "grade": 8,
 "pets": [{
 "givenName": "Goofy"
 }, {
 "givenName": "Shadow"
 }]
 }, {
 "familyName": "Miller",
 "firstName": "Lisa",
 "gender": "female",
 "grade": 1
 }],
 "address": {
 "state": "NY",
 "county": "Manhattan",
 "city": "NY"
 },
 "isRegistered": false
 }
};

 },
 "isRegistered": false
 }
};

// ADD THIS PART TO YOUR CODE
module.exports = config;

Step 4: Connect to an Azure Cosmos DB account

The database, collection, and document definitions will act as your DocumentDB database id , collection id , and
documents' data.

Finally, export your config object, so that you can reference it within the app.js file.

// ADD THIS PART TO YOUR CODE
"use strict";

var documentClient = require("documentdb").DocumentClient;
var config = require("./config");
var url = require('url');

var config = require("./config");
var url = require('url');

// ADD THIS PART TO YOUR CODE
var client = new documentClient(config.endpoint, { "masterKey": config.primaryKey });

Step 5: Create a Node database

var client = new documentClient(config.endpoint, { "masterKey": config.primaryKey });

// ADD THIS PART TO YOUR CODE
var HttpStatusCodes = { NOTFOUND: 404 };
var databaseUrl = `dbs/${config.database.id}`;
var collectionUrl = `${databaseUrl}/colls/${config.collection.id}`;

Open your empty app.js file in the text editor. Copy and paste the code below to import the documentdb module
and your newly created config module.

Copy and paste the code to use the previously saved config.endpoint and config.primaryKey to create a new
DocumentClient.

Now that you have the code to initialize the documentdb client, let's take a look at working with DocumentDB
resources.

Copy and paste the code below to set the HTTP status for Not Found, the database url, and the collection url. These
urls are how the DocumentDB client will find the right database and collection.

A database can be created by using the createDatabase function of the DocumentClient class. A database is the
logical container of document storage partitioned across collections.

Copy and paste the getDatabase function for creating your new database in the app.js file with the id specified
in the config object. The function will check if the database with the same FamilyRegistry id does not already exist. If
it does exist, we'll return that database instead of creating a new one.

https://azure.github.io/azure-documentdb-node/DocumentClient.html

var collectionUrl = `${databaseUrl}/colls/${config.collection.id}`;

// ADD THIS PART TO YOUR CODE
function getDatabase() {
 console.log(`Getting database:\n${config.database.id}\n`);

 return new Promise((resolve, reject) => {
 client.readDatabase(databaseUrl, (err, result) => {
 if (err) {
 if (err.code == HttpStatusCodes.NOTFOUND) {
 client.createDatabase(config.database, (err, created) => {
 if (err) reject(err)
 else resolve(created);
 });
 } else {
 reject(err);
 }
 } else {
 resolve(result);
 }
 });
 });
}

 } else {
 resolve(result);
 }
 });
 });
}

// ADD THIS PART TO YOUR CODE
function exit(message) {
 console.log(message);
 console.log('Press any key to exit');
 process.stdin.setRawMode(true);
 process.stdin.resume();
 process.stdin.on('data', process.exit.bind(process, 0));
}

getDatabase()
.then(() => { exit(`Completed successfully`); })
.catch((error) => { exit(`Completed with error ${JSON.stringify(error)}`) });

Step 6: Create a collection

WARNING

Copy and paste the code below where you set the getDatabase function to add the helper function exit that will
print the exit message and the call to getDatabase function.

In your terminal, locate your app.js file and run the command: node app.js

Congratulations! You have successfully created an Azure Cosmos DB database.

CreateDocumentCollectionAsync will create a new collection, which has pricing implications. For more details, please visit
our pricing page.

A collection can be created by using the createCollection function of the DocumentClient class. A collection is a
container of JSON documents and associated JavaScript application logic.

https://azure.microsoft.com/pricing/details/cosmos-db/
https://azure.github.io/azure-documentdb-node/DocumentClient.html

 } else {
 resolve(result);
 }
 });
 });
}

// ADD THIS PART TO YOUR CODE
function getCollection() {
 console.log(`Getting collection:\n${config.collection.id}\n`);

 return new Promise((resolve, reject) => {
 client.readCollection(collectionUrl, (err, result) => {
 if (err) {
 if (err.code == HttpStatusCodes.NOTFOUND) {
 client.createCollection(databaseUrl, config.collection, { offerThroughput: 400 }, (err, created) => {
 if (err) reject(err)
 else resolve(created);
 });
 } else {
 reject(err);
 }
 } else {
 resolve(result);
 }
 });
 });
}

getDatabase()

// ADD THIS PART TO YOUR CODE
.then(() => getCollection())
// ENDS HERE

.then(() => { exit(`Completed successfully`); })

.catch((error) => { exit(`Completed with error ${JSON.stringify(error)}`) });

Step 7: Create a document

Copy and paste the getCollection function underneath the getDatabase function in the app.js file to create your
new collection with the id specified in the config object. Again, we'll check to make sure a collection with the
same FamilyCollection id does not already exist. If it does exist, we'll return that collection instead of creating a new
one.

Copy and paste the code below the call to getDatabase to execute the getCollection function.

In your terminal, locate your app.js file and run the command: node app.js

Congratulations! You have successfully created a DocumentDB collection.

A document can be created by using the createDocument function of the DocumentClient class. Documents are
user defined (arbitrary) JSON content. You can now insert a document into DocumentDB.

Copy and paste the getFamilyDocument function underneath the getCollection function for creating the
documents containing the JSON data saved in the config object. Again, we'll check to make sure a document with
the same id does not already exist.

https://azure.github.io/azure-documentdb-node/DocumentClient.html

 } else {
 resolve(result);
 }
 });
 });
}

// ADD THIS PART TO YOUR CODE
function getFamilyDocument(document) {
 let documentUrl = `${collectionUrl}/docs/${document.id}`;
 console.log(`Getting document:\n${document.id}\n`);

 return new Promise((resolve, reject) => {
 client.readDocument(documentUrl, { partitionKey: document.district }, (err, result) => {
 if (err) {
 if (err.code == HttpStatusCodes.NOTFOUND) {
 client.createDocument(collectionUrl, document, (err, created) => {
 if (err) reject(err)
 else resolve(created);
 });
 } else {
 reject(err);
 }
 } else {
 resolve(result);
 }
 });
 });
};

getDatabase()
.then(() => getCollection())

// ADD THIS PART TO YOUR CODE
.then(() => getFamilyDocument(config.documents.Andersen))
.then(() => getFamilyDocument(config.documents.Wakefield))
// ENDS HERE

.then(() => { exit(`Completed successfully`); })

.catch((error) => { exit(`Completed with error ${JSON.stringify(error)}`) });

Step 8: Query Azure Cosmos DB resources

Copy and paste the code below the call to getCollection to execute the getFamilyDocument function.

In your terminal, locate your app.js file and run the command: node app.js

Congratulations! You have successfully created a DocumentDB documents.

 } else {
 resolve(result);
 }
 });
 });
}

// ADD THIS PART TO YOUR CODE
function queryCollection() {
 console.log(`Querying collection through index:\n${config.collection.id}`);

 return new Promise((resolve, reject) => {
 client.queryDocuments(
 collectionUrl,
 'SELECT VALUE r.children FROM root r WHERE r.lastName = "Andersen"'
).toArray((err, results) => {
 if (err) reject(err)
 else {
 for (var queryResult of results) {
 let resultString = JSON.stringify(queryResult);
 console.log(`\tQuery returned ${resultString}`);
 }
 console.log();
 resolve(results);
 }
 });
 });
};

Azure Cosmos DB supports rich queries against JSON documents stored in each collection. The following sample
code shows a query that you can run against the documents in your collection.

Copy and paste the queryCollection function underneath the getFamilyDocument function in the app.js file.
DocumentDB supports SQL-like queries as shown below. For more information on building complex queries,
check out the Query Playground and the query documentation.

The following diagram illustrates how the DocumentDB SQL query syntax is called against the collection you
created.

The FROM keyword is optional in the query because DocumentDB queries are already scoped to a single
collection. Therefore, "FROM Families f" can be swapped with "FROM root r", or any other variable name you
choose. DocumentDB will infer that Families, root, or the variable name you chose, reference the current collection
by default.

Copy and paste the code below the call to getFamilyDocument to execute the queryCollection function.

https://www.documentdb.com/sql/demo

.then(() => getFamilyDocument(config.documents.Andersen))

.then(() => getFamilyDocument(config.documents.Wakefield))

// ADD THIS PART TO YOUR CODE
.then(() => queryCollection())
// ENDS HERE

.then(() => { exit(`Completed successfully`); })

.catch((error) => { exit(`Completed with error ${JSON.stringify(error)}`) });

Step 9: Replace a document

 }
 console.log();
 resolve(result);
 }
 });
 });
}

// ADD THIS PART TO YOUR CODE
function replaceFamilyDocument(document) {
 let documentUrl = `${collectionUrl}/docs/${document.id}`;
 console.log(`Replacing document:\n${document.id}\n`);
 document.children[0].grade = 6;

 return new Promise((resolve, reject) => {
 client.replaceDocument(documentUrl, document, (err, result) => {
 if (err) reject(err);
 else {
 resolve(result);
 }
 });
 });
};

.then(() => getFamilyDocument(config.documents.Andersen))

.then(() => getFamilyDocument(config.documents.Wakefield))

.then(() => queryCollection())

// ADD THIS PART TO YOUR CODE
.then(() => replaceFamilyDocument(config.documents.Andersen))
.then(() => queryCollection())
// ENDS HERE

.then(() => { exit(`Completed successfully`); })

.catch((error) => { exit(`Completed with error ${JSON.stringify(error)}`) });

In your terminal, locate your app.js file and run the command: node app.js

Congratulations! You have successfully queried Azure Cosmos DB documents.

Azure Cosmos DB supports replacing JSON documents.

Copy and paste the replaceFamilyDocument function underneath the queryCollection function in the app.js
file.

Copy and paste the code below the call to queryCollection to execute the replaceDocument function. Also, add
the code to call queryCollection again to verify that the document had successfully changed.

In your terminal, locate your app.js file and run the command: node app.js

Step 10: Delete a document

 else {
 resolve(result);
 }
 });
 });
};

// ADD THIS PART TO YOUR CODE
function deleteFamilyDocument(document) {
 let documentUrl = `${collectionUrl}/docs/${document.id}`;
 console.log(`Deleting document:\n${document.id}\n`);

 return new Promise((resolve, reject) => {
 client.deleteDocument(documentUrl, (err, result) => {
 if (err) reject(err);
 else {
 resolve(result);
 }
 });
 });
};

.then(() => queryCollection())

.then(() => replaceFamilyDocument(config.documents.Andersen))

.then(() => queryCollection())

// ADD THIS PART TO YOUR CODE
.then(() => deleteFamilyDocument(config.documents.Andersen))
// ENDS HERE

.then(() => { exit(`Completed successfully`); })

.catch((error) => { exit(`Completed with error ${JSON.stringify(error)}`) });

Step 11: Delete the Node database

Congratulations! You have successfully replaced an Azure Cosmos DB document.

Azure Cosmos DB supports deleting JSON documents.

Copy and paste the deleteFamilyDocument function underneath the replaceFamilyDocument function.

Copy and paste the code below the call to the second queryCollection to execute the deleteDocument function.

In your terminal, locate your app.js file and run the command: node app.js

Congratulations! You have successfully deleted an Azure Cosmos DB document.

Deleting the created database will remove the database and all children resources (collections, documents, etc.).

Copy and paste the cleanup function underneath the deleteFamilyDocument function to remove the database
and all the children resources.

 else {
 resolve(result);
 }
 });
 });
};

// ADD THIS PART TO YOUR CODE
function cleanup() {
 console.log(`Cleaning up by deleting database ${config.database.id}`);

 return new Promise((resolve, reject) => {
 client.deleteDatabase(databaseUrl, (err) => {
 if (err) reject(err)
 else resolve(null);
 });
 });
}

.then(() => deleteFamilyDocument(config.documents.Andersen))

// ADD THIS PART TO YOUR CODE
.then(() => cleanup())
// ENDS HERE

.then(() => { exit(`Completed successfully`); })

.catch((error) => { exit(`Completed with error ${JSON.stringify(error)}`) });

Step 12: Run your Node.js application all together!

getDatabase()
.then(() => getCollection())
.then(() => getFamilyDocument(config.documents.Andersen))
.then(() => getFamilyDocument(config.documents.Wakefield))
.then(() => queryCollection())
.then(() => replaceFamilyDocument(config.documents.Andersen))
.then(() => queryCollection())
.then(() => deleteFamilyDocument(config.documents.Andersen))
.then(() => cleanup())
.then(() => { exit(`Completed successfully`); })
.catch((error) => { exit(`Completed with error ${JSON.stringify(error)}`) });

Copy and paste the code below the call to deleteFamilyDocument to execute the cleanup function.

Altogether, the sequence for calling your functions should look like this:

In your terminal, locate your app.js file and run the command: node app.js

You should see the output of your get started app. The output should match the example text below.

Getting database:
FamilyDB

Getting collection:
FamilyColl

Getting document:
Anderson.1

Getting document:
Wakefield.7

Querying collection through index:
FamilyColl
 Query returned [{"firstName":"Henriette Thaulow","gender":"female","grade":5,"pets":[{"givenName":"Fluffy"}]}]

Replacing document:
Anderson.1

Querying collection through index:
FamilyColl
 Query returned [{"firstName":"Henriette Thaulow","gender":"female","grade":6,"pets":[{"givenName":"Fluffy"}]}]

Deleting document:
Anderson.1

Cleaning up by deleting database FamilyDB
Completed successfully
Press any key to exit

Get the complete Node.js tutorial solution

Next steps

Congratulations! You've created you've completed the Node.js tutorial and have your first Azure Cosmos DB
console application!

If you didn't have time to complete the steps in this tutorial, or just want to download the code, you can get it from
GitHub.

To run the GetStarted solution that contains all the samples in this article, you will need the following:

Azure Cosmos DB account.
The GetStarted solution available on GitHub.

Install the documentdb module via npm. Use the following command:

npm install documentdb --save

Next, in the config.js file, update the config.endpoint and config.authKey values as described in Step 3: Set your
app's configurations.

Then in your terminal, locate your app.js file and run the command: node app.js .

That's it, build it and you're on your way!

Want a more complex Node.js sample? See Build a Node.js web application using Azure Cosmos DB.
Learn how to monitor an Azure Cosmos DB account.
Run queries against our sample dataset in the Query Playground.
Learn more about the programming model in the Develop section of the Azure Cosmos DB documentation

https://github.com/Azure-Samples/documentdb-node-getting-started
https://github.com/Azure-Samples/documentdb-node-getting-started
https://www.documentdb.com/sql/demo
https://azure.microsoft.com/documentation/services/documentdb/

page.

Azure Cosmos DB: C++ console application tutorial
for the DocumentDB API
5/30/2017 • 9 min to read • Edit Online

Prerequisites for the C++ tutorial

Step 1: Create an Azure Cosmos DB account

Welcome to the C++ tutorial for the Azure Cosmos DB DocumentDB API endorsed SDK for C++! After following
this tutorial, you'll have a console application that creates and queries Azure Cosmos DB resources, including a
C++ database.

We'll cover:

Creating and connecting to an Azure Cosmos DB account
Setting up your application
Creating a C++ Azure Cosmos DB database
Creating a collection
Creating JSON documents
Querying the collection
Replacing a document
Deleting a document
Deleting the C++ Azure Cosmos DB database

Don't have time? Don't worry! The complete solution is available on GitHub. See Get the complete solution for
quick instructions.

After you've completed the C++ tutorial, please use the voting buttons at the bottom of this page to give us
feedback.

If you'd like us to contact you directly, feel free to include your email address in your comments or reach out to us
here.

Now let's get started!

Please make sure you have the following:

An active Azure account. If you don't have one, you can sign up for a Free Azure Trial.
Visual Studio, with the C++ language components installed.

Let's create an Azure Cosmos DB account. If you already have an account you want to use, you can skip ahead to
Setup your C++ application.

1. In a new window, sign in to the Azure portal.
2. In the left pane, click New, click Databases, and then click Azure Cosmos DB.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/documentdb-cpp-get-started.md
https://github.com/stalker314314/DocumentDBCpp
https://www.research.net/r/8BKRJ3Z
https://azure.microsoft.com/pricing/free-trial/
https://www.visualstudio.com/downloads/
https://portal.azure.com/

3. On the New account blade, specify the configuration that you want for the Azure Cosmos DB account.

With Azure Cosmos DB, you can choose one of four programming models: Gremlin (graph), MongoDB, SQL
(DocumentDB), and Table (key-value).

In this quick-start article we program against the DocumentDB API, so choose SQL (DocumentDB) as you
fill out the form. But if you have graph data for a social media app, or key/value (table) data, or data
migrated from a MongoDB app, realize that Azure Cosmos DB can provide a highly available, globally
distributed database service platform for all your mission-critical applications.

Complete the fields on the New account blade, using the information in the following screenshot as a
guide. When you set up your account, choose unique values that do not match those in the screenshot.

SETTING SUGGESTED VALUE DESCRIPTION

ID Unique value A unique name that identifies your
Azure Cosmos DB account. The
string documents.azure.com is
appended to the ID you provide to
create your URI, so use a unique but
identifiable ID. The ID can contain
only lowercase letters, numbers, and
the hyphen (-) character, and it must
contain from 3 through 50
characters.

API SQL (DocumentDB) We program against the
DocumentDB API later in this article.

Subscription Your subscription The Azure subscription that you
want to use for your Azure Cosmos
DB account.

Resource Group The same value as ID The new resource-group name for
your account. For simplicity, you can
use the same name as your ID.

Location The region closest to your users The geographic location in which to
host your Azure Cosmos DB account.
Choose the location that's closest to
your users to give them the fastest
access to the data.

4. Click Create to create the account.
5. On the top toolbar, click Notifications to monitor the deployment process.

6. When the deployment is complete, open the new account from the All Resources tile.

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-introduction

 Step 2: Set up your C++ application
1. Open Visual Studio, and then on the File menu, click New, and then click Project.

3. When the Win32 Application Wizard starts, click Finish.

2. In the New Project window, in the Installed pane, expand Visual C++, click Win32, and then click Win32
Console Application. Name the project hellodocumentdb and then click OK.

4. Once the project has been created, open the NuGet package manager by right-clicking the
hellodocumentdb project in Solution Explorer and clicking Manage NuGet Packages.

 Step 3: Copy connection details from Azure portal for your Azure
Cosmos DB database

5. In the NuGet: hellodocumentdb tab, click Browse, and then search for documentdbcpp. In the results,
select DocumentDbCPP, as shown in the following screenshot. This package installs references to C++ REST
SDK, which is a dependency for the DocumentDbCPP.

Once the packages have been added to your project, we are all set to start writing some code.

Bring up Azure portal and traverse to the Azure Cosmos DB database account you created. We will need the URI
and the primary key from Azure portal in the next step to establish a connection from our C++ code snippet.

https://portal.azure.com

Step 4: Connect to an Azure Cosmos DB account

Step 5: Create a C++ database and collection

 #include <cpprest/json.h>
 #include <documentdbcpp\DocumentClient.h>
 #include <documentdbcpp\exceptions.h>
 #include <documentdbcpp\TriggerOperation.h>
 #include <documentdbcpp\TriggerType.h>
 using namespace documentdb;
 using namespace std;
 using namespace web::json;

 DocumentDBConfiguration conf (L"<account_configuration_uri>", L"<primary_key>");
 DocumentClient client (conf);

1. Add the following headers and namespaces to your source code, after #include "stdafx.h" .

2. Next add the following code to your main function and replace the account configuration and primary key
to match your Azure Cosmos DB settings from step 3.

Now that you have the code to initialize the documentdb client, let's take a look at working with Azure
Cosmos DB resources.

Before we perform this step, let's go over how a database, collection and documents interact for those of you who
are new to Azure Cosmos DB. A database is a logical container of document storage portioned across collections.
A collection is a container of JSON documents and the associated JavaScript application logic. You can learn more
about the Azure Cosmos DB hierarchical resource model and concepts in Azure Cosmos DB hierarchical resource
model and concepts.

To create a database and a corresponding collection add the following code to the end of your main function. This
creates a database called 'FamilyRegistry’ and a collection called ‘FamilyCollection’ using the client configuration
you declared in the previous step.

try {
 shared_ptr<Database> db = client.CreateDatabase(L"FamilyRegistry");
 shared_ptr<Collection> coll = db->CreateCollection(L"FamilyCollection");
} catch (DocumentDBRuntimeException ex) {
 wcout << ex.message();
}

Step 6: Create a document

try {
 value document_family;
 document_family[L"id"] = value::string(L"AndersenFamily");
 document_family[L"FirstName"] = value::string(L"Thomas");
 document_family[L"LastName"] = value::string(L"Andersen");
 shared_ptr<Document> doc = coll->CreateDocumentAsync(document_family).get();

 document_family[L"id"] = value::string(L"WakefieldFamily");
 document_family[L"FirstName"] = value::string(L"Lucy");
 document_family[L"LastName"] = value::string(L"Wakefield");
 doc = coll->CreateDocumentAsync(document_family).get();
} catch (ResourceAlreadyExistsException ex) {
 wcout << ex.message();
}

Step 7: Query Azure Cosmos DB resources

Documents are user-defined (arbitrary) JSON content. You can now insert a document into Azure Cosmos DB. You
can create a document by copying the following code into the end of the main function.

To summarize, this code creates an Azure Cosmos DB database, collection, and documents, which you can query in
Document Explorer in Azure portal.

Azure Cosmos DB supports rich queries against JSON documents stored in each collection. The following sample
code shows a query made using SQL syntax that you can run against the documents we created in the previous
step.

The function takes in as arguments the unique identifier or resource id for the database and the collection along
with the document client. Add this code before main function.

void executesimplequery(const DocumentClient &client,
 const wstring dbresourceid,
 const wstring collresourceid) {
 try {
 client.GetDatabase(dbresourceid).get();
 shared_ptr<Database> db = client.GetDatabase(dbresourceid);
 shared_ptr<Collection> coll = db->GetCollection(collresourceid);
 wstring coll_name = coll->id();
 shared_ptr<DocumentIterator> iter =
 coll->QueryDocumentsAsync(wstring(L"SELECT * FROM " + coll_name)).get();
 wcout << "\n\nQuerying collection:";
 while (iter->HasMore()) {
 shared_ptr<Document> doc = iter->Next();
 wstring doc_name = doc->id();
 wcout << "\n\t" << doc_name << "\n";
 wcout << "\t"
 << "[{\"FirstName\":"
 << doc->payload().at(U("FirstName")).as_string()
 << ",\"LastName\":" << doc->payload().at(U("LastName")).as_string()
 << "}]";
 }
 } catch (DocumentDBRuntimeException ex) {
 wcout << ex.message();
 }
}

Step 8: Replace a document

void replacedocument(const DocumentClient &client, const wstring dbresourceid,
 const wstring collresourceid,
 const wstring docresourceid) {
 try {
 client.GetDatabase(dbresourceid).get();
 shared_ptr<Database> db = client.GetDatabase(dbresourceid);
 shared_ptr<Collection> coll = db->GetCollection(collresourceid);
 value newdoc;
 newdoc[L"id"] = value::string(L"WakefieldFamily");
 newdoc[L"FirstName"] = value::string(L"Lucy");
 newdoc[L"LastName"] = value::string(L"Smith Wakefield");
 coll->ReplaceDocument(docresourceid, newdoc);
 } catch (DocumentDBRuntimeException ex) {
 throw;
 }
}

Step 9: Delete a document

Azure Cosmos DB supports replacing JSON documents, as demonstrated in the following code. Add this code after
the executesimplequery function.

Azure Cosmos DB supports deleting JSON documents, you can do so by copy and pasting the following code after
the replacedocument function.

void deletedocument(const DocumentClient &client, const wstring dbresourceid,
 const wstring collresourceid, const wstring docresourceid) {
 try {
 client.GetDatabase(dbresourceid).get();
 shared_ptr<Database> db = client.GetDatabase(dbresourceid);
 shared_ptr<Collection> coll = db->GetCollection(collresourceid);
 coll->DeleteDocumentAsync(docresourceid).get();
 } catch (DocumentDBRuntimeException ex) {
 wcout << ex.message();
 }
}

Step 10: Delete a database

void deletedb(const DocumentClient &client, const wstring dbresourceid) {
 try {
 client.DeleteDatabase(dbresourceid);
 } catch (DocumentDBRuntimeException ex) {
 wcout << ex.message();
 }
}

Step 11: Run your C++ application all together!

Deleting the created database removes the database and all child resources (collections, documents, etc.).

Copy and paste the following code snippet (function cleanup) after the deletedocument function to remove the
database and all the child resources.

We have now added code to create, query, modify, and delete different Azure Cosmos DB resources. Let us now
wire this up by adding calls to these different functions from our main function in hellodocumentdb.cpp along
with some diagnostic messages.

You can do so by replacing the main function of your application with the following code. This writes over the
account_configuration_uri and primary_key you copied into the code in Step 3, so save that line or copy the values
in again from the portal.

int main() {
 try {
 // Start by defining your account's configuration
 DocumentDBConfiguration conf (L"<account_configuration_uri>", L"<primary_key>");
 // Create your client
 DocumentClient client(conf);
 // Create a new database
 try {
 shared_ptr<Database> db = client.CreateDatabase(L"FamilyDB");
 wcout << "\nCreating database:\n" << db->id();
 // Create a collection inside database
 shared_ptr<Collection> coll = db->CreateCollection(L"FamilyColl");
 wcout << "\n\nCreating collection:\n" << coll->id();
 value document_family;
 document_family[L"id"] = value::string(L"AndersenFamily");
 document_family[L"FirstName"] = value::string(L"Thomas");
 document_family[L"LastName"] = value::string(L"Andersen");
 shared_ptr<Document> doc =
 coll->CreateDocumentAsync(document_family).get();
 wcout << "\n\nCreating document:\n" << doc->id();
 document_family[L"id"] = value::string(L"WakefieldFamily");
 document_family[L"FirstName"] = value::string(L"Lucy");
 document_family[L"LastName"] = value::string(L"Wakefield");
 doc = coll->CreateDocumentAsync(document_family).get();
 wcout << "\n\nCreating document:\n" << doc->id();
 executesimplequery(client, db->resource_id(), coll->resource_id());
 replacedocument(client, db->resource_id(), coll->resource_id(),
 doc->resource_id());
 wcout << "\n\nReplaced document:\n" << doc->id();
 executesimplequery(client, db->resource_id(), coll->resource_id());
 deletedocument(client, db->resource_id(), coll->resource_id(),
 doc->resource_id());
 wcout << "\n\nDeleted document:\n" << doc->id();
 deletedb(client, db->resource_id());
 wcout << "\n\nDeleted db:\n" << db->id();
 cin.get();
 }
 catch (ResourceAlreadyExistsException ex) {
 wcout << ex.message();
 }
 }
 catch (DocumentDBRuntimeException ex) {
 wcout << ex.message();
 }
 cin.get();
}

You should now be able to build and run your code in Visual Studio by pressing F5 or alternatively in the terminal
window by locating the application and running the executable.

You should see the output of your get started app. The output should match the following screenshot.

 Get the complete C++ tutorial solution

Next steps

Congratulations! You've completed the C++ tutorial and have your first Azure Cosmos DB console application!

To build the GetStarted solution that contains all the samples in this article, you need the following:

Azure Cosmos DB account.
The GetStarted solution available on GitHub.

Learn how to monitor an Azure Cosmos DB account.
Run queries against our sample dataset in the Query Playground.
Learn more about the programming model in the Develop section of the Azure Cosmos DB documentation
page.

https://github.com/stalker314314/DocumentDBCpp
https://www.documentdb.com/sql/demo
https://azure.microsoft.com/documentation/services/documentdb/

ASP.NET MVC Tutorial: Web application
development with Azure Cosmos DB
5/30/2017 • 20 min to read • Edit Online

TIP

Prerequisites for this database tutorial

To highlight how you can efficiently leverage Azure Cosmos DB to store and query JSON documents, this article
provides an end-to-end walk-through showing you how to build a todo app using Azure Cosmos DB. The tasks
will be stored as JSON documents in Azure Cosmos DB.

This walk-through shows you how to use the Azure Cosmos DB service provided by Azure to store and access data
from an ASP.NET MVC web application hosted on Azure. If you're looking for a tutorial that focuses only on Azure
Cosmos DB, and not the ASP.NET MVC components, see Build an Azure Cosmos DB C# console application.

This tutorial assumes that you have prior experience using ASP.NET MVC and Azure Websites. If you are new to ASP.NET or
the prerequisite tools, we recommend downloading the complete sample project from GitHub and following the instructions
in this sample. Once you have it built, you can review this article to gain insight on the code in the context of the project.

Before following the instructions in this article, you should ensure that you have the following:

Visual Studio 2015 or Visual Studio 2013 Update 4 or higher. If using Visual Studio 2013, you will need to

An active Azure account. If you don't have an account, you can create a free trial account in just a couple of
minutes. For details, see Azure Free Trial

OR

A local installation of the Azure Cosmos DB Emulator.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/documentdb-dotnet-application.md
https://github.com/Azure-Samples/documentdb-net-todo-app
https://azure.microsoft.com/pricing/free-trial/
http://www.visualstudio.com/

 Step 1: Create an Azure Cosmos DB database account

install the Microsoft.Net.Compilers nuget package to add support for C# 6.0.
Azure SDK for .NET version 2.5.1 or higher, available through the Microsoft Web Platform Installer.

All the screen shots in this article have been taken using Visual Studio 2013 with Update 4 applied and the Azure
SDK for .NET version 2.5.1. If your system is configured with different versions it is possible that your screens and
options won't match entirely, but if you meet the above prerequisites this solution should work.

Let's start by creating an Azure Cosmos DB account. If you already have an account or if you are using the Azure
Cosmos DB Emulator for this tutorial, you can skip to Create a new ASP.NET MVC application.

1. In a new window, sign in to the Azure portal.
2. In the left pane, click New, click Databases, and then click Azure Cosmos DB.

3. On the New account blade, specify the configuration that you want for the Azure Cosmos DB account.

With Azure Cosmos DB, you can choose one of four programming models: Gremlin (graph), MongoDB, SQL
(DocumentDB), and Table (key-value).

In this quick-start article we program against the DocumentDB API, so choose SQL (DocumentDB) as you
fill out the form. But if you have graph data for a social media app, or key/value (table) data, or data
migrated from a MongoDB app, realize that Azure Cosmos DB can provide a highly available, globally
distributed database service platform for all your mission-critical applications.

Complete the fields on the New account blade, using the information in the following screenshot as a
guide. When you set up your account, choose unique values that do not match those in the screenshot.

https://www.nuget.org/packages/Microsoft.Net.Compilers/
http://www.microsoft.com/web/downloads/platform.aspx
https://portal.azure.com/

SETTING SUGGESTED VALUE DESCRIPTION

ID Unique value A unique name that identifies your
Azure Cosmos DB account. The
string documents.azure.com is
appended to the ID you provide to
create your URI, so use a unique but
identifiable ID. The ID can contain
only lowercase letters, numbers, and
the hyphen (-) character, and it must
contain from 3 through 50
characters.

API SQL (DocumentDB) We program against the
DocumentDB API later in this article.

Subscription Your subscription The Azure subscription that you
want to use for your Azure Cosmos
DB account.

Resource Group The same value as ID The new resource-group name for
your account. For simplicity, you can
use the same name as your ID.

Location The region closest to your users The geographic location in which to
host your Azure Cosmos DB account.
Choose the location that's closest to
your users to give them the fastest
access to the data.

4. Click Create to create the account.
5. On the top toolbar, click Notifications to monitor the deployment process.

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-introduction

6. When the deployment is complete, open the new account from the All Resources tile.

Now navigate to the DocumentDB account blade, and click Keys, as we will use these values in the web application
we create next.

 Step 2: Create a new ASP.NET MVC application

We will now walk through how to create a new ASP.NET MVC application from the ground-up.

Now that you have an account, let's create our new ASP.NET project.

The **New Project** dialog box appears.

1. In Visual Studio, on the File menu, point to New, and then click Project.

2. In the Project types pane, expand Templates, Visual C#, Web, and then select ASP.NET Web
Application.

3. In the Name box, type the name of the project. This tutorial uses the name "todo". If you choose to use
something other than this, then wherever this tutorial talks about the todo namespace, you need to adjust the
provided code samples to use whatever you named your application.

5. In the templates pane, select MVC.

4. Click Browse to navigate to the folder where you would like to create the project, and then click OK.

The New ASP.NET Project dialog box appears.

 Step 3: Add Azure Cosmos DB to your MVC web application project

6. If you plan on hosting your application in Azure then select Host in the cloud on the lower right to have Azure
host the application. We've selected to host in the cloud, and to run the application hosted in an Azure Website.
Selecting this option will preprovision an Azure Website for you and make life a lot easier when it comes time
to deploy the final working application. If you want to host this elsewhere or don't want to configure Azure
upfront, then just clear Host in the Cloud.

7. Click OK and let Visual Studio do its thing around scaffolding the empty ASP.NET MVC template.

If you receive the error "An error occurred while processing your request" see the Troubleshooting section.

8. If you chose to host this in the cloud you will see at least one additional screen asking you to login to your
Azure account and provide some values for your new website. Supply all the additional values and
continue.

I haven't chosen a "Database server" here because we're not using an Azure SQL Database Server here,
we're going to be creating a new Azure Cosmos DB account later on in the Azure Portal.

For more information about choosing an App Service plan and Resource group, see Azure App Service
plans in-depth overview.

9. Once Visual Studio has finished creating the boilerplate MVC application you have an empty ASP.NET
application that you can run locally.

We'll skip running the project locally because I'm sure we've all seen the ASP.NET "Hello World" application.
Let's go straight to adding Azure Cosmos DB to this project and building our application.

Now that we have most of the ASP.NET MVC plumbing that we need for this solution, let's get to the real purpose
of this tutorial, adding Azure Cosmos DB to our MVC web application.

1. The DocumentDB .NET SDK is packaged and distributed as a NuGet package. To get the NuGet package in
Visual Studio, use the NuGet package manager in Visual Studio by right-clicking on the project in Solution
Explorer and then clicking Manage NuGet Packages.

https://docs.microsoft.com/en-us/azure/app-service/azure-web-sites-web-hosting-plans-in-depth-overview

The Manage NuGet Packages dialog box appears.

2. In the NuGet Browse box, type Azure Cosmos DB.

From the results, install the Microsoft Azure Cosmos DB Client Library package. This will download and
install the Azure Cosmos DB package as well as all dependencies, like Newtonsoft.Json. Click OK in the
Preview window, and I Accept in the License Acceptance window to complete the install.

Alternatively you can use the Package Manager Console to install the package. To do so, on the Tools
menu, click NuGet Package Manager, and then click Package Manager Console. At the prompt, type
the following.

Step 4: Set up the ASP.NET MVC application

Add a JSON data model

 Install-Package Microsoft.Azure.DocumentDB

3. Once the package is installed, your Visual Studio solution should resemble the following with two new
references added, Microsoft.Azure.Documents.Client and Newtonsoft.Json.

Now let's add the models, views, and controllers to this MVC application:

Add a model.
Add a controller.
Add views.

Let's begin by creating the M in MVC, the model.

2. Name your new class Item.cs and click Add.

 using Newtonsoft.Json;

1. In Solution Explorer, right-click the Models folder, click Add, and then click Class.

The Add New Item dialog box appears.

3. In this new Item.cs file, add the following after the last using statement.

4. Now replace this code

 Add a controller

 public class Item
 {
 }

 public class Item
 {
 [JsonProperty(PropertyName = "id")]
 public string Id { get; set; }

 [JsonProperty(PropertyName = "name")]
 public string Name { get; set; }

 [JsonProperty(PropertyName = "description")]
 public string Description { get; set; }

 [JsonProperty(PropertyName = "isComplete")]
 public bool Completed { get; set; }
 }

with the following code.

All data in Azure Cosmos DB is passed over the wire and stored as JSON. To control the way your objects
are serialized/deserialized by JSON.NET you can use the JsonProperty attribute as demonstrated in the
Item class we just created. You don't have to do this but I want to ensure that my properties follow the
JSON camelCase naming conventions.

Not only can you control the format of the property name when it goes into JSON, but you can entirely
rename your .NET properties like I did with the Description property.

That takes care of the M, now let's create the C in MVC, a controller class.

1. In Solution Explorer, right-click the Controllers folder, click Add, and then click Controller.

The Add Scaffold dialog box appears.

2. Select MVC 5 Controller - Empty and then click Add.

3. Name your new Controller, ItemController.

Once the file is created, your Visual Studio solution should resemble the following with the new
ItemController.cs file in Solution Explorer. The new Item.cs file created earlier is also shown.

You can close ItemController.cs, we'll come back to it later.

Add views

Add an Item Index viewAdd an Item Index view

Now, let's create the V in MVC, the views:

Add an Item Index view.
Add a New Item view.
Add an Edit Item view.

1. In Solution Explorer, expand the Views folder, right-click the empty Item folder that Visual Studio created
for you when you added the ItemController earlier, click Add, and then click View.

2. In the Add View dialog box, do the following:

In the View name box, type Index.
In the Template box, select List.
In the Model class box, select Item (todo.Models).
Leave the Data context class box empty.
In the layout page box, type ~/Views/Shared/_Layout.cshtml.

Add a New Item viewAdd a New Item view

Add an Edit Item viewAdd an Edit Item view

Step 5: Wiring up Azure Cosmos DB

3. Once all these values are set, click Add and let Visual Studio create a new template view. Once it is done, it will
open the cshtml file that was created. We can close that file in Visual Studio as we will come back to it later.

Similar to how we created an Item Index view, we will now create a new view for creating new Items.

1. In Solution Explorer, right-click the Item folder again, click Add, and then click View.
2. In the Add View dialog box, do the following:

In the View name box, type Create.
In the Template box, select Create.
In the Model class box, select Item (todo.Models).
Leave the Data context class box empty.
In the layout page box, type ~/Views/Shared/_Layout.cshtml.
Click Add.

And finally, add one last view for editing an Item in the same way as before.

1. In Solution Explorer, right-click the Item folder again, click Add, and then click View.
2. In the Add View dialog box, do the following:

In the View name box, type Edit.
In the Template box, select Edit.
In the Model class box, select Item (todo.Models).
Leave the Data context class box empty.
In the layout page box, type ~/Views/Shared/_Layout.cshtml.
Click Add.

Once this is done, close all the cshtml documents in Visual Studio as we will return to these views later.

Now that the standard MVC stuff is taken care of, let's turn to adding the code for Azure Cosmos DB.

In this section, we'll add code to handle the following:

Listing incomplete Items.
Adding Items.

 Listing incomplete Items in your MVC web application

Editing Items.

The first thing to do here is add a class that contains all the logic to connect to and use Azure Cosmos DB. For this
tutorial we'll encapsulate all this logic in to a repository class called DocumentDBRepository.

1. In Solution Explorer, right-click on the project, click Add, and then click Class. Name the new class
DocumentDBRepository and click Add.

 using Microsoft.Azure.Documents;
 using Microsoft.Azure.Documents.Client;
 using Microsoft.Azure.Documents.Linq;
 using System.Configuration;
 using System.Linq.Expressions;
 using System.Threading.Tasks;

 public class DocumentDBRepository
 {
 }

2. In the newly created DocumentDBRepository class and add the following using statements above the
namespace declaration

Now replace this code

with the following code.

 public static class DocumentDBRepository<T> where T : class
 {
 private static readonly string DatabaseId = ConfigurationManager.AppSettings["database"];
 private static readonly string CollectionId = ConfigurationManager.AppSettings["collection"];
 private static DocumentClient client;

 public static void Initialize()
 {
 client = new DocumentClient(new Uri(ConfigurationManager.AppSettings["endpoint"]),
ConfigurationManager.AppSettings["authKey"]);
 CreateDatabaseIfNotExistsAsync().Wait();
 CreateCollectionIfNotExistsAsync().Wait();
 }

 private static async Task CreateDatabaseIfNotExistsAsync()
 {
 try
 {
 await client.ReadDatabaseAsync(UriFactory.CreateDatabaseUri(DatabaseId));
 }
 catch (DocumentClientException e)
 {
 if (e.StatusCode == System.Net.HttpStatusCode.NotFound)
 {
 await client.CreateDatabaseAsync(new Database { Id = DatabaseId });
 }
 else
 {
 throw;
 }
 }
 }

 private static async Task CreateCollectionIfNotExistsAsync()
 {
 try
 {
 await client.ReadDocumentCollectionAsync(UriFactory.CreateDocumentCollectionUri(DatabaseId, CollectionId));
 }
 catch (DocumentClientException e)
 {
 if (e.StatusCode == System.Net.HttpStatusCode.NotFound)
 {
 await client.CreateDocumentCollectionAsync(
 UriFactory.CreateDatabaseUri(DatabaseId),
 new DocumentCollection { Id = CollectionId },
 new RequestOptions { OfferThroughput = 1000 });
 }
 else
 {
 throw;
 }
 }
 }
 }

TIP

When creating a new DocumentCollection you can supply an optional RequestOptions parameter of OfferType,
which allows you to specify the performance level of the new collection. If this parameter is not passed the default
offer type will be used. For more on Azure Cosmos DB offer types please refer to Azure Cosmos DB Performance
Levels

3. We're reading some values from configuration, so open the Web.config file of your application and add

 <add key="endpoint" value="enter the URI from the Keys blade of the Azure Portal"/>
 <add key="authKey" value="enter the PRIMARY KEY, or the SECONDARY KEY, from the Keys blade of the Azure Portal"/>
 <add key="database" value="ToDoList"/>
 <add key="collection" value="Items"/>

 public static async Task<IEnumerable<T>> GetItemsAsync(Expression<Func<T, bool>> predicate)
 {
 IDocumentQuery<T> query = client.CreateDocumentQuery<T>(
 UriFactory.CreateDocumentCollectionUri(DatabaseId, CollectionId))
 .Where(predicate)
 .AsDocumentQuery();

 List<T> results = new List<T>();
 while (query.HasMoreResults)
 {
 results.AddRange(await query.ExecuteNextAsync<T>());
 }

 return results;
 }

 using System.Net;
 using System.Threading.Tasks;
 using todo.Models;

 //GET: Item
 public ActionResult Index()
 {
 return View();
 }

the following lines under the <AppSettings> section.

4. Now, update the values for endpoint and authKey using the Keys blade of the Azure Portal. Use the URI
from the Keys blade as the value of the endpoint setting, and use the PRIMARY KEY, or SECONDARY KEY
from the Keys blade as the value of the authKey setting.

That takes care of wiring up the DocumentDB repository, now let's add our application logic.

5. The first thing we want to be able to do with a todo list application is to display the incomplete items. Copy
and paste the following code snippet anywhere within the DocumentDBRepository class.

6. Open the ItemController we added earlier and add the following using statements above the namespace
declaration.

If your project is not named "todo", then you need to update using "todo.Models"; to reflect the name of
your project.

Now replace this code

with the following code.

 defaults: new { controller = "Item", action = "Index", id = UrlParameter.Optional }

Adding Items

 [ActionName("Index")]
 public async Task<ActionResult> IndexAsync()
 {
 var items = await DocumentDBRepository<Item>.GetItemsAsync(d => !d.Completed);
 return View(items);
 }

 DocumentDBRepository<todo.Models.Item>.Initialize();

7. Open Global.asax.cs and add the following line to the Application_Start method

At this point your solution should be able to build without any errors.

If you ran the application now, you would go to the HomeController and the Index view of that controller. This is
the default behavior for the MVC template project we chose at the start but we don't want that! Let's change the
routing on this MVC application to alter this behavior.

Open App_Start\RouteConfig.cs and locate the line starting with "defaults:" and change it to resemble the
following.

This now tells ASP.NET MVC that if you have not specified a value in the URL to control the routing behavior that
instead of Home, use Item as the controller and user Index as the view.

Now if you run the application, it will call into your ItemController which will call in to the repository class and
use the GetItems method to return all the incomplete items to the Views\Item\Index view.

If you build and run this project now, you should now see something that looks this.

Let's put some items into our database so we have something more than an empty grid to look at.

Let's add some code to Azure Cosmos DBRepository and ItemController to persist the record in Azure Cosmos DB.

public static async Task<Document> CreateItemAsync(T item)
{
 return await client.CreateDocumentAsync(UriFactory.CreateDocumentCollectionUri(DatabaseId, CollectionId), item);
}

1. Add the following method to your DocumentDBRepository class.

This method simply takes an object passed to it and persists it in DocumentDB.

2. Open the ItemController.cs file and add the following code snippet within the class. This is how ASP.NET
MVC knows what to do for the Create action. In this case just render the associated Create.cshtml view

 Editing Items

 [ActionName("Create")]
 public async Task<ActionResult> CreateAsync()
 {
 return View();
 }

 [HttpPost]
 [ActionName("Create")]
 [ValidateAntiForgeryToken]
 public async Task<ActionResult> CreateAsync([Bind(Include = "Id,Name,Description,Completed")] Item item)
 {
 if (ModelState.IsValid)
 {
 await DocumentDBRepository<Item>.CreateItemAsync(item);
 return RedirectToAction("Index");
 }

 return View(item);
 }

created earlier.

We now need some more code in this controller that will accept the submission from the Create view.

3. Add the next block of code to the ItemController.cs class that tells ASP.NET MVC what to do with a form
POST for this controller.

This code calls in to the DocumentDBRepository and uses the CreateItemAsync method to persist the new
todo item to the database.

Security Note: The ValidateAntiForgeryToken attribute is used here to help protect this application
against cross-site request forgery attacks. There is more to it than just adding this attribute, your views
need to work with this anti-forgery token as well. For more on the subject, and examples of how to
implement this correctly, please see Preventing Cross-Site Request Forgery. The source code provided on
GitHub has the full implementation in place.

Security Note: We also use the Bind attribute on the method parameter to help protect against over-
posting attacks. For more details please see Basic CRUD Operations in ASP.NET MVC.

This concludes the code required to add new Items to our database.

There is one last thing for us to do, and that is to add the ability to edit Items in the database and to mark them as
complete. The view for editing was already added to the project, so we just need to add some code to our
controller and to the DocumentDBRepository class again.

1. Add the following to the DocumentDBRepository class.

http://go.microsoft.com/fwlink/?LinkID=517254
https://github.com/Azure-Samples/documentdb-net-todo-app
http://go.microsoft.com/fwlink/?LinkId=317598

 public static async Task<Document> UpdateItemAsync(string id, T item)
 {
 return await client.ReplaceDocumentAsync(UriFactory.CreateDocumentUri(DatabaseId, CollectionId, id), item);
 }

 public static async Task<T> GetItemAsync(string id)
 {
 try
 {
 Document document = await client.ReadDocumentAsync(UriFactory.CreateDocumentUri(DatabaseId, CollectionId, id));
 return (T)(dynamic)document;
 }
 catch (DocumentClientException e)
 {
 if (e.StatusCode == HttpStatusCode.NotFound)
 {
 return null;
 }
 else
 {
 throw;
 }
 }
 }

 [HttpPost]
 [ActionName("Edit")]
 [ValidateAntiForgeryToken]
 public async Task<ActionResult> EditAsync([Bind(Include = "Id,Name,Description,Completed")] Item item)
 {
 if (ModelState.IsValid)
 {
 await DocumentDBRepository<Item>.UpdateItemAsync(item.Id, item);
 return RedirectToAction("Index");
 }

 return View(item);
 }

 [ActionName("Edit")]
 public async Task<ActionResult> EditAsync(string id)
 {
 if (id == null)
 {
 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
 }

 Item item = await DocumentDBRepository<Item>.GetItemAsync(id);
 if (item == null)
 {
 return HttpNotFound();
 }

 return View(item);
 }

The first of these methods, GetItem fetches an Item from Azure Cosmos DB which is passed back to the
ItemController and then on to the Edit view.

The second of the methods we just added replaces the Document in Azure Cosmos DB with the version of
the Document passed in from the ItemController.

2. Add the following to the ItemController class.

 Step 6: Run the application locally

The first method handles the Http GET that happens when the user clicks on the Edit link from the Index
view. This method fetches a Document from Azure Cosmos DB and passes it to the Edit view.

The Edit view will then do an Http POST to the IndexController.

The second method we added handles passing the updated object to Azure Cosmos DB to be persisted in
the database.

That's it, that is everything we need to run our application, list incomplete Items, add new Items, and edit Items.

To test the application on your local machine, do the following:

1. Hit F5 in Visual Studio to build the application in debug mode. It should build the application and launch a
browser with the empty grid page we saw before:

If you are using Visual Studio 2013 and receive the error "Cannot await in the body of a catch clause." you
need to install the Microsoft.Net.Compilers nuget package. You can also compare your code against the
sample project on GitHub.

2. Click the Create New link and add values to the Name and Description fields. Leave the Completed
check box unselected otherwise the new Item will be added in a completed state and will not appear on the
initial list.

3. Click Create and you are redirected back to the Index view and your Item appears in the list.

http://msdn.microsoft.com/library/azure/microsoft.azure.documents.document.aspx
https://www.nuget.org/packages/Microsoft.Net.Compilers/
https://github.com/Azure-Samples/documentdb-net-todo-app

 Step 7: Deploy the application to Azure Websites

5. Once you've tested the app, press Ctrl+F5 to stop debugging the app. You're ready to deploy!

Feel free to add a few more Items to your todo list.

4. Click Edit next to an Item on the list and you are taken to the Edit view where you can update any property
of your object, including the Completed flag. If you mark the Complete flag and click Save, the Item is
removed from the list of incomplete tasks.

Now that you have the complete application working correctly with Azure Cosmos DB we're going to deploy this
web app to Azure Websites. If you selected Host in the cloud when you created the empty ASP.NET MVC project
then Visual Studio makes this really easy and does most of the work for you.

1. To publish this application all you need to do is right-click on the project in Solution Explorer and click
Publish.

 Troubleshooting

2. Everything should already be configured according to your credentials; in fact the website has already been
created in Azure for you at the Destination URL shown, all you need to do is click Publish.

In a few seconds, Visual Studio will finish publishing your web application and launch a browser where you can
see your handy work running in Azure!

If you receive the "An error occurred while processing your request" while trying to deploy the web app, do the
following:

1. Cancel out of the error message and then select Microsoft Azure Web Apps again.
2. Login and then select New to create a new web app.
3. On the Create a Web App on Microsoft Azure screen, do the following:

Web App name: "todo-net-app"

 Next steps

App Service plan: Create new, named "todo-net-app"
Resource group: Create new, named "todo-net-app"
Region: Select the region closest to your app users
Database server: Click no database, then click Create.

4. In the "todo-net-app * screen", click Validate Connection. After the connection is verified, Publish.

The app then gets displayed on your browser.

Congratulations! You just built your first ASP.NET MVC web application using Azure Cosmos DB and published it
to Azure Websites. The source code for the complete application, including the detail and delete functionality that
were not included in this tutorial can be downloaded or cloned from GitHub. So if you're interested in adding that
to your app, grab the code and add it to this app.

To add additional functionality to your application, review the APIs available in the DocumentDB .NET Library and
feel free to contribute to the DocumentDB .NET Library on GitHub.

https://github.com/Azure-Samples/documentdb-net-todo-app
https://msdn.microsoft.com/library/azure/dn948556.aspx
https://github.com/Azure-Samples/documentdb-net-todo-app

Build mobile applications with Xamarin and Azure
Cosmos DB
5/30/2017 • 5 min to read • Edit Online

Azure Cosmos DB capabilities for mobile apps

Most mobile apps need to store data in the cloud, and Azure Cosmos DB is a cloud database for mobile apps. It has
everything a mobile developer needs. It is a fully managed database as a service that scales on demand. It can
bring your data to your application transparently, wherever your users are located around the globe. By using the
Azure Cosmos DB .NET Core SDK, you can enable Xamarin mobile apps to interact directly with Azure Cosmos DB,
without a middle tier.

This article provides a tutorial for building mobile apps with Xamarin and Azure Cosmos DB. You can find the
complete source code for the tutorial at Xamarin and Azure Cosmos DB on GitHub, including how to manage users
and permissions.

Azure Cosmos DB provides the following key capabilities for mobile app developers:

Rich queries over schemaless data. Azure Cosmos DB stores data as schemaless JSON documents in
heterogeneous collections. It offers rich and fast queries without the need to worry about schemas or indexes.
Fast throughput. It takes only a few milliseconds to read and write documents with Azure Cosmos DB.
Developers can specify the throughput they need, and Azure Cosmos DB honors it with 99.99 percent SLAs.
Limitless scale. Your Azure Cosmos DB collections grow as your app grows. You can start with small data size
and throughput of hundreds of requests per second. Your collections can grow to petabytes of data and
arbitrarily large throughput with hundreds of millions of requests per second.
Globally distributed. Mobile app users are on the go, often across the world. Azure Cosmos DB is a globally
distributed database. Click the map to make your data accessible to your users.
Built-in rich authorization. With Azure Cosmos DB, you can easily implement popular patterns like per-user data
or multiuser shared data, without complex custom authorization code.
Geospatial queries. Many mobile apps offer geo-contextual experiences today. With first-class support for
geospatial types, DocumentDB makes creating these experiences easy to accomplish.
Binary attachments. Your app data often includes binary blobs. Native support for attachments makes it easier
to use Azure Cosmos DB as a one-stop shop for your app data.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/mobile-apps-with-xamarin.md
https://github.com/Azure/azure-documentdb-dotnet/tree/master/samples/xamarin
https://aka.ms/documentdb-xamarin-todouser

Azure Cosmos DB and Xamarin tutorial

Get started

Work with data

 var result = await client.CreateDocumentAsync(collectionLink, todoItem);

 var query = await client.CreateDocumentQuery<ToDoItem>(collectionLink)
 .Where(todoItem => todoItem.Complete == false)
 .AsDocumentQuery();

 Items = new List<TodoItem>();
 while (query.HasMoreResults) {
 Items.AddRange(await query.ExecuteNextAsync<TodoItem>());
 }

Add users

The following tutorial shows how to build a mobile application by using Xamarin and Azure Cosmos DB. You can
find the complete source code for the tutorial at Xamarin and Azure Cosmos DB on GitHub.

It's easy to get started with Azure Cosmos DB. Go to the Azure portal, and create a new Azure Cosmos DB account.
Click the Quick start tab. Download the Xamarin Forms to-do list sample that is already connected to your Azure
Cosmos DB account.

Or if you have an existing Xamarin app, you can add the Azure Cosmos DB NuGet package. Azure Cosmos DB
supports Xamarin.IOS, Xamarin.Android, and Xamarin Forms shared libraries.

Your data records are stored in Azure Cosmos DB as schemaless JSON documents in heterogeneous collections.
You can store documents with different structures in the same collection:

In your Xamarin projects, you can use language-integrated queries over schemaless data:

Like many get started samples, the Azure Cosmos DB sample you downloaded authenticates to the service by
using a master key hardcoded in the app's code. This default is not a good practice for an app you intend to run
anywhere except on your local emulator. If an unauthorized user obtained the master key, all the data across your
Azure Cosmos DB account could be compromised. Instead, you want your app to access only the records for the
signed-in user. Azure Cosmos DB allows developers to grant application read or read/write permission to a
collection, a set of documents grouped by a partition key, or a specific document.

https://github.com/Azure/azure-documentdb-dotnet/tree/master/samples/xamarin

Scale on demand

Follow these steps to modify the to-do list app to a multiuser to-do list app:

1. Add Login to your app by using Facebook, Active Directory, or any other provider.

2. Create an Azure Cosmos DB UserItems collection with /userId as the partition key. Specifying the partition
key for your collection allows Azure Cosmos DB to scale infinitely as the number of your app users grows,
while continuing to offer fast queries.

3. Add Azure Cosmos DB Resource Token Broker. This simple Web API authenticates users and issues short-
lived tokens to signed-in users with access only to the documents within their partition. In this example,
Resource Token Broker is hosted in App Service.

4. Modify the app to authenticate to Resource Token Broker with Facebook, and request the resource tokens
for the signed-in Facebook users. You can then access their data in the UserItems collection.

You can find a complete code sample of this pattern at Resource Token Broker on GitHub. This diagram illustrates
the solution:

If you want two users to have access to the same to-do list, you can add additional permissions to the access token
in Resource Token Broker.

Azure Cosmos DB is a managed database as a service. As your user base grows, you don't need to worry about
provisioning VMs or increasing cores. All you need to tell Azure Cosmos DB is how many operations per second
(throughput) your app needs. You can specify the throughput via the Scale tab by using a measure of throughput
called Request Units (RUs) per second. For example, a read operation on a 1-KB document requires 1 RU. You can
also add alerts to the Throughput metric to monitor the traffic growth and programmatically change the
throughput as alerts fire.

http://aka.ms/documentdb-xamarin-todouser

Go planet scale

Next steps

As your app gains popularity, you might gain users across the globe. Or maybe you want to be prepared for
unforeseen events. Go to the Azure portal, and open your Azure Cosmos DB account. Click the map to make your
data continuously replicate to any number of regions across the world. This capability makes your data available
wherever your users are. You can also add failover policies to be prepared for contingencies.

Congratulations. You have completed the solution and have a mobile app with Xamarin and Azure Cosmos DB.
Follow similar steps to build Cordova apps by using the Azure Cosmos DB JavaScript SDK and native iOS/Android
apps by using Azure Cosmos DB REST APIs.

View the source code for Xamarin and Azure Cosmos DB on GitHub.
Download the DocumentDB .NET Core SDK.
Find more code samples for .NET applications.
Learn about Azure Cosmos DB rich query capabilities.
Learn about geospatial support in Azure Cosmos DB.

https://github.com/Azure/azure-documentdb-dotnet/tree/master/samples/xamarin

Build a Node.js web application using Azure Cosmos
DB
5/30/2017 • 14 min to read • Edit Online

Prerequisites

TIP

This Node.js tutorial shows you how to use Azure Cosmos DB and the DocumentDB API to store and access data
from a Node.js Express application hosted on Azure Websites. You build a simple web-based task-management
application, a ToDo app, that allows creating, retrieving, and completing tasks. The tasks are stored as JSON
documents in Azure Cosmos DB. This tutorial walks you through the creation and deployment of the app and
explains what's happening in each snippet.

Don't have time to complete the tutorial and just want to get the complete solution? Not a problem, you can get
the complete sample solution from GitHub. Just read the Readme file for instructions on how to run the app.

This Node.js tutorial assumes that you have some prior experience using Node.js and Azure Websites.

Before following the instructions in this article, you should ensure that you have the following:

Node.js version v0.10.29 or higher.
Express generator (you can install this via npm install express-generator -g)
Git.

An active Azure account. If you don't have an account, you can create a free trial account in just a couple of
minutes. For details, see Azure Free Trial.

OR

A local installation of the Azure Cosmos DB Emulator.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/documentdb-nodejs-application.md
https://github.com/Azure-Samples/documentdb-node-todo-app
https://github.com/Azure-Samples/documentdb-node-todo-app/blob/master/README.md
https://azure.microsoft.com/pricing/free-trial/
http://nodejs.org/
http://www.expressjs.com/starter/generator.html
http://git-scm.com/

 Step 1: Create an Azure Cosmos DB database account
Let's start by creating an Azure Cosmos DB account. If you already have an account or if you are using the Azure
Cosmos DB Emulator for this tutorial, you can skip to Step 2: Create a new Node.js application.

1. In a new window, sign in to the Azure portal.
2. In the left pane, click New, click Databases, and then click Azure Cosmos DB.

3. On the New account blade, specify the configuration that you want for the Azure Cosmos DB account.

With Azure Cosmos DB, you can choose one of four programming models: Gremlin (graph), MongoDB, SQL
(DocumentDB), and Table (key-value).

In this quick-start article we program against the DocumentDB API, so choose SQL (DocumentDB) as you
fill out the form. But if you have graph data for a social media app, or key/value (table) data, or data
migrated from a MongoDB app, realize that Azure Cosmos DB can provide a highly available, globally
distributed database service platform for all your mission-critical applications.

Complete the fields on the New account blade, using the information in the following screenshot as a
guide. When you set up your account, choose unique values that do not match those in the screenshot.

https://portal.azure.com/

SETTING SUGGESTED VALUE DESCRIPTION

ID Unique value A unique name that identifies your
Azure Cosmos DB account. The
string documents.azure.com is
appended to the ID you provide to
create your URI, so use a unique but
identifiable ID. The ID can contain
only lowercase letters, numbers, and
the hyphen (-) character, and it must
contain from 3 through 50
characters.

API SQL (DocumentDB) We program against the
DocumentDB API later in this article.

Subscription Your subscription The Azure subscription that you want
to use for your Azure Cosmos DB
account.

Resource Group The same value as ID The new resource-group name for
your account. For simplicity, you can
use the same name as your ID.

Location The region closest to your users The geographic location in which to
host your Azure Cosmos DB account.
Choose the location that's closest to
your users to give them the fastest
access to the data.

4. Click Create to create the account.
5. On the top toolbar, click Notifications to monitor the deployment process.

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-introduction

6. When the deployment is complete, open the new account from the All Resources tile.

Now navigate to the DocumentDB account blade, and click Keys, as we will use these values in the web application
we create next.

 Step 2: Learn to create a new Node.js application
Now let's learn to create a basic Hello World Node.js project using the Express framework.

1. Open your favorite terminal, such as the Node.js command prompt.
2. Navigate to the directory in which you'd like to store the new application.

 express todo

 cd todo
 npm install

 npm start

3. Use the express generator to generate a new application called todo.

4. Open your new todo directory and install dependencies.

5. Run your new application.

6. You can view your new application by navigating your browser to http://localhost:3000.

http://expressjs.com/
http://localhost:3000

 Step 3: Install additional modules

Then, to stop the application, press CTRL+C in the terminal window and then click y to terminate the batch
job.

The package.json file is one of the files created in the root of the project. This file contains a list of additional
modules that are required for your Node.js application. Later, when you deploy this application to an Azure
Websites, this file is used to determine which modules need to be installed on Azure to support your application.
We still need to install two more packages for this tutorial.

 npm install async --save

 npm install documentdb --save

1. Back in the terminal, install the async module via npm.

2. Install the documentdb module via npm. This is the module where all the DocumentDB magic happens.

3. A quick check of the package.json file of the application should show the additional modules. This file will
tell Azure which packages to download and install when running your application. It should resemble the
example below.

 Step 4: Using the Azure Cosmos DB service in a node application

Create the model

 {
 "name": "todo",
 "version": "0.0.0",
 "private": true,
 "scripts": {
 "start": "node ./bin/www"
 },
 "dependencies": {
 "async": "^2.1.4",
 "body-parser": "~1.15.2",
 "cookie-parser": "~1.4.3",
 "debug": "~2.2.0",
 "documentdb": "^1.10.0",
 "express": "~4.14.0",
 "jade": "~1.11.0",
 "morgan": "~1.7.0",
 "serve-favicon": "~2.3.0"
 }
 }

This tells Node (and Azure later) that your application depends on these additional modules.

That takes care of all the initial setup and configuration, now let’s get down to why we’re here, and that’s to write
some code using Azure Cosmos DB.

1. In the project directory, create a new directory named models in the same directory as the package.json file.
2. In the models directory, create a new file named taskDao.js. This file will contain the model for the tasks

created by our application.
3. In the same models directory, create another new file named docdbUtils.js. This file will contain some useful,

reusable, code that we will use throughout our application.
4. Copy the following code in to docdbUtils.js

 var DocumentDBClient = require('documentdb').DocumentClient;

 var DocDBUtils = {
 getOrCreateDatabase: function (client, databaseId, callback) {
 var querySpec = {
 query: 'SELECT * FROM root r WHERE r.id= @id',
 parameters: [{
 name: '@id',
 value: databaseId
 }]
 };

 client.queryDatabases(querySpec).toArray(function (err, results) {
 if (err) {
 callback(err);

 } else {
 if (results.length === 0) {
 var databaseSpec = {
 id: databaseId
 };

 client.createDatabase(databaseSpec, function (err, created) {
 callback(null, created);
 });

 } else {
 callback(null, results[0]);
 }
 }
 });
 },

 getOrCreateCollection: function (client, databaseLink, collectionId, callback) {
 var querySpec = {
 query: 'SELECT * FROM root r WHERE r.id=@id',
 parameters: [{
 name: '@id',
 value: collectionId
 }]
 };

 client.queryCollections(databaseLink, querySpec).toArray(function (err, results) {
 if (err) {
 callback(err);

 } else {
 if (results.length === 0) {
 var collectionSpec = {
 id: collectionId
 };

 client.createCollection(databaseLink, collectionSpec, function (err, created) {
 callback(null, created);
 });

 } else {
 callback(null, results[0]);
 }
 }
 });
 }
 };

 module.exports = DocDBUtils;

TIP

5. Save and close the docdbUtils.js file.

 var DocumentDBClient = require('documentdb').DocumentClient;
 var docdbUtils = require('./docdbUtils');

 function TaskDao(documentDBClient, databaseId, collectionId) {
 this.client = documentDBClient;
 this.databaseId = databaseId;
 this.collectionId = collectionId;

 this.database = null;
 this.collection = null;
 }

 module.exports = TaskDao;

 TaskDao.prototype = {
 init: function (callback) {
 var self = this;

 docdbUtils.getOrCreateDatabase(self.client, self.databaseId, function (err, db) {
 if (err) {
 callback(err);
 } else {
 self.database = db;
 docdbUtils.getOrCreateCollection(self.client, self.database._self, self.collectionId, function (err, coll) {
 if (err) {
 callback(err);

 } else {
 self.collection = coll;
 }
 });
 }
 });
 },

 find: function (querySpec, callback) {
 var self = this;

 self.client.queryDocuments(self.collection._self, querySpec).toArray(function (err, results) {
 if (err) {
 callback(err);

 } else {

createCollection takes an optional requestOptions parameter that can be used to specify the Offer Type for the
Collection. If no requestOptions.offerType value is supplied then the Collection will be created using the default Offer
Type.

For more information on Azure Cosmos DB Offer Types please refer to Performance levels in Azure Cosmos DB

6. At the beginning of the taskDao.js file, add the following code to reference the DocumentDBClient and
the docdbUtils.js we created above:

7. Next, you will add code to define and export the Task object. This is responsible for initializing our Task
object and setting up the Database and Document Collection we will use.

8. Next, add the following code to define additional methods on the Task object, which allow interactions with
data stored in Azure Cosmos DB.

 } else {
 callback(null, results);
 }
 });
 },

 addItem: function (item, callback) {
 var self = this;

 item.date = Date.now();
 item.completed = false;

 self.client.createDocument(self.collection._self, item, function (err, doc) {
 if (err) {
 callback(err);

 } else {
 callback(null, doc);
 }
 });
 },

 updateItem: function (itemId, callback) {
 var self = this;

 self.getItem(itemId, function (err, doc) {
 if (err) {
 callback(err);

 } else {
 doc.completed = true;

 self.client.replaceDocument(doc._self, doc, function (err, replaced) {
 if (err) {
 callback(err);

 } else {
 callback(null, replaced);
 }
 });
 }
 });
 },

 getItem: function (itemId, callback) {
 var self = this;

 var querySpec = {
 query: 'SELECT * FROM root r WHERE r.id = @id',
 parameters: [{
 name: '@id',
 value: itemId
 }]
 };

 self.client.queryDocuments(self.collection._self, querySpec).toArray(function (err, results) {
 if (err) {
 callback(err);

 } else {
 callback(null, results[0]);
 }
 });
 }
 };

9. Save and close the taskDao.js file.

Create the controller

1. In the routes directory of your project, create a new file named tasklist.js.

 var DocumentDBClient = require('documentdb').DocumentClient;
 var async = require('async');

 function TaskList(taskDao) {
 this.taskDao = taskDao;
 }

 module.exports = TaskList;

2. Add the following code to tasklist.js. This loads the DocumentDBClient and async modules, which are used
by tasklist.js. This also defined the TaskList function, which is passed an instance of the Task object we
defined earlier:

3. Continue adding to the tasklist.js file by adding the methods used to showTasks, addTask, and
completeTasks:

Add config.js

 TaskList.prototype = {
 showTasks: function (req, res) {
 var self = this;

 var querySpec = {
 query: 'SELECT * FROM root r WHERE r.completed=@completed',
 parameters: [{
 name: '@completed',
 value: false
 }]
 };

 self.taskDao.find(querySpec, function (err, items) {
 if (err) {
 throw (err);
 }

 res.render('index', {
 title: 'My ToDo List ',
 tasks: items
 });
 });
 },

 addTask: function (req, res) {
 var self = this;
 var item = req.body;

 self.taskDao.addItem(item, function (err) {
 if (err) {
 throw (err);
 }

 res.redirect('/');
 });
 },

 completeTask: function (req, res) {
 var self = this;
 var completedTasks = Object.keys(req.body);

 async.forEach(completedTasks, function taskIterator(completedTask, callback) {
 self.taskDao.updateItem(completedTask, function (err) {
 if (err) {
 callback(err);
 } else {
 callback(null);
 }
 });
 }, function goHome(err) {
 if (err) {
 throw err;
 } else {
 res.redirect('/');
 }
 });
 }
 };

4. Save and close the tasklist.js file.

1. In your project directory create a new file named config.js.
2. Add the following to config.js. This defines configuration settings and values needed for our application.

Modify app.js

Step 5: Build a user interface

 var config = {}

 config.host = process.env.HOST || "[the URI value from the DocumentDB Keys blade on http://portal.azure.com]";
 config.authKey = process.env.AUTH_KEY || "[the PRIMARY KEY value from the DocumentDB Keys blade on
http://portal.azure.com]";
 config.databaseId = "ToDoList";
 config.collectionId = "Items";

 module.exports = config;

3. In the config.js file, update the values of HOST and AUTH_KEY using the values found in the Keys blade of your
Azure Cosmos DB account on the Microsoft Azure portal.

4. Save and close the config.js file.

1. In the project directory, open the app.js file. This file was created earlier when the Express web application was
created.

 var DocumentDBClient = require('documentdb').DocumentClient;
 var config = require('./config');
 var TaskList = require('./routes/tasklist');
 var TaskDao = require('./models/taskDao');

3. This code defines the config file to be used, and proceeds to read values out of this file into some variables we
will use soon.

 app.use('/', index);
 app.use('/users', users);

 var docDbClient = new DocumentDBClient(config.host, {
 masterKey: config.authKey
 });
 var taskDao = new TaskDao(docDbClient, config.databaseId, config.collectionId);
 var taskList = new TaskList(taskDao);
 taskDao.init();

 app.get('/', taskList.showTasks.bind(taskList));
 app.post('/addtask', taskList.addTask.bind(taskList));
 app.post('/completetask', taskList.completeTask.bind(taskList));
 app.set('view engine', 'jade');

5. These lines define a new instance of our TaskDao object, with a new connection to Azure Cosmos DB (using
the values read from the config.js), initialize the task object and then bind form actions to methods on our
TaskList controller.

6. Finally, save and close the app.js file, we're just about done.

2. Add the following code to the top of app.js

4. Replace the following two lines in app.js file:

with the following snippet:

Now let’s turn our attention to building the user interface so a user can actually interact with our application. The
Express application we created uses Jade as the view engine. For more information on Jade please refer to
http://jade-lang.com/.

https://portal.azure.com
http://jade-lang.com/

1. The layout.jade file in the views directory is used as a global template for other .jade files. In this step you will
modify it to use Twitter Bootstrap, which is a toolkit that makes it easy to design a nice looking website.

 doctype html
 html
 head
 title= title
 link(rel='stylesheet', href='//ajax.aspnetcdn.com/ajax/bootstrap/3.3.2/css/bootstrap.min.css')
 link(rel='stylesheet', href='/stylesheets/style.css')
 body
 nav.navbar.navbar-inverse.navbar-fixed-top
 div.navbar-header
 a.navbar-brand(href='#') My Tasks
 block content
 script(src='//ajax.aspnetcdn.com/ajax/jQuery/jquery-1.11.2.min.js')
 script(src='//ajax.aspnetcdn.com/ajax/bootstrap/3.3.2/bootstrap.min.js')

 extends layout
 block content
 h1 #{title}
 br

 form(action="/completetask", method="post")
 table.table.table-striped.table-bordered
 tr
 td Name
 td Category
 td Date
 td Complete
 if (typeof tasks === "undefined")
 tr
 td
 else
 each task in tasks
 tr
 td #{task.name}
 td #{task.category}
 - var date = new Date(task.date);
 - var day = date.getDate();
 - var month = date.getMonth() + 1;
 - var year = date.getFullYear();
 td #{month + "/" + day + "/" + year}
 td
 input(type="checkbox", name="#{task.id}", value="#{!task.completed}", checked=task.completed)
 button.btn(type="submit") Update tasks
 hr
 form.well(action="/addtask", method="post")
 label Item Name:
 input(name="name", type="textbox")
 label Item Category:
 input(name="category", type="textbox")
 br
 button.btn(type="submit") Add item

2. Open the layout.jade file found in the views folder and replace the contents with the following:

This effectively tells the Jade engine to render some HTML for our application and creates a block called
content where we can supply the layout for our content pages. Save and close this layout.jade file.

3. Now open the index.jade file, the view that will be used by our application, and replace the content of the
file with the following:

This extends layout, and provides content for the content placeholder we saw in the layout.jade file
earlier.

https://github.com/twbs/bootstrap

 Step 6: Run your application locally

 body {
 padding: 50px;
 font: 14px "Lucida Grande", Helvetica, Arial, sans-serif;
 }
 a {
 color: #00B7FF;
 }
 .well label {
 display: block;
 }
 .well input {
 margin-bottom: 5px;
 }
 .btn {
 margin-top: 5px;
 border: outset 1px #C8C8C8;
 }

In this layout we created two HTML forms. The first form contains a table for our data and a button that
allows us to update items by posting to /completetask method of our controller. The second form
contains two input fields and a button that allows us to create a new item by posting to /addtask method
of our controller.

This should be all that we need for our application to work.

4. Open the style.css file in public\stylesheets directory and replace the code with the following:

Save and close this style.css file.

TIP

1. To test the application on your local machine, run npm start in the terminal to start your application, then
refresh your http://localhost:3000 browser page. The page should now look like the image below:

If you receive an error about the indent in the layout.jade file or the index.jade file, ensure that the first two lines in
both files is left justified, with no spaces. If there are spaces before the first two lines, remove them, save both files,
then refresh your browser window.

http://localhost:3000

Step 7: Deploy your application development project to Azure
Websites

Next steps

2. Use the Item, Item Name and Category fields to enter a new task and then click Add Item. This creates a
document in Azure Cosmos DB with those properties.

3. The page should update to display the newly created item in the ToDo list.

4. To complete a task, simply check the checkbox in the Complete column, and then click Update tasks. This
updates the document you already created.

5. To stop the application, press CTRL+C in the terminal window and then click Y to terminate the batch job.

1. If you haven't already, enable a git repository for your Azure Website. You can find instructions on how to do
this in the Local Git Deployment to Azure App Service topic.

 git remote add azure https://username@your-azure-website.scm.azurewebsites.net:443/your-azure-website.git

 git push azure master

2. Add your Azure Website as a git remote.

3. Deploy by pushing to the remote.

4. In a few seconds, git will finish publishing your web application and launch a browser where you can see
your handy work running in Azure!

Congratulations! You have just built your first Node.js Express Web Application using Azure Cosmos DB
and published it to Azure Websites.

If you want to download or refer to the complete reference application for this tutorial, it can be
downloaded from GitHub.

Want to perform scale and performance testing with Azure Cosmos DB? See Performance and Scale Testing
with Azure Cosmos DB
Learn how to monitor an Azure Cosmos DB account.

https://docs.microsoft.com/en-us/azure/app-service-web/app-service-deploy-local-git
https://github.com/Azure-Samples/documentdb-node-todo-app

Run queries against our sample dataset in the Query Playground.
Explore the Azure Cosmos DB documentation.

https://www.documentdb.com/sql/demo
https://docs.microsoft.com/azure/documentdb/

Build a Java web application using Azure Cosmos DB
5/30/2017 • 19 min to read • Edit Online

TIP

Prerequisites for this Java web application tutorial

This Java web application tutorial shows you how to use the Microsoft Azure Cosmos DB service to store and
access data from a Java application hosted on Azure Websites. In this topic, you will learn:

How to build a basic JSP application in Eclipse.
How to work with the Azure Cosmos DB service using the Azure Cosmos DB Java SDK.

This Java application tutorial shows you how to create a web-based task-management application that enables
you to create, retrieve, and mark tasks as complete, as shown in the following image. Each of the tasks in the ToDo
list are stored as JSON documents in Azure Cosmos DB.

This application development tutorial assumes that you have prior experience using Java. If you are new to Java or the
prerequisite tools, we recommend downloading the complete todo project from GitHub and building it using the
instructions at the end of this article. Once you have it built, you can review the article to gain insight on the code in the
context of the project.

Before you begin this application development tutorial, you must have the following:

An active Azure account. If you don't have an account, you can create a free trial account in just a couple of
minutes. For details, see Azure Free Trial

OR

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/documentdb-java-application.md
https://azure.microsoft.com/services/cosmos-db/
https://github.com/Azure/azure-documentdb-java
https://github.com/Azure-Samples/documentdb-java-todo-app
https://azure.microsoft.com/pricing/free-trial/

 Step 1: Create an Azure Cosmos DB database account

Java Development Kit (JDK) 7+.
Eclipse IDE for Java EE Developers.
An Azure Website with a Java runtime environment (e.g. Tomcat or Jetty) enabled.

A local installation of the Azure Cosmos DB Emulator.

If you're installing these tools for the first time, coreservlets.com provides a walk-through of the installation
process in the Quick Start section of their Tutorial: Installing TomCat7 and Using it with Eclipse article.

Let's start by creating an Azure Cosmos DB account. If you already have an account or if you are using the Azure
Cosmos DB Emulator for this tutorial, you can skip to Step 2: Create the Java JSP application.

1. In a new window, sign in to the Azure portal.
2. In the left pane, click New, click Databases, and then click Azure Cosmos DB.

3. On the New account blade, specify the configuration that you want for the Azure Cosmos DB account.

With Azure Cosmos DB, you can choose one of four programming models: Gremlin (graph), MongoDB, SQL
(DocumentDB), and Table (key-value).

In this quick-start article we program against the DocumentDB API, so choose SQL (DocumentDB) as you
fill out the form. But if you have graph data for a social media app, or key/value (table) data, or data
migrated from a MongoDB app, realize that Azure Cosmos DB can provide a highly available, globally
distributed database service platform for all your mission-critical applications.

Complete the fields on the New account blade, using the information in the following screenshot as a
guide. When you set up your account, choose unique values that do not match those in the screenshot.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/lunasr1
https://docs.microsoft.com/en-us/azure/app-service-web/web-sites-java-get-started
http://www.coreservlets.com/Apache-Tomcat-Tutorial/tomcat-7-with-eclipse.html
https://portal.azure.com/

SETTING SUGGESTED VALUE DESCRIPTION

ID Unique value A unique name that identifies your
Azure Cosmos DB account. The
string documents.azure.com is
appended to the ID you provide to
create your URI, so use a unique but
identifiable ID. The ID can contain
only lowercase letters, numbers, and
the hyphen (-) character, and it must
contain from 3 through 50
characters.

API SQL (DocumentDB) We program against the
DocumentDB API later in this article.

Subscription Your subscription The Azure subscription that you
want to use for your Azure Cosmos
DB account.

Resource Group The same value as ID The new resource-group name for
your account. For simplicity, you can
use the same name as your ID.

Location The region closest to your users The geographic location in which to
host your Azure Cosmos DB account.
Choose the location that's closest to
your users to give them the fastest
access to the data.

4. Click Create to create the account.
5. On the top toolbar, click Notifications to monitor the deployment process.

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-introduction

6. When the deployment is complete, open the new account from the All Resources tile.

Now navigate to the DocumentDB account blade, and click Keys, as we will use these values in the web application
we create next.

 Step 2: Create the Java JSP application
To create the JSP application:

1. First, we’ll start off by creating a Java project. Start Eclipse, then click File, click New, and then click
Dynamic Web Project. If you don’t see Dynamic Web Project listed as an available project, do the
following: click File, click New, click Project…, expand Web, click Dynamic Web Project, and click Next.

2. Enter a project name in the Project name box, and in the Target Runtime drop-down menu, optionally select
a value (e.g. Apache Tomcat v7.0), and then click Finish. Selecting a target runtime enables you to run your
project locally through Eclipse.

3. In Eclipse, in the Project Explorer view, expand your project. Right-click WebContent, click New, and then click
JSP File.

4. In the New JSP File dialog box, name the file index.jsp. Keep the parent folder as WebContent, as shown
in the following illustration, and then click Next.

 Step 3: Install the DocumentDB Java SDK

5. In the Select JSP Template dialog box, for the purpose of this tutorial select New JSP File (html), and then
click Finish.

 <body>
 <% out.println("Hello World!"); %>
 </body>

7. Save the index.jsp file.

6. When the index.jsp file opens in Eclipse, add text to display Hello World! within the existing element. Your
updated content should look like the following code:

8. If you set a target runtime in step 2, you can click Project and then Run to run your JSP application locally:

The easiest way to pull in the DocumentDB Java SDK and its dependencies is through Apache Maven.

To do this, you will need to convert your project to a maven project by completing the following steps:

1. Right-click your project in the Project Explorer, click Configure, click Convert to Maven Project.
2. In the Create new POM window, accept the defaults and click Finish.
3. In Project Explorer, open the pom.xml file.
4. On the Dependencies tab, in the Dependencies pane, click Add.
5. In the Select Dependency window, do the following:

In the GroupId box, enter com.microsoft.azure.
In the Artifact Id box enter azure-documentdb.
In the Version box enter 1.5.1.

http://maven.apache.org/

 Step 4: Using the Azure Cosmos DB service in a Java application

6. Click Ok and Maven will install the DocumentDB Java SDK.
7. Save the pom.xml file.

com.microsoft.azure azure-documentdb 1.9.1

Or add the dependency XML for GroupId and ArtifactId directly to the pom.xml via a text editor:

 @Data
 @Builder
 public class TodoItem {
 private String category;
 private boolean complete;
 private String id;
 private String name;
 }

 private static final String HOST = "[YOUR_ENDPOINT_HERE]";
 private static final String MASTER_KEY = "[YOUR_KEY_HERE]";

 private static DocumentClient documentClient = new DocumentClient(HOST, MASTER_KEY,
 ConnectionPolicy.GetDefault(), ConsistencyLevel.Session);

 public static DocumentClient getDocumentClient() {
 return documentClient;
 }

1. First, let's define the TodoItem object:

In this project, we are using Project Lombok to generate the constructor, getters, setters, and a builder.
Alternatively, you can write this code manually or have the IDE generate it.

2. To invoke the Azure Cosmos DB service, you must instantiate a new DocumentClient. In general, it is best
to reuse the DocumentClient - rather than construct a new client for each subsequent request. We can
reuse the client by wrapping the client in a DocumentClientFactory. This is also where you need to paste
the URI and PRIMARY KEY value you saved to your clipboard in step 1. Replace [YOUR_ENDPOINT_HERE]
with your URI and replace [YOUR_KEY_HERE] with your PRIMARY KEY.

3. Now let's create a Data Access Object (DAO) to abstract persisting our ToDo items to Azure Cosmos DB.

http://projectlombok.org/

 public class DocDbDao implements TodoDao {
 // The name of our database.
 private static final String DATABASE_ID = "TodoDB";

 // The name of our collection.
 private static final String COLLECTION_ID = "TodoCollection";

 // The Azure Cosmos DB Client
 private static DocumentClient documentClient = DocumentClientFactory
 .getDocumentClient();

 // Cache for the database object, so we don't have to query for it to
 // retrieve self links.
 private static Database databaseCache;

 // Cache for the collection object, so we don't have to query for it to
 // retrieve self links.
 private static DocumentCollection collectionCache;

 private Database getTodoDatabase() {
 if (databaseCache == null) {
 // Get the database if it exists
 List<Database> databaseList = documentClient
 .queryDatabases(
 "SELECT * FROM root r WHERE r.id='" + DATABASE_ID
 + "'", null).getQueryIterable().toList();

 if (databaseList.size() > 0) {
 // Cache the database object so we won't have to query for it
 // later to retrieve the selfLink.
 databaseCache = databaseList.get(0);
 } else {
 // Create the database if it doesn't exist.
 try {
 Database databaseDefinition = new Database();
 databaseDefinition.setId(DATABASE_ID);

 databaseCache = documentClient.createDatabase(
 databaseDefinition, null).getResource();
 } catch (DocumentClientException e) {
 // TODO: Something has gone terribly wrong - the app wasn't
 // able to query or create the collection.
 // Verify your connection, endpoint, and key.
 e.printStackTrace();
 }
 }
 }

 return databaseCache;
 }

 private DocumentCollection getTodoCollection() {
 if (collectionCache == null) {
 // Get the collection if it exists.
 List<DocumentCollection> collectionList = documentClient
 .queryCollections(
 getTodoDatabase().getSelfLink(),
 "SELECT * FROM root r WHERE r.id='" + COLLECTION_ID
 + "'", null).getQueryIterable().toList();

In order to save ToDo items to a collection, the client needs to know which database and collection to
persist to (as referenced by self-links). In general, it is best to cache the database and collection when
possible to avoid additional round-trips to the database.

The following code illustrates how to retrieve our database and collection, if it exists, or create a new one if
it doesn't exist:

 if (collectionList.size() > 0) {
 // Cache the collection object so we won't have to query for it
 // later to retrieve the selfLink.
 collectionCache = collectionList.get(0);
 } else {
 // Create the collection if it doesn't exist.
 try {
 DocumentCollection collectionDefinition = new DocumentCollection();
 collectionDefinition.setId(COLLECTION_ID);

 collectionCache = documentClient.createCollection(
 getTodoDatabase().getSelfLink(),
 collectionDefinition, null).getResource();
 } catch (DocumentClientException e) {
 // TODO: Something has gone terribly wrong - the app wasn't
 // able to query or create the collection.
 // Verify your connection, endpoint, and key.
 e.printStackTrace();
 }
 }
 }

 return collectionCache;
 }
 }

 // We'll use Gson for POJO <=> JSON serialization for this example.
 private static Gson gson = new Gson();

 @Override
 public TodoItem createTodoItem(TodoItem todoItem) {
 // Serialize the TodoItem as a JSON Document.
 Document todoItemDocument = new Document(gson.toJson(todoItem));

 // Annotate the document as a TodoItem for retrieval (so that we can
 // store multiple entity types in the collection).
 todoItemDocument.set("entityType", "todoItem");

 try {
 // Persist the document using the DocumentClient.
 todoItemDocument = documentClient.createDocument(
 getTodoCollection().getSelfLink(), todoItemDocument, null,
 false).getResource();
 } catch (DocumentClientException e) {
 e.printStackTrace();
 return null;
 }

 return gson.fromJson(todoItemDocument.toString(), TodoItem.class);
 }

4. The next step is to write some code to persist the TodoItems in to the collection. In this example, we will use
Gson to serialize and de-serialize TodoItem Plain Old Java Objects (POJOs) to JSON documents.

5. Like Azure Cosmos DB databases and collections, documents are also referenced by self-links. The
following helper function lets us retrieve documents by another attribute (e.g. "id") rather than self-link:

https://code.google.com/p/google-gson/

 private Document getDocumentById(String id) {
 // Retrieve the document using the DocumentClient.
 List<Document> documentList = documentClient
 .queryDocuments(getTodoCollection().getSelfLink(),
 "SELECT * FROM root r WHERE r.id='" + id + "'", null)
 .getQueryIterable().toList();

 if (documentList.size() > 0) {
 return documentList.get(0);
 } else {
 return null;
 }
 }

 @Override
 public TodoItem readTodoItem(String id) {
 // Retrieve the document by id using our helper method.
 Document todoItemDocument = getDocumentById(id);

 if (todoItemDocument != null) {
 // De-serialize the document in to a TodoItem.
 return gson.fromJson(todoItemDocument.toString(), TodoItem.class);
 } else {
 return null;
 }
 }

 @Override
 public List<TodoItem> readTodoItems() {
 List<TodoItem> todoItems = new ArrayList<TodoItem>();

 // Retrieve the TodoItem documents
 List<Document> documentList = documentClient
 .queryDocuments(getTodoCollection().getSelfLink(),
 "SELECT * FROM root r WHERE r.entityType = 'todoItem'",
 null).getQueryIterable().toList();

 // De-serialize the documents in to TodoItems.
 for (Document todoItemDocument : documentList) {
 todoItems.add(gson.fromJson(todoItemDocument.toString(),
 TodoItem.class));
 }

 return todoItems;
 }

6. We can use the helper method in step 5 to retrieve a TodoItem JSON document by id and then deserialize it
to a POJO:

7. We can also use the DocumentClient to get a collection or list of TodoItems using DocumentDB SQL:

8. There are many ways to update a document with the DocumentClient. In our Todo list application, we want
to be able to toggle whether a TodoItem is complete. This can be achieved by updating the "complete"
attribute within the document:

 Step 5: Wiring the rest of the of Java application development project
together

 @Override
 public TodoItem updateTodoItem(String id, boolean isComplete) {
 // Retrieve the document from the database
 Document todoItemDocument = getDocumentById(id);

 // You can update the document as a JSON document directly.
 // For more complex operations - you could de-serialize the document in
 // to a POJO, update the POJO, and then re-serialize the POJO back in to
 // a document.
 todoItemDocument.set("complete", isComplete);

 try {
 // Persist/replace the updated document.
 todoItemDocument = documentClient.replaceDocument(todoItemDocument,
 null).getResource();
 } catch (DocumentClientException e) {
 e.printStackTrace();
 return null;
 }

 return gson.fromJson(todoItemDocument.toString(), TodoItem.class);
 }

 @Override
 public boolean deleteTodoItem(String id) {
 // Azure Cosmos DB refers to documents by self link rather than id.

 // Query for the document to retrieve the self link.
 Document todoItemDocument = getDocumentById(id);

 try {
 // Delete the document by self link.
 documentClient.deleteDocument(todoItemDocument.getSelfLink(), null);
 } catch (DocumentClientException e) {
 e.printStackTrace();
 return false;
 }

 return true;
 }

9. Finally, we want the ability to delete a TodoItem from our list. To do this, we can use the helper method we
wrote earlier to retrieve the self-link and then tell the client to delete it:

Now that we've finished the fun bits - all that left is to build a quick user interface and wire it up to our DAO.

1. First, let's start with building a controller to call our DAO:

 public class TodoItemController {
 public static TodoItemController getInstance() {
 if (todoItemController == null) {
 todoItemController = new TodoItemController(TodoDaoFactory.getDao());
 }
 return todoItemController;
 }

 private static TodoItemController todoItemController;

 private final TodoDao todoDao;

 TodoItemController(TodoDao todoDao) {
 this.todoDao = todoDao;
 }

 public TodoItem createTodoItem(@NonNull String name,
 @NonNull String category, boolean isComplete) {
 TodoItem todoItem = TodoItem.builder().name(name).category(category)
 .complete(isComplete).build();
 return todoDao.createTodoItem(todoItem);
 }

 public boolean deleteTodoItem(@NonNull String id) {
 return todoDao.deleteTodoItem(id);
 }

 public TodoItem getTodoItemById(@NonNull String id) {
 return todoDao.readTodoItem(id);
 }

 public List<TodoItem> getTodoItems() {
 return todoDao.readTodoItems();
 }

 public TodoItem updateTodoItem(@NonNull String id, boolean isComplete) {
 return todoDao.updateTodoItem(id, isComplete);
 }
 }

In a more complex application, the controller may house complicated business logic on top of the DAO.

2. Next, we'll create a servlet to route HTTP requests to the controller:

 public class TodoServlet extends HttpServlet {
 // API Keys
 public static final String API_METHOD = "method";

 // API Methods
 public static final String CREATE_TODO_ITEM = "createTodoItem";
 public static final String GET_TODO_ITEMS = "getTodoItems";
 public static final String UPDATE_TODO_ITEM = "updateTodoItem";

 // API Parameters
 public static final String TODO_ITEM_ID = "todoItemId";
 public static final String TODO_ITEM_NAME = "todoItemName";
 public static final String TODO_ITEM_CATEGORY = "todoItemCategory";
 public static final String TODO_ITEM_COMPLETE = "todoItemComplete";

 public static final String MESSAGE_ERROR_INVALID_METHOD = "{'error': 'Invalid method'}";

 private static final long serialVersionUID = 1L;
 private static final Gson gson = new Gson();

 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException, IOException {

 String apiResponse = MESSAGE_ERROR_INVALID_METHOD;

 TodoItemController todoItemController = TodoItemController
 .getInstance();

 String id = request.getParameter(TODO_ITEM_ID);
 String name = request.getParameter(TODO_ITEM_NAME);
 String category = request.getParameter(TODO_ITEM_CATEGORY);
 boolean isComplete = StringUtils.equalsIgnoreCase("true",
 request.getParameter(TODO_ITEM_COMPLETE)) ? true : false;

 switch (request.getParameter(API_METHOD)) {
 case CREATE_TODO_ITEM:
 apiResponse = gson.toJson(todoItemController.createTodoItem(name,
 category, isComplete));
 break;
 case GET_TODO_ITEMS:
 apiResponse = gson.toJson(todoItemController.getTodoItems());
 break;
 case UPDATE_TODO_ITEM:
 apiResponse = gson.toJson(todoItemController.updateTodoItem(id,
 isComplete));
 break;
 default:
 break;
 }

 response.getWriter().println(apiResponse);
 }

 @Override
 protected void doPost(HttpServletRequest request,
 HttpServletResponse response) throws ServletException, IOException {
 doGet(request, response);
 }
 }

 <html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

3. We'll need a Web User Interface to display to the user. Let's re-write the index.jsp we created earlier:

 <meta http-equiv="X-UA-Compatible" content="IE=edge;" />
 <title>Azure Cosmos DB Java Sample</title>

 <!-- Bootstrap -->
 <link href="//ajax.aspnetcdn.com/ajax/bootstrap/3.2.0/css/bootstrap.min.css" rel="stylesheet">

 <style>
 /* Add padding to body for fixed nav bar */
 body {
 padding-top: 50px;
 }
 </style>
 </head>
 <body>
 <!-- Nav Bar -->
 <div class="navbar navbar-inverse navbar-fixed-top" role="navigation">
 <div class="container">
 <div class="navbar-header">
 My Tasks
 </div>
 </div>
 </div>

 <!-- Body -->
 <div class="container">
 <h1>My ToDo List</h1>

 <hr/>

 <!-- The ToDo List -->
 <div class = "todoList">
 <table class="table table-bordered table-striped" id="todoItems">
 <thead>
 <tr>
 <th>Name</th>
 <th>Category</th>
 <th>Complete</th>
 </tr>
 </thead>
 <tbody>
 </tbody>
 </table>

 <!-- Update Button -->
 <div class="todoUpdatePanel">
 <form class="form-horizontal" role="form">
 <button type="button" class="btn btn-primary">Update Tasks</button>
 </form>
 </div>

 </div>

 <hr/>

 <!-- Item Input Form -->
 <div class="todoForm">
 <form class="form-horizontal" role="form">
 <div class="form-group">
 <label for="inputItemName" class="col-sm-2">Task Name</label>
 <div class="col-sm-10">
 <input type="text" class="form-control" id="inputItemName" placeholder="Enter name">
 </div>
 </div>

 <div class="form-group">
 <label for="inputItemCategory" class="col-sm-2">Task Category</label>
 <div class="col-sm-10">
 <input type="text" class="form-control" id="inputItemCategory" placeholder="Enter category">
 </div>

 </div>
 </div>

 <button type="button" class="btn btn-primary">Add Task</button>
 </form>
 </div>

 </div>

 <!-- Placed at the end of the document so the pages load faster -->
 <script src="//ajax.aspnetcdn.com/ajax/jQuery/jquery-2.1.1.min.js"></script>
 <script src="//ajax.aspnetcdn.com/ajax/bootstrap/3.2.0/bootstrap.min.js"></script>
 <script src="assets/todo.js"></script>
 </body>
 </html>

 var todoApp = {
 /*
 * API methods to call Java backend.
 */
 apiEndpoint: "api",

 createTodoItem: function(name, category, isComplete) {
 $.post(todoApp.apiEndpoint, {
 "method": "createTodoItem",
 "todoItemName": name,
 "todoItemCategory": category,
 "todoItemComplete": isComplete
 },
 function(data) {
 var todoItem = data;
 todoApp.addTodoItemToTable(todoItem.id, todoItem.name, todoItem.category, todoItem.complete);
 },
 "json");
 },

 getTodoItems: function() {
 $.post(todoApp.apiEndpoint, {
 "method": "getTodoItems"
 },
 function(data) {
 var todoItemArr = data;
 $.each(todoItemArr, function(index, value) {
 todoApp.addTodoItemToTable(value.id, value.name, value.category, value.complete);
 });
 },
 "json");
 },

 updateTodoItem: function(id, isComplete) {
 $.post(todoApp.apiEndpoint, {
 "method": "updateTodoItem",
 "todoItemId": id,
 "todoItemComplete": isComplete
 },
 function(data) {},
 "json");
 },

 /*
 * UI Methods
 */
 addTodoItemToTable: function(id, name, category, isComplete) {
 var rowColor = isComplete ? "active" : "warning";

 todoApp.ui_table().append($("<tr>")

4. And finally, write some client-side Javascript to tie the web user interface and the servlet together:

 .append($("<td>").text(name))
 .append($("<td>").text(category))
 .append($("<td>")
 .append($("<input>")
 .attr("type", "checkbox")
 .attr("id", id)
 .attr("checked", isComplete)
 .attr("class", "isComplete")
))
 .addClass(rowColor)
);
 },

 /*
 * UI Bindings
 */
 bindCreateButton: function() {
 todoApp.ui_createButton().click(function() {
 todoApp.createTodoItem(todoApp.ui_createNameInput().val(), todoApp.ui_createCategoryInput().val(), false);
 todoApp.ui_createNameInput().val("");
 todoApp.ui_createCategoryInput().val("");
 });
 },

 bindUpdateButton: function() {
 todoApp.ui_updateButton().click(function() {
 // Disable button temporarily.
 var myButton = $(this);
 var originalText = myButton.text();
 $(this).text("Updating...");
 $(this).prop("disabled", true);

 // Call api to update todo items.
 $.each(todoApp.ui_updateId(), function(index, value) {
 todoApp.updateTodoItem(value.name, value.value);
 $(value).remove();
 });

 // Re-enable button.
 setTimeout(function() {
 myButton.prop("disabled", false);
 myButton.text(originalText);
 }, 500);
 });
 },

 bindUpdateCheckboxes: function() {
 todoApp.ui_table().on("click", ".isComplete", function(event) {
 var checkboxElement = $(event.currentTarget);
 var rowElement = $(event.currentTarget).parents('tr');
 var id = checkboxElement.attr('id');
 var isComplete = checkboxElement.is(':checked');

 // Toggle table row color
 if (isComplete) {
 rowElement.addClass("active");
 rowElement.removeClass("warning");
 } else {
 rowElement.removeClass("active");
 rowElement.addClass("warning");
 }

 // Update hidden inputs for update panel.
 todoApp.ui_updateForm().children("input[name='" + id + "']").remove();

 todoApp.ui_updateForm().append($("<input>")
 .attr("type", "hidden")
 .attr("class", "updateComplete")
 .attr("name", id)

 Step 6: Deploy your Java application to Azure Websites

 .attr("name", id)
 .attr("value", isComplete));

 });
 },

 /*
 * UI Elements
 */
 ui_createNameInput: function() {
 return $(".todoForm #inputItemName");
 },

 ui_createCategoryInput: function() {
 return $(".todoForm #inputItemCategory");
 },

 ui_createButton: function() {
 return $(".todoForm button");
 },

 ui_table: function() {
 return $(".todoList table tbody");
 },

 ui_updateButton: function() {
 return $(".todoUpdatePanel button");
 },

 ui_updateForm: function() {
 return $(".todoUpdatePanel form");
 },

 ui_updateId: function() {
 return $(".todoUpdatePanel .updateComplete");
 },

 /*
 * Install the TodoApp
 */
 install: function() {
 todoApp.bindCreateButton();
 todoApp.bindUpdateButton();
 todoApp.bindUpdateCheckboxes();

 todoApp.getTodoItems();
 }
 };

 $(document).ready(function() {
 todoApp.install();
 });

5. Awesome! Now all that's left is to test the application. Run the application locally, and add some Todo items by
filling in the item name and category and clicking Add Task.

6. Once the item appears, you can update whether it's complete by toggling the checkbox and clicking Update
Tasks.

Azure Websites makes deploying Java Applications as simple as exporting your application as a WAR file and
either uploading it via source control (e.g. GIT) or FTP.

1. To export your application as a WAR, right-click on your project in Project Explorer, click Export, and then
click WAR File.

 Get the project from GitHub

4. To view your finished product, navigate to http://YOUR_SITE_NAME.azurewebsites.net/azure-java-sample/ and
start adding your tasks!

2. In the WAR Export window, do the following:

In the Web project box, enter azure-documentdb-java-sample.
In the Destination box, choose a destination to save the WAR file.
Click Finish.

3. Now that you have a WAR file in hand, you can simply upload it to your Azure Website's webapps
directory. For instructions on uploading the file, see Adding an application to your Java website on Azure.

Once the WAR file is uploaded to the webapps directory, the runtime environment will detect that you've
added it and will automatically load it.

All the samples in this tutorial are included in the todo project on GitHub. To import the todo project into Eclipse,
ensure you have the software and resources listed in the Prerequisites section, then do the following:

1. Install Project Lombok. Lombok is used to generate constructors, getters, setters in the project. Once you have
downloaded the lombok.jar file, double-click it to install it or install it from the command line.

2. If Eclipse is open, close it and restart it to load Lombok.
3. In Eclipse, on the File menu, click Import.
4. In the Import window, click Git, click Projects from Git, and then click Next.
5. On the Select Repository Source screen, click Clone URI.
6. On the Source Git Repository screen, in the URI box, enter https://github.com/Azure-Samples/java-todo-

app.git, and then click Next.
7. On the Branch Selection screen, ensure that master is selected, and then click Next.
8. On the Local Destination screen, click Browse to select a folder where the repository can be copied, and then

click Next.
9. On the Select a wizard to use for importing projects screen, ensure that Import existing projects is

selected, and then click Next.
10. On the Import Projects screen, unselect the Azure Cosmos DB project, and then click Finish. The Azure

Cosmos DB project contains the Azure Cosmos DB Java SDK, which we will add as a dependency instead.
11. In Project Explorer, navigate to azure-documentdb-java-

sample\src\com.microsoft.azure.documentdb.sample.dao\DocumentClientFactory.java and replace the HOST
and MASTER_KEY values with the URI and PRIMARY KEY for your Azure Cosmos DB account, and then save the
file. For more information, see Step 1. Create an Azure Cosmos DB database account.

12. In Project Explorer, right click the azure-documentdb-java-sample, click Build Path, and then click
Configure Build Path.

13. On the Java Build Path screen, in the right pane, select the Libraries tab, and then click Add External JARs.
Navigate to the location of the lombok.jar file, and click Open, and then click OK.

14. Use step 12 to open the Properties window again, and then in the left pane click Targeted Runtimes.
15. On the Targeted Runtimes screen, click New, select Apache Tomcat v7.0, and then click OK.
16. Use step 12 to open the Properties window again, and then in the left pane click Project Facets.
17. On the Project Facets screen, select Dynamic Web Module and Java, and then click OK.
18. On the Servers tab at the bottom of the screen, right-click Tomcat v7.0 Server at localhost and then click

Add and Remove.
19. On the Add and Remove window, move azure-documentdb-java-sample to the Configured box, and then

click Finish.
20. In the Server tab, right-click Tomcat v7.0 Server at localhost, and then click Restart.

https://docs.microsoft.com/en-us/azure/app-service-web/web-sites-java-add-app
https://github.com/Azure-Samples/documentdb-java-todo-app
http://projectlombok.org/
https://github.com/Azure-Samples/java-todo-app.git

21. In a browser, navigate to http://localhost:8080/azure-documentdb-java-sample/ and start adding to your task
list. Note that if you changed your default port values, change 8080 to the value you selected.

22. To deploy your project to an Azure web site, see Step 6. Deploy your application to Azure Websites.

http://localhost:8080/azure-documentdb-java-sample/

Build a Python Flask web application using Azure
Cosmos DB
5/30/2017 • 12 min to read • Edit Online

Database tutorial prerequisites

This tutorial shows you how to use Azure Cosmos DB to store and access data from a Python web application
hosted on Azure and presumes that you have some prior experience using Python and Azure websites.

This database tutorial covers:

1. Creating and provisioning an Cosmos DB account.
2. Creating a Python MVC application.
3. Connecting to and using Cosmos DB from your web application.
4. Deploying the web application to Azure Websites.

By following this tutorial, you will build a simple voting application that allows you to vote for a poll.

Before following the instructions in this article, you should ensure that you have the following installed:

 Visual Studio ExpressVisual Studio 2013 or higher, or , which is the free version. The instructions in this tutorial are written
specifically for Visual Studio 2015.
Python Tools for Visual Studio from GitHub. This tutorial uses Python Tools for VS 2015.
Azure Python SDK for Visual Studio, version 2.4 or higher available from azure.com. We used Microsoft Azure
SDK for Python 2.7.
Python 2.7 from python.org. We used Python 2.7.11.

An active Azure account. If you don't have an account, you can create a free trial account in just a couple of
minutes. For details, see Azure Free Trial.

OR

A local installation of the Azure Cosmos DB Emulator.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/documentdb-python-application.md
https://azure.microsoft.com/pricing/free-trial/
http://www.visualstudio.com/
http://microsoft.github.io/PTVS/
https://azure.microsoft.com/downloads/
https://www.python.org/downloads/windows/

IMPORTANT

Step 1: Create an Azure Cosmos DB database account

If you are installing Python 2.7 for the first time, ensure that in the Customize Python 2.7.11 screen, you select Add
python.exe to Path.

Microsoft Visual C++ Compiler for Python 2.7 from the Microsoft Download Center.

Let's start by creating an Cosmos DB account. If you already have an account or if you are using the Azure Cosmos
DB Emulator for this tutorial, you can skip to Step 2: Create a new Python Flask web application.

1. In a new window, sign in to the Azure portal.
2. In the left pane, click New, click Databases, and then click Azure Cosmos DB.

https://www.microsoft.com/download/details.aspx?id=44266
https://portal.azure.com/

SETTING SUGGESTED VALUE DESCRIPTION

ID Unique value A unique name that identifies your
Azure Cosmos DB account. The
string documents.azure.com is
appended to the ID you provide to
create your URI, so use a unique but
identifiable ID. The ID can contain
only lowercase letters, numbers, and
the hyphen (-) character, and it must
contain from 3 through 50
characters.

API SQL (DocumentDB) We program against the
DocumentDB API later in this article.

Subscription Your subscription The Azure subscription that you want
to use for your Azure Cosmos DB
account.

Resource Group The same value as ID The new resource-group name for
your account. For simplicity, you can
use the same name as your ID.

3. On the New account blade, specify the configuration that you want for the Azure Cosmos DB account.

With Azure Cosmos DB, you can choose one of four programming models: Gremlin (graph), MongoDB, SQL
(DocumentDB), and Table (key-value).

In this quick-start article we program against the DocumentDB API, so choose SQL (DocumentDB) as you
fill out the form. But if you have graph data for a social media app, or key/value (table) data, or data
migrated from a MongoDB app, realize that Azure Cosmos DB can provide a highly available, globally
distributed database service platform for all your mission-critical applications.

Complete the fields on the New account blade, using the information in the following screenshot as a
guide. When you set up your account, choose unique values that do not match those in the screenshot.

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-introduction

Location The region closest to your users The geographic location in which to
host your Azure Cosmos DB account.
Choose the location that's closest to
your users to give them the fastest
access to the data.

SETTING SUGGESTED VALUE DESCRIPTION

4. Click Create to create the account.
5. On the top toolbar, click Notifications to monitor the deployment process.

6. When the deployment is complete, open the new account from the All Resources tile.

Step 2: Create a new Python Flask web application

We will now walk through how to create a new Python Flask web application from the ground up.

2. In the left pane, expand Templates and then Python, and then click Web.

1. In Visual Studio, on the File menu, point to New, and then click Project.

The New Project dialog box appears.

3. Select Flask Web Project in the center pane, then in the Name box type tutorial, and then click OK.
Remember that Python package names should be all lowercase, as described in the Style Guide for Python
Code.

For those new to Python Flask, it is a web application development framework that helps you build web
applications in Python faster.

4. In the Python Tools for Visual Studio window, click Install into a virtual environment.

5. In the Add Virtual Environment window, you can accept the defaults and use Python 2.7 as the base
environment because PyDocumentDB does not currently support Python 3.x, and then click Create. This
sets up the required Python virtual environment for your project.

https://www.python.org/dev/peps/pep-0008/#package-and-module-names

Step 3: Modify the Python Flask web application
Add the Python Flask packages to your project

The output window displays
Successfully installed Flask-0.10.1 Jinja2-2.8 MarkupSafe-0.23 Werkzeug-0.11.5 itsdangerous-0.24 'requirements.txt' was installed
successfully.

when the environment is successfully installed.

After your project is set up, you'll need to add the required Flask packages to your project, including
pydocumentdb, the Python package for DocumentDB.

 flask==0.9
 flask-mail==0.7.6
 sqlalchemy==0.7.9
 flask-sqlalchemy==0.16
 sqlalchemy-migrate==0.7.2
 flask-whooshalchemy==0.55a
 flask-wtf==0.8.4
 pytz==2013b
 flask-babel==0.8
 flup
 pydocumentdb>=1.0.0

2. Save the requirements.txt file.

1. In Solution Explorer, open the file named requirements.txt and replace the contents with the following:

3. In Solution Explorer, right-click env and click Install from requirements.txt.

 Verify the virtual environment

 Successfully installed Babel-2.3.2 Tempita-0.5.2 WTForms-2.1 Whoosh-2.7.4 blinker-1.4 decorator-4.0.9 flask-0.9 flask-babel-0.8 flask-
mail-0.7.6 flask-sqlalchemy-0.16 flask-whooshalchemy-0.55a0 flask-wtf-0.8.4 flup-1.0.2 pydocumentdb-1.6.1 pytz-2013b0 speaklater-1.3
sqlalchemy-0.7.9 sqlalchemy-migrate-0.7.2

NOTE

After successful installation, the output window displays the following:

In rare cases, you might see a failure in the output window. If this happens, check if the error is related to cleanup.
Sometimes the cleanup fails, but the installation will still be successful (scroll up in the output window to verify this).
You can check your installation by Verifying the virtual environment. If the installation failed but the verification is
successful, it's OK to continue.

Let's make sure that everything is installed correctly.

1. Build the solution by pressing Ctrl+Shift+B.
2. Once the build succeeds, start the website by pressing F5. This launches the Flask development server and

starts your web browser. You should see the following page.

Create database, collection, and document definitions

from flask.ext.wtf import Form
from wtforms import RadioField

class VoteForm(Form):
 deploy_preference = RadioField('Deployment Preference', choices=[
 ('Web Site', 'Web Site'),
 ('Cloud Service', 'Cloud Service'),
 ('Virtual Machine', 'Virtual Machine')], default='Web Site')

Add the required imports to views.py

Create database, collection, and document

3. Stop debugging the website by pressing Shift+F5 in Visual Studio.

Now let's create your voting application by adding new files and updating others.

1. In Solution Explorer, right-click the tutorial project, click Add, and then click New Item. Select Empty Python
File and name the file forms.py.

2. Add the following code to the forms.py file, and then save the file.

1. In Solution Explorer, expand the tutorial folder, and open the views.py file.

from forms import VoteForm
import config
import pydocumentdb.document_client as document_client

2. Add the following import statements to the top of the views.py file, then save the file. These import
Cosmos DB's PythonSDK and the Flask packages.

Still in views.py, add the following code to the end of the file. This takes care of creating the database used by
the form. Do not delete any of the existing code in views.py. Simply append this to the end.

@app.route('/create')
def create():
 """Renders the contact page."""
 client = document_client.DocumentClient(config.DOCUMENTDB_HOST, {'masterKey': config.DOCUMENTDB_KEY})

 # Attempt to delete the database. This allows this to be used to recreate as well as create
 try:
 db = next((data for data in client.ReadDatabases() if data['id'] == config.DOCUMENTDB_DATABASE))
 client.DeleteDatabase(db['_self'])
 except:
 pass

 # Create database
 db = client.CreateDatabase({ 'id': config.DOCUMENTDB_DATABASE })

 # Create collection
 collection = client.CreateCollection(db['_self'],{ 'id': config.DOCUMENTDB_COLLECTION })

 # Create document
 document = client.CreateDocument(collection['_self'],
 { 'id': config.DOCUMENTDB_DOCUMENT,
 'Web Site': 0,
 'Cloud Service': 0,
 'Virtual Machine': 0,
 'name': config.DOCUMENTDB_DOCUMENT
 })

 return render_template(
 'create.html',
 title='Create Page',
 year=datetime.now().year,
 message='You just created a new database, collection, and document. Your old votes have been deleted')

TIP

Read database, collection, document, and submit form

The CreateCollection method takes an optional RequestOptions as the third parameter. This can be used to specify the
Offer Type for the collection. If no offerType value is supplied, then the collection will be created using the default Offer Type.
For more information on Cosmos DB Offer Types, see Performance levels in Azure Cosmos DB.

Still in views.py, add the following code to the end of the file. This takes care of setting up the form, reading
the database, collection, and document. Do not delete any of the existing code in views.py. Simply append this
to the end.

@app.route('/vote', methods=['GET', 'POST'])
def vote():
 form = VoteForm()
 replaced_document ={}
 if form.validate_on_submit(): # is user submitted vote
 client = document_client.DocumentClient(config.DOCUMENTDB_HOST, {'masterKey': config.DOCUMENTDB_KEY})

 # Read databases and take first since id should not be duplicated.
 db = next((data for data in client.ReadDatabases() if data['id'] == config.DOCUMENTDB_DATABASE))

 # Read collections and take first since id should not be duplicated.
 coll = next((coll for coll in client.ReadCollections(db['_self']) if coll['id'] == config.DOCUMENTDB_COLLECTION))

 # Read documents and take first since id should not be duplicated.
 doc = next((doc for doc in client.ReadDocuments(coll['_self']) if doc['id'] == config.DOCUMENTDB_DOCUMENT))

 # Take the data from the deploy_preference and increment our database
 doc[form.deploy_preference.data] = doc[form.deploy_preference.data] + 1
 replaced_document = client.ReplaceDocument(doc['_self'], doc)

 # Create a model to pass to results.html
 class VoteObject:
 choices = dict()
 total_votes = 0

 vote_object = VoteObject()
 vote_object.choices = {
 "Web Site" : doc['Web Site'],
 "Cloud Service" : doc['Cloud Service'],
 "Virtual Machine" : doc['Virtual Machine']
 }
 vote_object.total_votes = sum(vote_object.choices.values())

 return render_template(
 'results.html',
 year=datetime.now().year,
 vote_object = vote_object)

 else :
 return render_template(
 'vote.html',
 title = 'Vote',
 year=datetime.now().year,
 form = form)

Create the HTML files

1. In Solution Explorer, in the tutorial folder, right click the templates folder, click Add, and then click New Item.
2. Select HTML Page, and then in the name box type create.html.
3. Repeat steps 1 and 2 to create two additional HTML files: results.html and vote.html.

{% extends "layout.html" %}
{% block content %}
<h2>{{ title }}.</h2>
<h3>{{ message }}</h3>
<p>Vote »</p>
{% endblock %}

4. Add the following code to create.html in the <body> element. It displays a message stating that we created
a new database, collection, and document.

5. Add the following code to results.html in the <body > element. It displays the results of the poll.

Add a configuration file and change the __init__.py

{% extends "layout.html" %}
{% block content %}
<h2>Results of the vote</h2>

{% for choice in vote_object.choices %}
<div class="row">
 <div class="col-sm-5">{{choice}}</div>
 <div class="col-sm-5">
 <div class="progress">
 <div class="progress-bar" role="progressbar" aria-valuenow="{{vote_object.choices[choice]}}" aria-valuemin="0" aria-
valuemax="{{vote_object.total_votes}}" style="width: {{(vote_object.choices[choice]/vote_object.total_votes)*100}}%;">
 {{vote_object.choices[choice]}}
 </div>
 </div>
 </div>
</div>
{% endfor %}

Vote again?
{% endblock %}

{% extends "layout.html" %}
{% block content %}
<h2>What is your favorite way to host an application on Azure?</h2>
<form action="" method="post" name="vote">
 {{form.hidden_tag()}}
 {{form.deploy_preference}}
 <button class="btn btn-primary" type="submit">Vote</button>
</form>
{% endblock %}

{% extends "layout.html" %}
{% block content %}
<h2>Python + Azure Cosmos DB Voting Application.</h2>
<h3>This is a sample DocumentDB voting application using PyDocumentDB</h3>
<p>Create/Clear the Voting Database »</p>
<p>Vote »</p>
{% endblock %}

6. Add the following code to vote.html in the <body > element. It displays the poll and accepts the votes. On
registering the votes, the control is passed over to views.py where we will recognize the vote cast and
append the document accordingly.

7. In the templates folder, replace the contents of index.html with the following. This serves as the landing
page for your application.

1. In Solution Explorer, right-click the tutorial project, click Add, click New Item, select Empty Python File, and
then name the file config.py. This config file is required by forms in Flask. You can use it to provide a secret
key as well. This key is not needed for this tutorial though.

2. Add the following code to config.py, you'll need to alter the values of DOCUMENTDB_HOST and
DOCUMENTDB_KEY in the next step.

Step 4: Run your web application locally

CSRF_ENABLED = True
SECRET_KEY = 'you-will-never-guess'

DOCUMENTDB_HOST = 'https://YOUR_DOCUMENTDB_NAME.documents.azure.com:443/'
DOCUMENTDB_KEY = 'YOUR_SECRET_KEY_ENDING_IN_=='

DOCUMENTDB_DATABASE = 'voting database'
DOCUMENTDB_COLLECTION = 'voting collection'
DOCUMENTDB_DOCUMENT = 'voting document'

3. In the Azure portal, navigate to the Keys blade by clicking Browse, Azure Cosmos DB Accounts, double-click
the name of the account to use, and then click the Keys button in the Essentials area. In the Keys blade, copy
the URI value and paste it into the config.py file, as the value for the DOCUMENTDB_HOST property.

4. Back in the Azure portal, in the Keys blade, copy the value of the Primary Key or the Secondary Key, and
paste it into the config.py file, as the value for the DOCUMENTDB_KEY property.

 app.config.from_object('config')

from flask import Flask
app = Flask(__name__)
app.config.from_object('config')
import tutorial.views

5. In the __init__.py file, add the following line.

So that the content of the file is:

6. After adding all the files, Solution Explorer should look like this:

1. Build the solution by pressing Ctrl+Shift+B.
2. Once the build succeeds, start the website by pressing F5. You should see the following on your screen.

https://portal.azure.com/

3. Click Create/Clear the Voting Database to generate the database.

4. Then, click Vote and select your option.

5. For every vote you cast, it increments the appropriate counter.

Step 5: Deploy the web application to Azure Websites

6. Stop debugging the project by pressing Shift+F5.

Now that you have the complete application working correctly against Cosmos DB, we're going to deploy this to
Azure Websites.

1. Right-click the project in Solution Explorer (make sure you're not still running it locally) and select Publish.

2. In the Publish Web window, select Microsoft Azure Web Apps, and then click Next.

3. In the Microsoft Azure Web Apps Window window, click New.

4. In the Create site on Microsoft Azure window, enter a Web app name, App Service plan, Resource
group, and Region, then click Create.

Troubleshooting

6. In a few seconds, Visual Studio will finish publishing your web application and launch a browser where you can
see your handy work running in Azure!

5. In the Publish Web window, click Publish.

If this is the first Python app you've run on your computer, ensure that the following folders (or the equivalent
installation locations) are included in your PATH variable:

C:\Python27\site-packages;C:\Python27\;C:\Python27\Scripts;

Next steps

If you receive an error on your vote page, and you named your project something other than tutorial, make sure
that __init__.py references the correct project name in the line: import tutorial.view .

Congratulations! You have just completed your first Python web application using Cosmos DB and published it to
Azure Websites.

We update and improve this topic frequently based on your feedback. Once you've completed the tutorial, please
using the voting buttons at the top and bottom of this page, and be sure to include your feedback on what
improvements you want to see made. If you'd like us to contact you directly, feel free to include your email
address in your comments.

To add additional functionality to your web application, review the APIs available in the DocumentDB Python SDK.

For more information about Azure, Visual Studio, and Python, see the Python Developer Center.

For additional Python Flask tutorials, see The Flask Mega-Tutorial, Part I: Hello, World!.

https://azure.microsoft.com/develop/python/
http://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world

DocumentDB .NET examples
5/30/2017 • 3 min to read • Edit Online

NOTE

Database examples

TASK API REFERENCE

Create a database DocumentClient.CreateDatabaseAsync

Query a database DocumentQueryable.CreateDatabaseQuery

Read a database by Id DocumentClient.ReadDatabaseAsync

Read all the databases DocumentClient.ReadDatabaseFeedAsync

Delete a database DocumentClient.DeleteDatabaseAsync

Collection examples

Latest sample solutions that perform CRUD operations and other common operations on Azure Cosmos DB
resources are included in the azure-documentdb-dotnet GitHub repository. This article provides:

Links to the tasks in each of the example C# project files.
Links to the related API reference content.

Prerequisites

1. You need an Azure account to use these examples:

2. You also need the Microsoft.Azure.DocumentDB NuGet package.

You can open an Azure account for free: You get credits you can use to try out paid Azure services, and
even after they're used up you can keep the account and use free Azure services, such as Websites. Your
credit card will never be charged, unless you explicitly change your settings and ask to be charged.

You can activate Visual Studio subscriber benefits: Your Visual Studio subscription gives you
credits every month that you can use for paid Azure services.

Each sample is self-contained, it sets itself up and cleans up after itself. As such, the samples issue multiple calls to
CreateDocumentCollectionAsync(). Each time this is done your subscription is billed for 1 hour of usage per the performance
tier of the collection being created.

The RunDatabaseDemo method of the sample of the DatabaseManagement project shows how to perform the
following tasks.

The RunCollectionDemo method of the sample CollectionManagement project shows how to do the following
tasks.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/documentdb-dotnet-samples.md
https://github.com/Azure/azure-documentdb-dotnet/tree/master/samples/code-samples
https://azure.microsoft.com/pricing/free-trial/
https://azure.microsoft.com/pricing/member-offers/msdn-benefits-details/
http://www.nuget.org/packages/Microsoft.Azure.DocumentDB/
https://github.com/Azure/azure-documentdb-dotnet/blob/530c8d9cf7c99df7300246da05206c57ce654233/samples/code-samples/DatabaseManagement/Program.cs#L72-L121
https://github.com/Azure/azure-documentdb-dotnet/blob/530c8d9cf7c99df7300246da05206c57ce654233/samples/code-samples/DatabaseManagement/Program.cs#L90
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createdatabaseasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/530c8d9cf7c99df7300246da05206c57ce654233/samples/code-samples/DatabaseManagement/Program.cs#L81
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdatabasequery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/530c8d9cf7c99df7300246da05206c57ce654233/samples/code-samples/DatabaseManagement/Program.cs#L102
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.readdatabaseasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/530c8d9cf7c99df7300246da05206c57ce654233/samples/code-samples/DatabaseManagement/Program.cs#L108-L113
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.readdatabasefeedasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/530c8d9cf7c99df7300246da05206c57ce654233/samples/code-samples/DatabaseManagement/Program.cs#L118
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.deletedatabaseasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/530c8d9cf7c99df7300246da05206c57ce654233/samples/code-samples/CollectionManagement/Program.cs#L96-L185

TASK API REFERENCE

Create a collection DocumentClient.CreateDocumentCollectionAsync

Get configured performance of a collection DocumentQueryable.CreateOfferQuery

Change configured performance of a collection DocumentClient.ReplaceOfferAsync

Get a collection by Id DocumentClient.ReadDocumentCollectionAsync

Read all the collections in a database DocumentClient.ReadDocumentCollectionFeedAsync

Delete a collection DocumentClient.DeleteDocumentCollectionAsync

Document examples

TASK API REFERENCE

Create a document DocumentClient.CreateDocumentAsync

Read a document by Id DocumentClient.ReadDocumentAsync

Read all the documents in a collection DocumentClient.ReadDocumentFeedAsync

Query for documents DocumentClient.CreateDocumentQuery

Replace a document DocumentClient.ReplaceDocumentAsync

Upsert a document DocumentClient.UpsertDocumentAsync

Delete document DocumentClient.DeleteDocumentAsync

Working with .NET dynamic objects DocumentClient.CreateDocumentAsync
DocumentClient.ReadDocumentAsync
DocumentClient.ReplaceDocumentAsync

Replace document with conditional ETag check DocumentClient.AccessCondition
Documents.Client.AccessConditionType

Read document only if document has changed DocumentClient.AccessCondition
Documents.Client.AccessConditionType

Indexing examples

TASK API REFERENCE

Exclude a document from the index IndexingDirective.Exclude

The RunDocumentsDemo method of the sample DocumentManagement project shows how to do the following
tasks.

The RunIndexDemo method of the sample IndexManagement project shows how to perform the following tasks.

https://github.com/Azure/azure-documentdb-dotnet/blob/89670bc8aefd9bdd932db7f9b6d2fcb9b6acf35e/samples/code-samples/CollectionManagement/Program.cs#L101
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createdocumentcollectionasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/95521ff51ade486bb899d6913880995beaff58ce/samples/code-samples/CollectionManagement/Program.cs#L198
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createofferquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/95521ff51ade486bb899d6913880995beaff58ce/samples/code-samples/CollectionManagement/Program.cs#L207
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.replaceofferasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/89670bc8aefd9bdd932db7f9b6d2fcb9b6acf35e/samples/code-samples/CollectionManagement/Program.cs#L153
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.readdocumentcollectionasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/89670bc8aefd9bdd932db7f9b6d2fcb9b6acf35e/samples/code-samples/CollectionManagement/Program.cs#L162
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.readdocumentcollectionfeedasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/89670bc8aefd9bdd932db7f9b6d2fcb9b6acf35e/samples/code-samples/CollectionManagement/Program.cs#L175
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.deletedocumentcollectionasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/f374cc601f4cf08d11c88f0c3fa7dcefaf7ecfe8/samples/code-samples/DocumentManagement/Program.cs#L97-L102
https://github.com/Azure/azure-documentdb-dotnet/blob/f374cc601f4cf08d11c88f0c3fa7dcefaf7ecfe8/samples/code-samples/DocumentManagement/Program.cs#L198
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createdocumentasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/f374cc601f4cf08d11c88f0c3fa7dcefaf7ecfe8/samples/code-samples/DocumentManagement/Program.cs#L211
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.readdocumentasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/f374cc601f4cf08d11c88f0c3fa7dcefaf7ecfe8/samples/code-samples/DocumentManagement/Program.cs#L227
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.readdocumentfeedasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/f374cc601f4cf08d11c88f0c3fa7dcefaf7ecfe8/samples/code-samples/DocumentManagement/Program.cs#L248-L251
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/f374cc601f4cf08d11c88f0c3fa7dcefaf7ecfe8/samples/code-samples/DocumentManagement/Program.cs#L263
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.replacedocumentasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/f374cc601f4cf08d11c88f0c3fa7dcefaf7ecfe8/samples/code-samples/DocumentManagement/Program.cs#L300
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.upsertdocumentasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/f374cc601f4cf08d11c88f0c3fa7dcefaf7ecfe8/samples/code-samples/DocumentManagement/Program.cs#L322
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.deletedocumentasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/f374cc601f4cf08d11c88f0c3fa7dcefaf7ecfe8/samples/code-samples/DocumentManagement/Program.cs#L331-L380
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createdocumentasync.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.readdocumentasync.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.replacedocumentasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/f2b11dec45a195ddeed333560ebba63055f5ed09/samples/code-samples/DocumentManagement/Program.cs#L398-L440
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.accesscondition.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.accessconditiontype.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/f2b11dec45a195ddeed333560ebba63055f5ed09/samples/code-samples/DocumentManagement/Program.cs#L442-L470
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.accesscondition.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.accessconditiontype.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/ea8c977b9c2f37ddc2894911ec239907ab60e40a/samples/code-samples/IndexManagement/Program.cs#L89-L117
https://github.com/Azure/azure-documentdb-dotnet/blob/2e9a48b6a446b47dd6182606c8608d439b88b683/samples/code-samples/IndexManagement/Program.cs#L125-L163
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.indexingdirective.aspx

Use manual (instead of automatic) indexing IndexingPolicy.Automatic

Use lazy (instead of consistent) indexing IndexingMode.Lazy

Exclude specified document paths from the index IndexingPolicy.ExcludedPaths

Force a range scan operation on a hash indexed path FeedOptions.EnableScanInQuery

Use range indexes on strings IndexingPolicy.IncludedPaths
RangeIndex

Perform an index transform ReplaceDocumentCollectionAsync

TASK API REFERENCE

Geospatial examples

TASK API REFERENCE

Enable geospatial indexing on a new collection IndexingPolicy
IndexKind.Spatial
DataType.Point

Insert documents with GeoJSON points DocumentClient.CreateDocumentAsync
DataType.Point

Find points within a specified distance ST_DISTANCE
[GeometryOperationExtensions.Distance]
(https://msdn.microsoft.com/library/azure/microsoft.azure.doc
uments.spatial.geometryoperationextensions.distance.aspx#M:
Microsoft.Azure.Documents.Spatial.GeometryOperationExtensi
ons.Distance(Microsoft.Azure.Documents.Spatial.Geometry,Mi
crosoft.Azure.Documents.Spatial.Geometry)

Find points within a polygon ST_WITHIN
[GeometryOperationExtensions.Within]
(https://msdn.microsoft.com/library/azure/microsoft.azure.doc
uments.spatial.geometryoperationextensions.within.aspx#M:M
icrosoft.Azure.Documents.Spatial.GeometryOperationExtensio
ns.Within(Microsoft.Azure.Documents.Spatial.Geometry,Micro
soft.Azure.Documents.Spatial.Geometry) and
Polygon

Enable geospatial indexing on an existing collection DocumentClient.ReplaceDocumentCollectionAsync
DocumentCollection.IndexingPolicy

Validate point and polygon data ST_ISVALID
ST_ISVALIDDETAILED
GeometryOperationExtensions.IsValid
GeometryOperationExtensions.IsValidDetailed

For more information about indexing, see DocumentDB indexing policies.

The geospatial sample file, azure-documentdb-dotnet/samples/code-samples/Geospatial/Program.cs, shows how
to do the following tasks.

For more information about working with Geospatial data, see Working with Geospatial data in Azure Cosmos DB.

https://github.com/Azure/azure-documentdb-dotnet/blob/2e9a48b6a446b47dd6182606c8608d439b88b683/samples/code-samples/IndexManagement/Program.cs#L171-L209
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.indexingpolicy.automatic.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/2e9a48b6a446b47dd6182606c8608d439b88b683/samples/code-samples/IndexManagement/Program.cs#L221-L238
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.indexingpolicy.indexingmode.aspx#P:Microsoft.Azure.Documents.IndexingPolicy.IndexingMode
https://github.com/Azure/azure-documentdb-dotnet/blob/2e9a48b6a446b47dd6182606c8608d439b88b683/samples/code-samples/IndexManagement/Program.cs#L248-L297
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.indexingpolicy.excludedpaths.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/2e9a48b6a446b47dd6182606c8608d439b88b683/samples/code-samples/IndexManagement/Program.cs#L305-L340
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.feedoptions.enablescaninquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/2e9a48b6a446b47dd6182606c8608d439b88b683/samples/code-samples/IndexManagement/Program.cs#L342-L405
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.indexingpolicy.includedpaths.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.rangeindex.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/2e9a48b6a446b47dd6182606c8608d439b88b683/samples/code-samples/IndexManagement/Program.cs#L407-L464
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.replacedocumentcollectionasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/master/samples/code-samples/Geospatial/Program.cs
https://github.com/Azure/azure-documentdb-dotnet/blob/7b09c085817e850d683bc59bd864c2f6b552d275/samples/code-samples/Geospatial/Program.cs#L45-L63
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.indexingpolicy.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.indexkind.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.datatype.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/7b09c085817e850d683bc59bd864c2f6b552d275/samples/code-samples/Geospatial/Program.cs#L116-L126
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createdocumentasync.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.datatype.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/7b09c085817e850d683bc59bd864c2f6b552d275/samples/code-samples/Geospatial/Program.cs#L152-L194
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.spatial.geometryoperationextensions.distance.aspx#M:Microsoft.Azure.Documents.Spatial.GeometryOperationExtensions.Distance(Microsoft.Azure.Documents.Spatial.Geometry,Microsoft.Azure.Documents.Spatial.Geometry
https://github.com/Azure/azure-documentdb-dotnet/blob/7b09c085817e850d683bc59bd864c2f6b552d275/samples/code-samples/Geospatial/Program.cs#L196-L221
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.spatial.geometryoperationextensions.within.aspx#M:Microsoft.Azure.Documents.Spatial.GeometryOperationExtensions.Within(Microsoft.Azure.Documents.Spatial.Geometry,Microsoft.Azure.Documents.Spatial.Geometry
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.spatial.polygon.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/7b09c085817e850d683bc59bd864c2f6b552d275/samples/code-samples/Geospatial/Program.cs#L312-L336
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.replacedocumentcollectionasync.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.documentcollection.indexingpolicy.aspx#P:Microsoft.Azure.Documents.DocumentCollection.IndexingPolicy
https://github.com/Azure/azure-documentdb-dotnet/blob/7b09c085817e850d683bc59bd864c2f6b552d275/samples/code-samples/Geospatial/Program.cs#L223-L265
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.spatial.geometryoperationextensions.isvalid.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.spatial.geometryoperationextensions.isvaliddetailed.aspx

Query examples

TASK API REFERENCE

Query for all documents DocumentQueryable.CreateDocumentQuery

Query for equality using == DocumentQueryable.CreateDocumentQuery

Query for inequality using != and NOT DocumentQueryable.CreateDocumentQuery

Query using range operators like >, <, >=, <= DocumentQueryable.CreateDocumentQuery

Query using range operators against strings DocumentQueryable.CreateDocumentQuery

Query with Order by DocumentQueryable.CreateDocumentQuery

Query with Aggregate Functions DocumentQueryable.CreateDocumentQuery

Work with subdocuments DocumentQueryable.CreateDocumentQuery

Query with intra-document Joins DocumentQueryable.CreateDocumentQuery

Query with string, math and array operators DocumentQueryable.CreateDocumentQuery

Query with parameterized SQL using SqlQuerySpec DocumentQueryable.CreateDocumentQuery
SqlQuerySpec

Query with explict paging DocumentQueryable.CreateDocumentQuery

Query partitioned collections in parallel DocumentQueryable.CreateDocumentQuery

Query with Order by for partitioned collections DocumentQueryable.CreateDocumentQuery

Server-side programming examples

TASK API REFERENCE

Create a stored procedure DocumentClient.CreateStoredProcedureAsync

Execute a stored procedure DocumentClient.ExecuteStoredProcedureAsync

Read a document feed for a stored procedure DocumentClient.ReadDocumentFeedAsync

Create a stored procedure with Order by DocumentClient.CreateStoredProcedureAsync

The query document file, azure-documentdb-dotnet/samples/code-samples/Queries/Program.cs, shows how to
do each of the following tasks using the SQL query grammar, the LINQ provider with query, and with Lambda.

For more information about writing queries, see SQL query within DocumentDB.

The server-side programming file, azure-documentdb-dotnet/samples/code-
samples/ServerSideScripts/Program.cs, shows how to do the following tasks.

https://github.com/Azure/azure-documentdb-dotnet/blob/master/samples/code-samples/Queries/Program.cs
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Queries/Program.cs#L122-L138
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Queries/Program.cs#L251-L268
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Queries/Program.cs#L270-L276
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Queries/Program.cs#L305-L325
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Queries/Program.cs#L337-L346
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Queries/Program.cs#L370-L392
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://github.com/arramac/azure-documentdb-dotnet/blob/198bed2865e54af6681fc96b3ca253d31b113b9a/samples/code-samples/Queries/Program.cs#L451-L455
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Queries/Program.cs#L394-L419
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Queries/Program.cs#L421-L435
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Queries/Program.cs#L527-L552
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Queries/Program.cs#L140-L174
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.sqlqueryspec.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/Queries/Program.cs#L554-L576
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/master/samples/code-samples/Queries/Program.cs#L664-L734
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/master/samples/code-samples/Queries/Program.cs#L737-L810
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createdocumentquery.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/master/samples/code-samples/ServerSideScripts/Program.cs
https://github.com/Azure/azure-documentdb-net/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/ServerSideScripts/Program.cs#L112
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createstoredprocedureasync.aspx
https://github.com/Azure/azure-documentdb-net/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/ServerSideScripts/Program.cs#L127
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.executestoredprocedureasync.aspx
https://github.com/Azure/azure-documentdb-net/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/ServerSideScripts/Program.cs#L194
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.readdocumentfeedasync.aspx
https://github.com/Azure/azure-documentdb-net/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/ServerSideScripts/Program.cs#L219
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createstoredprocedureasync.aspx

Create a pre-trigger DocumentClient.CreateTriggerAsync

Create a post-trigger DocumentClient.CreateTriggerAsync

Create a User Defined Function (UDF) DocumentClient.CreateUserDefinedFunctionAsync

TASK API REFERENCE

User management examples

TASK API REFERENCE

Create a user DocumentClient.CreateUserAsync

Set permissions on a collection or document DocumentClient.CreatePermissionAsync

Get a list of a user's permissions DocumentClient.ReadUserAsync
DocumentClient.ReadPermissionFeedAsync

For more information about server-side programming, see Azure Cosmos DB server-side programming: Stored
procedures, database triggers, and UDFs.

The user management file, azure-documentdb-dotnet/samples/code-samples/UserManagement/Program.cs,
shows how to do the following tasks.

https://github.com/Azure/azure-documentdb-net/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/ServerSideScripts/Program.cs#L264
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createtriggerasync.aspx
https://github.com/Azure/azure-documentdb-net/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/ServerSideScripts/Program.cs#L329
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createtriggerasync.aspx
https://github.com/Azure/azure-documentdb-net/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/ServerSideScripts/Program.cs#L389
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createuserdefinedfunctionasync.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/master/samples/code-samples/UserManagement/Program.cs
https://github.com/Azure/azure-documentdb-net/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/UserManagement/Program.cs#L81
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createuserasync.aspx
https://github.com/Azure/azure-documentdb-net/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/UserManagement/Program.cs#L85
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createpermissionasync.aspx
https://github.com/Azure/azure-documentdb-net/blob/d17c0ca5be739a359d105cf4112443f65ca2cb72/samples/code-samples/UserManagement/Program.cs#L218
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.readuserasync.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.readpermissionfeedasync.aspx

Azure Cosmos DB Node.js examples
5/30/2017 • 2 min to read • Edit Online

Database examples

TASK API REFERENCE

Create a database DocumentClient.createDatabase

Query an account for a database DocumentClient.queryDatabases

Read a database by Id DocumentClient.readDatabase

List databases for an account DocumentClient.readDatabases

Delete a database DocumentClient.deleteDatabase

Collection examples

TASK API REFERENCE

Create a collection DocumentClient.createCollection

Sample solutions that perform CRUD operations and other common operations on Azure Cosmos DB resources
are included in the azure-documentdb-nodejs GitHub repository. This article provides:

Links to the tasks in each of the Node.js example project files.
Links to the related API reference content.

Prerequisites

1. You need an Azure account to use these Node.js examples:

NOTE

You can open an Azure account for free: You get credits you can use to try out paid Azure services, and
even after they're used up you can keep the account and use free Azure services, such as Websites. Your
credit card will never be charged, unless you explicitly change your settings and ask to be charged.

You can activate Visual Studio subscriber benefits: Your Visual Studio subscription gives you
credits every month that you can use for paid Azure services.

2. You also need the Node.js SDK.

Each sample is self-contained, it sets itself up and cleans up after itself. As such, the samples issue multiple calls to
DocumentClient.createCollection. Each time this is done your subscription will be billed for 1 hour of usage per the
performance tier of the collection being created.

The app.js file of the DatabaseManagement project shows how to perform the following tasks.

The app.js file of the CollectionManagement project shows how to perform the following tasks.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/documentdb-nodejs-samples.md
https://github.com/Azure/azure-documentdb-node/tree/master/samples
https://azure.microsoft.com/pricing/free-trial/
https://azure.microsoft.com/pricing/member-offers/msdn-benefits-details/
http://azure.github.io/azure-documentdb-node/DocumentClient.html#createCollection
https://github.com/Azure/azure-documentdb-node/blob/master/samples/DatabaseManagement/app.js
https://github.com/Azure/azure-documentdb-node/tree/master/samples/DatabaseManagement
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.DatabaseManagement/app.js#L121-L131
http://azure.github.io/azure-documentdb-node/DocumentClient.html#createDatabase
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.DatabaseManagement/app.js#L146-L171
http://azure.github.io/azure-documentdb-node/DocumentClient.html#queryDatabases
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.DatabaseManagement/app.js#L89-L99
http://azure.github.io/azure-documentdb-node/DocumentClient.html#readDatabase
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.DatabaseManagement/app.js#L111-L119
http://azure.github.io/azure-documentdb-node/DocumentClient.html#readDatabases
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.DatabaseManagement/app.js#L133-L144
http://azure.github.io/azure-documentdb-node/DocumentClient.html#deleteDatabase
https://github.com/Azure/azure-documentdb-node/blob/master/samples/CollectionManagement/app.js
https://github.com/Azure/azure-documentdb-node/tree/master/samples/CollectionManagement
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.CollectionManagement/app.js#L97-L118
http://azure.github.io/azure-documentdb-node/DocumentClient.html#createCollection

Read a list of all collections in a database DocumentClient.readCollections

Get a collection by _self DocumentClient.readCollection

Get a collection by Id DocumentClient.readCollection

Get performance tier of a collection DocumentQueryable.queryOffers

Change performance tier of a collection DocumentClient.replaceOffer

Delete a collection DocumentClient.deleteCollection

TASK API REFERENCE

Document examples

TASK API REFERENCE

Create documents DocumentClient.createDocument

Read the document feed for a collection DocumentClient.readDocument

Read a document by ID DocumentClient.readDocument

Read document only if document has changed DocumentClient.readDocument
RequestOptions.accessCondition

Query for documents DocumentClient.queryDocuments

Replace a document DocumentClient.replaceDocument

Replace document with conditional ETag check DocumentClient.replaceDocument
RequestOptions.accessCondition

Delete a document DocumentClient.deleteDocument

Indexing examples

TASK API REFERENCE

Create a collection with default indexing DocumentClient.createCollection

Manually index a specific document RequestOptions.indexingDirective: 'include'

Manually exclude a specific document from the index RequestOptions.indexingDirective: 'exclude'

Use lazy indexing for bulk import or read heavy collections IndexingMode.Lazy

The app.js file of the DocumentManagement project shows how to perform the following tasks.

The app.js file of the IndexManagement project shows how to perform the following tasks.

https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.CollectionManagement/app.js#L120-L130
http://azure.github.io/azure-documentdb-node/DocumentClient.html#readCollections
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.CollectionManagement/app.js#L132-L141
http://azure.github.io/azure-documentdb-node/DocumentClient.html#readCollection
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.CollectionManagement/app.js#L143-L156
http://azure.github.io/azure-documentdb-node/DocumentClient.html#readCollection
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.CollectionManagement/app.js#L158-L186
http://azure.github.io/azure-documentdb-node/DocumentClient.html#queryOffers
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.CollectionManagement/app.js#L188-L202
http://azure.github.io/azure-documentdb-node/DocumentClient.html#replaceOffer
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.CollectionManagement/app.js#L204-L215
http://azure.github.io/azure-documentdb-node/DocumentClient.html#deleteCollection
https://github.com/Azure/azure-documentdb-node/blob/master/samples/DocumentManagement/app.js
https://github.com/Azure/azure-documentdb-node/tree/master/samples/DocumentManagement
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.DocumentManagement/app.js#L153-L177
http://azure.github.io/azure-documentdb-node/DocumentClient.html#createDocument
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.DocumentManagement/app.js#L179-L189
http://azure.github.io/azure-documentdb-node/DocumentClient.html#readDocument
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.DocumentManagement/app.js#L191-L201
http://azure.github.io/azure-documentdb-node/DocumentClient.html#readDocument
https://github.com/Azure/azure-documentdb-node/blob/0778eadea7abb2af41e8c22a239dc872c584f421/samples/DocumentManagement/app.js#L79-L107
http://azure.github.io/azure-documentdb-node/DocumentClient.html#readDocument
http://azure.github.io/azure-documentdb-node/global.html#RequestOptions
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.DocumentManagement/app.js#L82-L110
http://azure.github.io/azure-documentdb-node/DocumentClient.html#queryDocuments
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.DocumentManagement/app.js#L112-L119
http://azure.github.io/azure-documentdb-node/DocumentClient.html#replaceDocument
https://github.com/Azure/azure-documentdb-node/blob/0778eadea7abb2af41e8c22a239dc872c584f421/samples/DocumentManagement/app.js#L147-L164
http://azure.github.io/azure-documentdb-node/DocumentClient.html#replaceDocument
http://azure.github.io/azure-documentdb-node/global.html#RequestOptions
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.DocumentManagement/app.js#L122-L133
http://azure.github.io/azure-documentdb-node/DocumentClient.html#deleteDocument
https://github.com/Azure/azure-documentdb-node/blob/master/samples/IndexManagement/app.js
https://github.com/Azure/azure-documentdb-node/tree/master/samples/IndexManagement
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.IndexManagement/app.js#L657-L701
http://azure.github.io/azure-documentdb-node/DocumentClient.html#createCollection
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.IndexManagement/app.js#L185-L238
http://azure.github.io/azure-documentdb-node/global.html#RequestOptions
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.IndexManagement/app.js#L120-L183
http://azure.github.io/azure-documentdb-node/global.html#RequestOptions
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.IndexManagement/app.js#L240-L269
http://azure.github.io/azure-documentdb-node/global.html#IndexingMode

Include specific paths of a document in indexing IndexingPolicy.IncludedPaths

Exclude certain paths from indexing IndexingPolicy.ExcludedPath

Allow a scan on a string path during a range operation FeedOptions.EnableScanInQuery

Create a range index on a string path IndexKind.Range, IndexingPolicy,
DocumentClient.queryDocument

Create a collection with default indexPolicy, then update this
online

DocumentClient.createCollection
DocumentClient.replaceCollection#replaceCollection

TASK API REFERENCE

Server-side programming examples

TASK API REFERENCE

Create a stored procedure DocumentClient.createStoredProcedure

Execute a stored procedure DocumentClient.executeStoredProcedure

Partitioning examples

TASK API REFERENCE

Use a HashPartitionResolver HashPartitionResolver

For more information about indexing, see Azure Cosmos DB indexing policies.

The app.js file of the ServerSideScripts project shows how to perform the following tasks.

For more information about server-side programming, see Azure Cosmos DB server-side programming: Stored
procedures, database triggers, and UDFs.

The app.js file of the Partitioning project shows how to perform the following tasks.

For more information about partitioning data in Azure Cosmos DB, see Partition and scale data in Azure Cosmos
DB.

https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.IndexManagement/app.js#L433-L444
http://azure.github.io/azure-documentdb-node/global.html#IndexingPolicy
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.IndexManagement/app.js#L427-L450
http://azure.github.io/azure-documentdb-node/global.html#IndexingPolicy
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.IndexManagement/app.js#L271-L347
http://azure.github.io/azure-documentdb-node/global.html#FeedOptions
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.IndexManagement/app.js#L349-L425
http://azure.github.io/azure-documentdb-node/global.html#IndexKind
http://azure.github.io/azure-documentdb-node/global.html#IndexingPolicy
http://azure.github.io/azure-documentdb-node/DocumentClient.html#queryDocument
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.IndexManagement/app.js#L519-L614
http://azure.github.io/azure-documentdb-node/DocumentClient.html#createCollection
http://azure.github.io/azure-documentdb-node/DocumentClient.html
https://github.com/Azure/azure-documentdb-node/blob/master/samples/ServerSideScripts/app.js
https://github.com/Azure/azure-documentdb-node/tree/master/samples/ServerSideScripts
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.ServerSideScripts/app.js#L44-L71
http://azure.github.io/azure-documentdb-node/DocumentClient.html#createStoredProcedure
https://github.com/Azure/azure-documentdb-node/blob/ef53e5f6707a5dc45920fb6ad54d9c7e008a6c18/samples/DocumentDB.Samples.ServerSideScripts/app.js#L73-L90
http://azure.github.io/azure-documentdb-node/DocumentClient.html#executeStoredProcedure
https://github.com/Azure/azure-documentdb-node/blob/master/samples/Partitioning/app.js
https://github.com/Azure/azure-documentdb-node/tree/master/samples/Partitioning
https://github.com/Azure/azure-documentdb-node/blob/ce0fc3c4e70b0279091a1e03620a668d93a14fc2/samples/Partitioning/app.js#L53-L103
http://azure.github.io/azure-documentdb-node/HashPartitionResolver.html

Azure Cosmos DB Python examples
5/30/2017 • 1 min to read • Edit Online

Database examples

TASK API REFERENCE

Create a database document_client.CreateDatabase

Query an account for a database document_client.QueryDatabases

Read a database by Id document_client.ReadDatabase

List databases for an account document_client.ReadDatabases

Delete a database document_client.DeleteDatabase

Collection examples

TASK API REFERENCE

Create a collection document_client.CreateCollection

Sample solutions that perform CRUD operations and other common operations on Azure Cosmos DB resources
are included in the azure-documentdb-python GitHub repository. This article provides:

Links to the tasks in each of the Python example project files.
Links to the related API reference content.

Prerequisites

1. You need an Azure account to use these Python examples:

NOTE

You can open an Azure account for free: You get credits you can use to try out paid Azure services, and
even after they're used up you can keep the account and use free Azure services, such as Websites. Your
credit card will never be charged, unless you explicitly change your settings and ask to be charged.

You can activate Visual Studio subscriber benefits: Your Visual Studio subscription gives you
credits every month that you can use for paid Azure services.

2. You also need the Python SDK.

Each sample is self-contained, it sets itself up and cleans up after itself. As such, the samples issue multiple calls to
document_client.CreateCollection. Each time this is done your subscription will be billed for 1 hour of usage per the
performance tier of the collection being created.

The Program.py file of the DatabaseManagement project shows how to perform the following tasks.

The Program.py file of the CollectionManagement project shows how to perform the following tasks.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/documentdb-python-samples.md
https://github.com/Azure/azure-documentdb-python/tree/master/samples
https://azure.microsoft.com/pricing/free-trial/
https://azure.microsoft.com/pricing/member-offers/msdn-benefits-details/
http://azure.github.io/azure-documentdb-python/api/pydocumentdb.document_client.html
https://github.com/Azure/azure-documentdb-python/tree/master/samples/DatabaseManagement/Program.py
https://github.com/Azure/azure-documentdb-python/tree/master/samples/DatabaseManagement
https://github.com/Azure/azure-documentdb-python/blob/d78170214467e3ab71ace1a7400f5a7fa5a7b5b0/samples/DatabaseManagement/Program.py#L65-L76
http://azure.github.io/azure-documentdb-python/api/pydocumentdb.document_client.html
https://github.com/Azure/azure-documentdb-python/blob/d78170214467e3ab71ace1a7400f5a7fa5a7b5b0/samples/DatabaseManagement/Program.py#L49-L62
http://azure.github.io/azure-documentdb-python/api/pydocumentdb.document_client.html
https://github.com/Azure/azure-documentdb-python/blob/d78170214467e3ab71ace1a7400f5a7fa5a7b5b0/samples/DatabaseManagement/Program.py#L79-L96
http://azure.github.io/azure-documentdb-python/api/pydocumentdb.document_client.html
https://github.com/Azure/azure-documentdb-python/blob/d78170214467e3ab71ace1a7400f5a7fa5a7b5b0/samples/DatabaseManagement/Program.py#L99-L110
http://azure.github.io/azure-documentdb-python/api/pydocumentdb.document_client.html
https://github.com/Azure/azure-documentdb-python/blob/d78170214467e3ab71ace1a7400f5a7fa5a7b5b0/samples/DatabaseManagement/Program.py#L113-L126
http://azure.github.io/azure-documentdb-python/api/pydocumentdb.document_client.html
https://github.com/Azure/azure-documentdb-python/tree/master/samples/CollectionManagement/Program.py
https://github.com/Azure/azure-documentdb-python/tree/master/samples/CollectionManagement
https://github.com/Azure/azure-documentdb-python/blob/d78170214467e3ab71ace1a7400f5a7fa5a7b5b0/samples/CollectionManagement/Program.py#L84-L135
http://azure.github.io/azure-documentdb-python/api/pydocumentdb.document_client.html#CreateCollection

Read a list of all collections in a database document_client.ListCollections

Get a collection by Id document_client.ReadCollection

Get performance tier of a collection DocumentQueryable.QueryOffers

Change performance tier of a collection document_client.ReplaceOffer

Delete a collection document_client.DeleteCollection

TASK API REFERENCE

https://github.com/Azure/azure-documentdb-python/blob/d78170214467e3ab71ace1a7400f5a7fa5a7b5b0/samples/CollectionManagement/Program.py#L198-L225
http://azure.github.io/azure-documentdb-python/api/pydocumentdb.document_client.html#CreateCollection
https://github.com/Azure/azure-documentdb-python/blob/d78170214467e3ab71ace1a7400f5a7fa5a7b5b0/samples/CollectionManagement/Program.py#L178-L195
http://azure.github.io/azure-documentdb-python/api/pydocumentdb.document_client.html#CreateCollection
https://github.com/Azure/azure-documentdb-python/blob/d78170214467e3ab71ace1a7400f5a7fa5a7b5b0/samples/CollectionManagement/Program.py#L139-L161
http://azure.github.io/azure-documentdb-python/api/pydocumentdb.document_client.html#CreateCollection
https://github.com/Azure/azure-documentdb-python/blob/d78170214467e3ab71ace1a7400f5a7fa5a7b5b0/samples/CollectionManagement/Program.py#L163-L175
http://azure.github.io/azure-documentdb-python/api/pydocumentdb.document_client.html#CreateCollection
https://github.com/Azure/azure-documentdb-python/blob/d78170214467e3ab71ace1a7400f5a7fa5a7b5b0/samples/CollectionManagement/Program.py#L212-L225
http://azure.github.io/azure-documentdb-python/api/pydocumentdb.document_client.html#CreateCollection

Azure Cosmos DB: DocumentDB API SQL query
cheat sheet PDF
6/9/2017 • 1 min to read • Edit Online

Download the Cosmos DB SQL query cheat sheet PDF

The Azure Cosmos DB: DocumentDB API SQL Query Cheat Sheet helps you quickly write queries for
DocumentDB API data by displaying common database queries, keywords, built-in functions, and operators in an
easy to print PDF reference sheet.

Cosmos DB supports relational, hierarchical, and spatial querying of JSON documents using SQL without specifying
a schema or secondary indexes. In addition to the standard ANSI-SQL keywords and operators, Cosmos DB
supports JavaScript user defined functions (UDFs), JavaScript operators, and a multitude of built-in functions.

Write your queries faster by downloading the SQL query cheat sheet and using it as a quick reference. The SQL
cheat sheet PDF shows common queries used to retrieve data from two example JSON documents. To keep it
nearby, you can print the single-sided SQL query cheat sheet in page letter size (8.5 x 11 in.).

Download the SQL cheat sheet here: Microsoft Azure Cosmos DB SQL cheat sheet

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/documentdb-sql-query-cheat-sheet.md
http://go.microsoft.com/fwlink/?LinkId=623215

More help with writing SQL queries

Release notes

For a walk through of the query options available in Cosmos DB, see Query Cosmos DB.
For the related reference documentation, see Cosmos DB SQL Query Language.

Updated on 7/29/2016 to include TOP.

https://msdn.microsoft.com/library/azure/dn782250.aspx

Community portal
5/30/2017 • 10 min to read • Edit Online

Community spotlight

documentdb-lumenize

DocumentDB Studio

DoQmentDB

TypeScript API

Swagger REST API for DocumentDB

fluent-plugin-documentdb

Let us promote your project! Show us the awesome project you're working on with Azure Cosmos DB, the next
generation of the DocumentDB stack, and we will help share your genius with the world. To submit your project,
send us an e-mail at: askcosmosdb@microsoft.com.

by Larry Maccherone

Aggregations (Group-by, Pivot-table, and N-dimensional Cube) and Time Series Transformations as Stored
Procedures in Azure Cosmos DB DocumentDB API.

Check it out on GitHub and npm.

by Ming Liu

A client management viewer/explorer for the Azure Cosmos DB DocumentDB API service.

Check it out on GitHub.

by Ariel Mashraki

DoQmentDB is a Node.js promise-based client, that provides a MongoDB-like layer on top of Azure Cosmos DB.

Check it out on GitHub and npm.

by Jelmer Cormont

A wrapper around the Node.js client written in TypeScript (works in plain JavaScript too). Supports async/await and
a simplified API.

Check it out on GitHub and npm.

by Howard Edidin

An Azure Cosmos DB DocumentDB REST API Swagger file that can be easily deployed as an API App.

Check it out on GitHub.

by Yoichi Kawasaki

fluent-plugin-documentdb is a Fluentd plugin for outputting to Azure Cosmos DB DocumentDB API.

Check it out on GitHub and rubygems.

Find more open source Azure Cosmos DB projects on GitHub.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/community.md
mailto:askcosmosdb@microsoft.com
https://github.com/lmaccherone/documentdb-lumenize
https://www.npmjs.com/package/lumenize
https://github.com/mingaliu/DocumentDBStudio
https://github.com/a8m/doqmentdb
https://www.npmjs.com/package/doqmentdb
https://github.com/jcormont/documentdb-typescript
https://www.npmjs.com/package/documentdb-typescript
https://github.com/HEDIDIN/DocumentDB-REST/tree/master/DocumentDBRestApi
https://github.com/yokawasa/fluent-plugin-documentdb
https://rubygems.org/gems/fluent-plugin-documentdb
https://github.com/search?p=4&q=documentdb&type=Repositories

News, blogs, and articles

Events and recordings
Recent and upcoming events

EVENT NAME SPEAKER LOCATION DATE HASHTAG

South Florida
Codecamp: NoSQL for
.NET developers in
under 10 minutes
with Azure
DocumentDB

Santosh Hari Davie, FL March 11, 2017 #sflcc

Orlando Codecamp:
NoSQL for .NET
developers in under
10 minutes with
Azure DocumentDB

Santosh Hari Sanford, FL April 8, 2017 #OrlandoCC

You can stay up-to-date with the latest Azure Cosmos DB news and features by following our blog.

Community posts:

A Journey to Social - by Matías Quaranta

Azure DocumentDB protocol support for MongoDB in Preview, my test with Sitecore - by Mathieu
Benoit

Going Social with DocumentDB - by Matías Quaranta

UWP, Azure App Services, and DocumentDB Soup: A photo-sharing app - by Eric Langland

Collecting logs in to Azure DocumentDB using fluent-plugin-documentdb - by Yoichi Kawasaki

DocumentDB revisited Part 1/2 – The theory - by Peter Mannerhult

What to love and hate about Azure’s DocumentDB - by George Saadeh

Azure DocumentDB Server-Side Scripting - by Robert Sheldon

DocumentDB as a data sink for Azure Stream Analytics - by Jan Hentschel

Azure Search Indexers – DocumentDB Queries (Spanish) - by Matthias Quaranta

Azure DocumentDB SQL query basics (Japanese) - by Atsushi Yokohama

Data Points - Aurelia Meets DocumentDB: A Matchmaker’s Journey - by Julie Lerman

Infrastructure as Code and Continuous Deployment of a Node.js + Azure DocumentDB Solution - by
Thiago Almedia

Why DocumentDb Makes Good Business Sense for Some Projects - by Samuel Uresin

Azure DocumentDB development moving forward – development of the Client class (1 of 2)
(Japanese) - by Atsushi Yokohama

Things you need to know when using Azure DocumentDB (Japanese) - by Atsushi Yokohama

Data Points - An Overview of Microsoft Azure DocumentDB - by Julie Lerman

Using DocumentDB With F# - by Jamie Dixon

Analysing Application Logs with DocumentDB - by Vincent-Philippe Lauzon

Azure DocumentDB – Point in time Backups - by Juan Carlos Sanchez

Do you have a blog post, code sample, or case-study you'd like to share? Let us know!

https://azure.microsoft.com/blog/tag/documentdb/
https://medium.com/@Ealsur/a-journey-to-social-c47636bf25c9#.an669sx41
https://alwaysupalwayson.blogspot.ca/2016/05/azure-documentdb-protocol-support-for.html
https://blogs.msdn.microsoft.com/mvpawardprogram/2016/03/15/going-social-with-documentdb/
https://blogs.windows.com/buildingapps/2016/03/17/uwp-azure-app-services-and-documentdb-soup-a-photo-sharing-app/
http://unofficialism.info/posts/collecting-logs-into-azure-documentdb-using-fluent-plugin-documentdb/
https://peterintheazuresky.wordpress.com/2016/02/19/documentdb-revisited-part-12-the-theory/
http://blog.falafel.com/4-what-to-love-and-hate-about-azures-documentdb/
https://www.simple-talk.com/cloud/cloud-data/azure-documentdb-server-side-scripting/
http://janatdevelopment.com/2015/12/11/documentdb-as-a-data-sink-for-azure-stream-analytics/?utm_source=twitterfeed&utm_medium=twitter
http://www.ealsur.com.ar/wp/index.php/2015/11/19/azure-search-indexers-documentdb-queries/
http://beachside.hatenablog.com/entry/2015/12/06/000045
https://msdn.microsoft.com/magazine/mt620011.aspx
http://www.talmeida.net/blog/2015/10/26/infrastructure-as-code-and-continuous-deployment-of-a-nodejs-azure-documentdb-solution
http://www.iquestllc.com/blogs/read/405/why-documentdb-makes-good-business-sense-for-some-projects
http://beachside.hatenablog.com/entry/2015/10/01/202734
http://beachside.hatenablog.com/entry/2015/10/01/202734
https://msdn.microsoft.com/magazine/mt147238.aspx
https://jamessdixon.wordpress.com/2014/12/30/using-documentdb-with-f/
http://vincentlauzon.com/2015/09/06/analysing-application-logs-with-documentdb/
http://softwarejuancarlos.com/2015/09/06/azure-documentdb-point-in-time-backups/
mailto:askcosmosdb@microsoft.com
http://www.fladotnet.com/codecamp/Agenda.aspx
https://twitter.com/_s_hari
https://twitter.com/search?q=%23sflcc&ref_src=twsrc%5Etfw
http://orlandocodecamp.com/Sessions/Details/20
https://twitter.com/_s_hari
https://twitter.com/hashtag/OrlandoCC?src=hash&ref_src=twsrc%5Etfw

Global Azure
Bootcamp: Serverless
computing in Azure
with Azure Functions
and DocumentDB

Josh Lane Atlanta, GA April 22, 2017 #GlobalAzure

NDC Olso 2017:
Azure DocumentDB -
The Best NoSQL
Database You're
Probably Not Using
(Yet)

Josh Lane Olso, Norway June 14, 2017 #ndcoslo

EVENT NAME SPEAKER LOCATION DATE HASHTAG

Previous events and recordings

EVENT NAME SPEAKER LOCATION DATE RECORDING

Ignite Australia: Hello
DocumentDB: Azure’s
blazing fast, planet-
scale NoSQL database

Andrew Liu Queensland, Australia Wednesday February
15, 2017

Forthcoming

Ignite Australia: A
Deep-Dive with Azure
DocumentDB:
Partitioning, Data
Modelling, and Geo
Replication

Andrew Liu Queensland, Australia February 16, 2017 Forthcoming

Wintellect webinar: An
Introduction to Azure
DocumentDB

Josh Lane Online January 12, 2017
1pm EST

Azure DocumentDB:
Your Cloud-powered,
Geo-scaled, NoSQL
Superweapon... Hiding
in Plain Sight

Connect(); // 2016 Kirill Gavrylyuk New York, NY November 16-18,
2016

Channel 9 Connect();
videos

Capital City .NET
Users Group

Santosh Hari Tallahassee, FL November 3, 2016 n/a

Ignite 2016 DocumentDB team Atlanta, GA September 26-30,
2016

Slidedeck

DevTeach Ken Cenerelli Montreal, Canada July 4-8, 2016 NoSQL, No Problem,
Using Azure
DocumentDB

Integration and IoT Eldert Grootenboer Kontich, Belgium June 30, 2016 n/a

MongoDB World
2016

Kirill Gavrylyuk New York, New York June 28-29, 2016 n/a

Are you speaking at or hosting an event? Let us know how we can help!

https://www.eventbrite.com/e/2017-global-azure-bootcamp-atlanta-usa-tickets-31817713638
https://twitter.com/jplane
https://twitter.com/hashtag/GlobalAzure?src=hash
http://ndcoslo.com/talk/azure-documentdb-the-best-nosql-database-youre-probably-not-using-yet/
https://twitter.com/jplane
https://twitter.com/search?q=%23ndcoslo
mailto:askcosmosdb@microsoft.com
https://msftignite.com.au/sessions/session-details/2115/hello-documentdb-azures-blazing-fast-planetscale-nosql-database-da224
https://twitter.com/aliuy8
https://msftignite.com.au/sessions/session-details/2116/a-deepdive-with-azure-documentdb-partitioning-data-modelling-and-geo-replication-da335b
https://twitter.com/aliuy8
https://twitter.com/jplane
https://www.youtube.com/watch?v=uVcWgIYtBoc
https://connectevent.microsoft.com/
https://twitter.com/kirillg_msft
https://channel9.msdn.com/Events/Connect
http://www.meetup.com/tally-dot-net/events/233768568/
https://twitter.com/_s_hari
https://myignite.microsoft.com/sessions?q=documentdb
http://www.slideshare.net/aliuy/pass-summit-2016-azure-documentdb-a-deep-dive-into-advanced-features
http://devteach.com/
http://www.slideshare.net/KenCenerelli
http://www.btug.be/events
https://www.mongodb.com/world16

Meetup: UK Azure
User Group

Andrew Liu London, UK May 12, 2016 n/a

Meetup: ONETUG -
Orlando .NET User
Group

Santosh Hari Orlando, FL May 12, 2016 n/a

SQLBits XV Andrew Liu, Aravind
Ramachandran

Liverpool, UK May 4-7, 2016 n/a

Meetup: NYC .NET
Developers Group

Leonard Lobel New York City, NY April 21, 2016 n/a

Integration User
Group

Howard Edidin Webinar April 25, 2016 n/a

Global Azure
Bootcamp: SoCal

Leonard Lobel Orange, CA April 16, 2016 n/a

Global Azure
Bootcamp: Redmond

David Makogon Redmond, WA April 16, 2016 n/a

SQL Saturday #481 -
Israel 2016

Leonard Lobel HaMerkaz, Israel April 04, 2016 n/a

Build 2016 John Macintyre San Francisco, CA March 31, 2016 Delivering
Applications at Scale
with DocumentDB,
Azure's NoSQL
Document Database

SQL Saturday #505 -
Belgium 2016

Mihail Mateev Antwerp, Belgium March 19, 2016 n/a

Meetup: CloudTalk Kirat Pandya Bellevue, WA March 3, 2016 n/a

Meetup: Azure Austin Merwan Chinta Austin, TX January 28, 2016 n/a

Meetup: msdevmtl Vincent-Philippe
Lauzon

Montreal, QC, Canada December 1, 2015 n/a

Meetup: SeattleJS David Makogon Seattle, WA November 12, 2015 n/a

PASS Summit 2015 Jeff Renz, Andrew
Hoh, Aravind
Ramachandran, John
Macintyre

Seattle, WA October 27-30, 2015 Developing Modern
Applications on Azure

CloudDevelop 2015 David Makogon, Ryan
Crawcour

Columbus, OH October 23, 2015 n/a

SQL Saturday #454 -
Turin 2015

Marco De Nittis Turin, Italy October 10, 2015 n/a

EVENT NAME SPEAKER LOCATION DATE RECORDING

http://www.meetup.com/UKAzureUserGroup/events/229673468/
http://www.meetup.com/ONETUG/events/230797164/
https://sqlbits.com/
http://www.meetup.com/NYC-NET-Developers/events/230396260/
http://www.integrationusergroup.com/#
http://xprs.imcreator.com/free/vishalishere/gab2016
https://www.eventbrite.com/e/2016-global-azure-bootcamp-redmond-wa-tickets-21387752343
http://www.sqlsaturday.com/481/Sessions/Details.aspx?sid=40912
https://build.microsoft.com/
https://channel9.msdn.com/Events/Build/2016/B840
http://www.sqlsaturday.com/505/Sessions/Details.aspx?sid=44217
http://www.meetup.com/CloudTalk/events/227963695/
http://www.meetup.com/azureaustin/events/228209275/
http://www.meetup.com/msdevmtl/events/223839818/
http://www.meetup.com/seattlejs/events/220102664/
http://www.sqlpass.org/summit/2015/
https://www.youtube.com/watch?v=k5Z24HX-RyQ
http://www.clouddevelop.org/
http://www.sqlsaturday.com/454/Sessions/Details.aspx?sid=40130

SQL Saturday #430 -
Sofia 2015

Leonard Lobel Sofia, Bulgaria October 10, 2015 n/a

SQL Saturday #444 -
Kansas City 2015

Jeff Renz Kansas City, MO October 3, 2015 n/a

SQL Saturday #429 -
Oporto 2015

Leonard Lobel Oporto, Portugal October 3, 2015 n/a

AzureCon David Makogon, Ryan
Crawcour, John
Macintyre

Virtual Event September 29, 2015 Azure data and
analytics platform
Working with NoSQL
Data in DocumentDB

SQL Saturday #434 -
Holland 2015

Leonard Lobel Utrecht, Netherlands September 26, 2015 Introduction to Azure
DocumentDB

SQL Saturday #441 -
Denver 2015

Jeff Renz Denver, CO September 19, 2015 n/a

Meetup: San
Francisco Bay Area
Azure Developers

Andrew Liu San Francisco, CA September 15, 2015 n/a

Belarus Azure User
Group Meet-Up

Alex Zyl Minsk, Belarus September 9, 2015 Introduction to
DocumentDB concept
overview, consistency
levels, sharding
strategies

NoSQL Now! David Makogon, Ryan
Crawcour

San Jose, CA August 18-20, 2015 n/a

@Scale Seattle Dharma Shukla Seattle, WA June 17, 2015 Schema Agnostic
Indexing with Azure
DocumentDB

Tech Refresh 2015 Bruno Lopes Lisbon, Portugal June 15, 2015 DocumentDB 101

SQL Saturday #417 -
Sri Lanka 2015

Mihail Mateev Colombo, Sri Lanka June 06, 2015 n/a

Meetup: Seattle
Scalability Meetup

Dharma Shukla Seattle, WA May 27, 2015 n/a

SQL Saturday #377 -
Kiev 2015

Mihail Mateev Kiev, Ukraine May 23, 2015 n/a

Database Month Dharma Shukla New York, NY May 19, 2015 Azure DocumentDB:
Massively-Scalable,-
Multi-Tenant
Document Database
Service

EVENT NAME SPEAKER LOCATION DATE RECORDING

http://www.sqlsaturday.com/430/Sessions/Details.aspx?sid=36090
http://www.sqlsaturday.com/444/Sessions/Details.aspx?sid=38576
http://www.sqlsaturday.com/429/Sessions/Details.aspx?sid=36089
https://azure.microsoft.com/azurecon/
https://channel9.msdn.com/events/Microsoft-Azure/AzureCon-2015/ACON207
https://channel9.msdn.com/Events/Microsoft-Azure/AzureCon-2015/ACON338
http://www.sqlsaturday.com/434/Sessions/Details.aspx?sid=36413
https://channel9.msdn.com/Blogs/Azure/SQL-Saturday-Holland-2015-Introduction-to-Azure-DocumentDB
http://www.sqlsaturday.com/441/Sessions/Details.aspx?sid=39191
http://www.meetup.com/bayazure/events/223943785/
https://www.facebook.com/events/786540124800276/
https://www.youtube.com/watch?v=Uc_qwWzJKH8
http://nosql2015.dataversity.net/
http://www.atscaleconference.com/
https://www.youtube.com/watch?v=VJQ_5qFFVP4
https://channel9.msdn.com/Events/DXPortugal/Tech-Refresh-2015
https://channel9.msdn.com/Events/DXPortugal/Tech-Refresh-2015/DPDEV01
http://www.sqlsaturday.com/417/Sessions/Details.aspx?sid=21415
http://www.meetup.com/Seattle-Scalability-Meetup/events/204010442/
http://www.sqlsaturday.com/377/Sessions/Details.aspx?sid=20322
http://www.databasemonth.com/database/azure-documentdb
https://www.youtube.com/watch?v=iZsqBc3Dkbk

Meetup: London SQL
Server User Group

Allan Mitchell London, UK May 19, 2015 n/a

DevIntersection Andrew Liu Scottsdale, AZ May 18-21, 2015 n/a

Meetup: Seattle Web
App Developers
Group

Andrew Liu Seattle, WA May 14, 2015 n/a

Ignite Andrew Hoh, John
Macintyre

Chicago, IL May 4-8, 2015 SELECT Latest FROM
DocumentDB video
DocumentDB and
Azure HDInsight:
Better Together video

Build 2015 Ryan Crawcour San Francisco, CA April 29 - May 1,
2015

Build the Next Big
Thing with Azure’s
NoSQL Service:
DocumentDB

Global Azure
Bootcamp 2015 -
Spain

Luis Ruiz Pavon,
Roberto Gonzalez

Madrid, Spain April 25, 2015 #DEAN DocumentDB
+ Express + AngularJS
+ NodeJS running on
Azure

Meetup: Azure
Usergroup Denmark

Christian Holm Diget Copenhagen,
Denmark

April 16, 2015 n/a

Meetup: Charlotte
Microsoft Cloud

Jamie Rance Charlotte, NC April 8, 2015 n/a

SQL Saturday #375 -
Silicon Valley 2015

Ike Ellis Mountain View, CA March 28, 2015 n/a

Meetup: Istanbul
Azure Meetup

Daron Yondem Istanbul, Turkey March 7, 2015 n/a

Meetup: Great Lakes
Area .Net User Group

Michael Collier Southfield, MI February 18, 2015 n/a

TechX Azure Magnus Mårtensson Stockholm, Sweden January 28-29, 2015 DocumentDB in Azure
the new NoSQL
option for the Cloud

EVENT NAME SPEAKER LOCATION DATE RECORDING

Videos and Podcasts

SHOW SPEAKER DATE EPISODE

Azure Friday Kirill Gavrylyuk October 31, 2016 What's new in Azure
DocumentDB?

Channel 9: Microsoft +
Open Source

Jose Miguel Parrella April 14, 2016 From MEAN to DEAN in
Azure with Bitnami, VM Scale
Sets and DocumentDB

http://www.meetup.com/London-SQL-Server-User-Group/events/221525058/
https://devintersection.com/
http://www.meetup.com/Seattle-Web-App-Developers-Group/events/220591071/
http://ignite.microsoft.com/
https://azure.microsoft.com/documentation/videos/microsoft-ignite-2015-select-latest-from-microsoft-azure-documentdb/
https://azure.microsoft.com/documentation/videos/microsoft-ignite-2015-microsoft-azure-documentdb-and-azure-hdinsight-better-together/
http://www.buildwindows.com/
https://channel9.msdn.com/Events/Build/2015/2-729
http://azurebootcamp.es/
https://channel9.msdn.com/events/Developers-Spain-Events/Global-Azure-Bootcamp-2015/DEAN-DocumentDB--Express--AngularJS--NodeJS-running-on-Azure
http://www.meetup.com/Azure-Usergroup-Denmark/events/221026670/
http://www.meetup.com/Charlotte-Microsoft-Cloud/events/221503519/
http://www.sqlsaturday.com/375/Sessions/Details.aspx?sid=15289
http://www.meetup.com/istanbul-azure-meetup/events/220325538/
http://www.meetup.com/Great-Lakes-Area-NET-User-Group-MIGANG/events/220364576/
https://www.youtube.com/channel/UCDRlI2E4z5qmHsBXTrFOE2Q
https://www.youtube.com/watch?v=Hw7hDYoChNI
https://channel9.msdn.com/Shows/Azure-Friday/AzureFridayNewinDocumentDB
https://channel9.msdn.com/Blogs/Open/From-MEAN-to-DEAN-in-Azure-with-Bitnami-VM-Scale-Sets-and-DocumentDB

Wired2WinWebinar Sai Sankar Kunnathukuzhiyil March 9, 2016 Developing Solutions with
Azure DocumentDB

Integration User Group Han Wong February 17, 2016 Analyze and visualize non-
relational data with
DocumentDB + Power BI

The Azure Podcast Cale Teeter January 14, 2016 Episode 110: Using
DocumentDB & Search

Channel 9: Modern
Applications

Tara Shankar Jana December 13, 2016 Take a modern approach to
data in your apps

NinjaTips Miguel Quintero December 10, 2015 DocumentDB - Un vistazo
general

Integration User Group Howard Edidin October 5, 2015 Azure DocumentDB for
Healthcare Integration

DX Italy - #TecHeroes Alessandro Melchiori October 2, 2015 #TecHeroes - DocumentDB

Microsoft Cloud Show -
Podcast

Andrew Liu September 30, 2015 Episode 099 - Azure
DocumentDB with Andrew
Liu

.NET Rocks! - Podcast Ryan Crawcour September 29, 2015 Data on DocumentDB with
Ryan CrawCour

Data Exposed Ryan Crawcour September 28, 2015 What's New with Azure
DocumentDB Since GA

The Azure Podcast Cale Teeter September 17, 2015 Episode 94: azpodcast.com
re-architecture

Cloud Cover Ryan Crawcour September 4, 2015 Episode 185: DocumentDB
Updates with Ryan
CrawCour

CodeChat 033 Greg Doerr July 28, 2015 Greg Doerr on Azure
DocumentDB

NoSql Central King Wilder May 25, 2015 Golf Tracker - A video
overview on how to build a
web application on top of
AngularJS, WebApi 2, and
DocumentDB.

In-Memory Technologies
PASS Virtual Chapter

Stephen Baron May 25, 2015 Hello DocumentDB

Data Exposed Ryan Crawcour April 8, 2015 DocumentDB General
Availibility and What's New!

Data Exposed Andrew Liu March 17, 2015 Java SDK for DocumentDB

SHOW SPEAKER DATE EPISODE

https://www.youtube.com/watch?v=xKttEwXv_bs
http://www.integrationusergroup.com/analyze-visualize-non-relational-data-documentdb-power-bi/
http://azpodcast.azurewebsites.net/post/Episode-110-Using-DocumentDB-Search
https://channel9.msdn.com/Series/Modern-Applications/Take-a-modern-approach-to-data-in-your-apps
https://channel9.msdn.com/Series/Ninja-Tips/31-NinjaTips-Desarrollo-DocumentDB-1-Vistazo-general
http://www.integrationusergroup.com/?event=azure-documentdb-and-biztalk
https://channel9.msdn.com/Shows/TecHeroes/TecHeroes-DocumentDB
http://www.microsoftcloudshow.com/podcast/Episodes/099-azure-documentdb-with-andrew-liu
https://www.dotnetrocks.com/?show=1197
https://channel9.msdn.com/Shows/Data-Exposed/Whats-New-with-Azure-DocumentDB-Since-GA
http://azpodcast.azurewebsites.net/post/Episode-94-azpodcastcom-re-architecture
https://channel9.msdn.com/Shows/Cloud+Cover/Episode-185-DocDB-Updates-with-Ryan-CrawCour
https://channel9.msdn.com/Shows/codechat/033
http://www.nosqlcentral.net/Story/Details/videos/kahanu/1-documentdb-golf-tracker-overview
https://www.youtube.com/watch?v=itFXQCd9-dI
https://channel9.msdn.com/Shows/Data-Exposed/DocumentDB-General-Availability-and-Whats-New
https://channel9.msdn.com/Shows/Data-Exposed/Java-SDK-for-DocumentDB

#DevHangout Gustavo Alzate Sandoval March 11, 2015 DocumentDB, la base de
datos NoSql de Microsoft
Azure

Data Architecture Virtual
Chapter PASS

Ike Ellis February 25, 2015 Introduction to
DocumentDB

SHOW SPEAKER DATE EPISODE

Online classes

LEARNING PARTNER DESCRIPTION

Microsoft Virtual Academy offers you training from the
people who help build Azure DocumentDB.

Pluralsight is a key Microsoft partner offering Azure training.
If you are an MSDN subscriber, use your benefits to access
Microsoft Azure training.

OpsGility provides deep technical training on Microsoft Azure.
Get instructor-led training on-site or through a remote
classroom by their industry-acknowledged trainers.

Discussion
Twitter

Online forums

FORUM PROVIDER DESCRIPTION

A language-independent collaboratively edited question and
answer site for programmers. Follow our tag: azure-
documentdb

Contact the team

Follow us on twitter @DocumentDB and stay up to date with the latest conversation on the #DocumentDB hashtag.

https://www.youtube.com/watch?v=8Ud3jB8KOBA
https://www.youtube.com/watch?v=7BQYdFUkz6s
https://mva.microsoft.com/en-US/training-courses/azure-documentdb-planetscale-nosql-16847
https://mva.microsoft.com/en-US/training-courses/azure-documentdb-planetscale-nosql-16847
http://www.pluralsight.com/courses/azure-documentdb-introduction
http://www.pluralsight.com/courses/azure-documentdb-introduction
https://www.opsgility.com/courses/player/introduction_to_azure_documentdb
https://www.opsgility.com/courses/player/introduction_to_azure_documentdb
https://twitter.com/DocumentDB
https://twitter.com/hashtag/DocumentDB
http://stackoverflow.com/questions/tagged/azure-documentdb
http://stackoverflow.com/questions/tagged/azure-documentdb

Open source projects

SDKs

PLATFORM GITHUB PACKAGE

Node.js azure-documentdb-node npm

Java azure-documentdb-java Maven

Python azure-documentdb-python PyPI

Other projects

NAME GITHUB WEBSITE

Documentation azure-content Documentation website

Hadoop Connector azure-documentdb-hadoop Maven

Data migration tool azure-documentdb-datamigrationtool Microsoft download center

Azure Cosmos DB Wizards

WIZARD PICTURE

Do you need technical help? Have questions? Wondering whether NoSQL is a good fit for you? You can schedule a
1:1 chat directly with the DocumentDB engineering team by sending us an e-mail or tweeting us at @DocumentDB.

These projects are actively developed by the Azure DocumentDB team in collaboration with our open source
community.

Azure Cosmos DB Wizards are community leaders who’ve demonstrated an exemplary commitment to helping
others get the most out of their experience with Azure Cosmos DB, the next generation of Azure DocumentDB. They
share their exceptional passion, real-world knowledge, and technical expertise with the community and with the
Azure Cosmos DB team.

mailto:askcosmosdb@microsoft.com
https://twitter.com/DocumentDB
https://github.com/Azure/azure-documentdb-node
https://www.npmjs.com/package/documentdb
https://github.com/Azure/azure-documentdb-java
http://search.maven.org/#search%7Cga%7C1%7Ca%3A%22azure-documentdb%22
https://github.com/Azure/azure-documentdb-python
https://pypi.python.org/pypi/pydocumentdb
https://github.com/Azure/azure-content/tree/master/articles/documentdb
https://azure.microsoft.com/documentation/services/documentdb/
https://github.com/Azure/azure-documentdb-hadoop
http://search.maven.org/#search%7Cga%7C1%7Ca%3A%22azure-documentdb-hadoop%22
https://github.com/Azure/azure-documentdb-datamigrationtool
http://www.microsoft.com/download/details.aspx?id=46436

Allan Mitchell

Jen Stirrup

Lenni Lobel

Mihail Mateev

Larry Maccherone

WIZARD PICTURE

https://twitter.com/allansqlis
https://twitter.com/allansqlis
https://twitter.com/jenstirrup
https://twitter.com/jenstirrup
https://twitter.com/lennilobel
https://twitter.com/lennilobel
https://twitter.com/mihailmateev
https://twitter.com/mihailmateev
https://twitter.com/lmaccherone
https://twitter.com/lmaccherone

Howard Edidin

Santosh Hari

Matías Quaranta

WIZARD PICTURE

Want to become an Azure Cosmos DB Wizard? While there is no benchmark for becoming a Wizard, some of the
criteria we evaluate include the impact of a nominee’s contributions to online forums such as StackOverflow and
MSDN; wikis and online content; conferences and user groups; podcasts, Web sites, blogs and social media; and
articles and books. You can nominate yourself or someone else by sending us an email.

https://twitter.com/hsedidin
https://twitter.com/hsedidin
https://twitter.com/_s_hari
https://twitter.com/_s_hari
https://twitter.com/ealsur
https://twitter.com/ealsur
mailto:askcosmosdb@microsoft.com

Retiring the S1, S2, and S3 performance levels
5/30/2017 • 7 min to read • Edit Online

IMPORTANT

Why are the S1, S2, and S3 performance levels being retired?

How do single partition collections and partitioned collections
compare to the S1, S2, S3 performance levels?

PARTITIONED
COLLECTION

SINGLE
PARTITION
COLLECTION S1 S2 S3

Maximum
throughput

Unlimited 10K RU/s 250 RU/s 1 K RU/s 2.5 K RU/s

Minimum
throughput

2.5K RU/s 400 RU/s 250 RU/s 1 K RU/s 2.5 K RU/s

Maximum
storage

Unlimited 10 GB 10 GB 10 GB 10 GB

The S1, S2, and S3 performance levels discussed in this article are being retired and are no longer available for new
DocumentDB API accounts.

This article provides an overview of S1, S2, and S3 performance levels, and discusses how the collections that use
these performance levels will be migrated to single partition collections on August 1st, 2017. After reading this
article, you'll be able to answer the following questions:

Why are the S1, S2, and S3 performance levels being retired?
How do single partition collections and partitioned collections compare to the S1, S2, S3 performance levels?
What do I need to do to ensure uninterrupted access to my data?
How will my collection change after the migration?
How will my billing change after I’m migrated to single partition collections?
What if I need more than 10 GB of storage?
Can I change between the S1, S2, and S3 performance levels before August 1, 2017?
How will I know when my collection has migrated?
How do I migrate from the S1, S2, S3 performance levels to single partition collections on my own?
How am I impacted if I'm an EA customer?

The S1, S2, and S3 performance levels do not offer the flexibility that DocumentDB API collections offers. With
the S1, S2, S3 performance levels, both the throughput and storage capacity were pre-set and did not offer
elasticity. Azure Cosmos DB now offers the ability to customize your throughput and storage, offering you much
more flexibility in your ability to scale as your needs change.

The following table compares the throughput and storage options available in single partition collections,
partitioned collections, and S1, S2, S3 performance levels. Here is an example for US East 2 region:

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/performance-levels.md

Price Throughput: $6 /
100 RU/s

Storage:
$0.25/GB

Throughput: $6 /
100 RU/s

Storage:
$0.25/GB

$25 USD $50 USD $100 USD

PARTITIONED
COLLECTION

SINGLE
PARTITION
COLLECTION S1 S2 S3

What do I need to do to ensure uninterrupted access to my data?

How will my collection change after the migration?

How will my billing change after I’m migrated to the single partition
collections?

Are you an EA customer? If so, see How am I impacted if I'm an EA customer?

Nothing, Cosmos DB handles the migration for you. If you have an S1, S2, or S3 collection, your current
collection will be migrated to a single partition collection on July 31, 2017.

If you have an S1 collection, you will be migrated to a single partition collection with 400 RU/s throughput. 400
RU/s is the lowest throughput available with single partition collections. However, the cost for 400 RU/s in the a
single partition collection is approximately the same as you were paying with your S1 collection and 250 RU/s –
so you are not paying for the extra 150 RU/s available to you.

If you have an S2 collection, you will be migrated to a single partition collection with 1 K RU/s. You will see no
change to your throughput level.

If you have an S3 collection, you will be migrated to a single partition collection with 2.5 K RU/s. You will see no
change to your throughput level.

In each of these cases, after your collection is migrated, you will be able to customize your throughput level, or
scale it up and down as needed to provide low-latency access to your users. To change the throughput level after
your collection has migrated, simply open your Cosmos DB account in the Azure portal, click Scale, choose your
collection, and then adjust the throughput level, as shown in the following screenshot:

Assuming you have 10 S1 collections, 1 GB of storage for each, in the US East region, and you migrate these 10
S1 collections to 10 single partition collections at 400 RU/sec (the minimum level). Your bill will look as follows if
you keep the 10 single partition collections for a full month:

What if I need more than 10 GB of storage?

Can I change between the S1, S2, and S3 performance levels before
August 1, 2017?

How will I know when my collection has migrated?

How do I migrate from the S1, S2, S3 performance levels to single
partition collections on my own?

Whether you have a collection with an S1, S2, or S3 performance level, or have a single partition collection, all of
which have 10 GB of storage available, you can use the Cosmos DB Data Migration tool to migrate your data to a
partitioned collection with virtually unlimited storage. For information about the benefits of a partitioned
collection, see Partitioning and scaling in Azure Cosmos DB. For information about how to migrate your S1, S2,
S3, or single partition collection to a partitioned collection, see Migrating from single-partition to partitioned
collections.

Only existing accounts with S1, S2, and S3 performance will be able to change and alter performance level tiers
through the portal or programmatically. By August 1, 2017, the S1, S2, and S3 performance levels will no longer
be available. If you change from S1, S3, or S3 to a single partition collection, you cannot return to the S1, S2, or
S3 performance levels.

The migration will occur on July 31, 2017. If you have a collection that uses the S1, S2 or S3 performance levels,
the Cosmos DB team will contact you by email before the migration takes place. Once the migration is complete,
on August 1, 2017, the Azure portal will show that your collection uses Standard pricing.

You can migrate from the S1, S2, and S3 performance levels to single partition collections using the Azure portal
or programmatically. You can do this on your own before August 1 to benefit from the flexible throughput
options available with single partition collections, or we will migrate your collections for you on July 31, 2017.

To migrate to single partition collections using the Azure portal

1. In the Azure portal, click Azure Cosmos DB, then select the Cosmos DB account to modify.

If Azure Cosmos DB is not on the Jumpbar, click >, scroll to Databases, select Azure Cosmos DB, and

https://portal.azure.com

IMPORTANT

NOTE

then select the DocumentDB account.

2. On the resource menu, under Containers, click Scale, select the collection to modify from the drop-down
list, and then click Pricing Tier. Accounts using pre-defined throughput have a pricing tier of S1, S2, or S3.
In the Choose your pricing tier blade, click Standard to change to user-defined throughput, and then
click Select to save your change.

3. Back in the Scale blade, the Pricing Tier is changed to Standard and the Throughput (RU/s) box is
displayed with a default value of 400. Set the throughput between 400 and 10,000 Request units/second
(RU/s). The Estimated Monthly Bill at the bottom of the page updates automatically to provide an
estimate of the monthly cost.

Once you save your changes and move to the Standard pricing tier, you cannot roll back to the S1, S2, or S3
performance levels.

4. Click Save to save your changes.

If you determine that you need more throughput (greater than 10,000 RU/s) or more storage (greater
than 10GB) you can create a partitioned collection. To migrate a single partition collection to a partitioned
collection, see Migrating from single-partition to partitioned collections.

Changing from S1, S2, or S3 to Standard may take up to 2 minutes.

To migrate to single partition collections using the .NET SDK

Another option for changing your collections' performance levels is through our SDKs. This section only covers
changing a collection's performance level using our .NET SDK, but the process is similar for our other SDKs. If
you are new to our .NET SDK, visit our getting started tutorial.

Here is a code snippet for changing the collection throughput to 5,000 request units per second:

https://msdn.microsoft.com/library/azure/dn948556.aspx
https://msdn.microsoft.com/library/azure/dn781482.aspx

 //Fetch the resource to be updated
 Offer offer = client.CreateOfferQuery()
 .Where(r => r.ResourceLink == collection.SelfLink)
 .AsEnumerable()
 .SingleOrDefault();

 // Set the throughput to 5000 request units per second
 offer = new OfferV2(offer, 5000);

 //Now persist these changes to the database by replacing the original resource
 await client.ReplaceOfferAsync(offer);

How am I impacted if I'm an EA customer?

Next steps

Visit MSDN to view additional examples and learn more about our offer methods:

ReadOfferAsync
ReadOffersFeedAsync
ReplaceOfferAsync
CreateOfferQuery

EA customers will be price protected until the end of their current contract.

To learn more about pricing and managing data with Azure Cosmos DB, explore these resources:

1. Partitioning data in Cosmos DB. Understand the difference between single partition container and partitioned
containers, as well as tips on implementing a partitioning strategy to scale seamlessly.

2. Cosmos DB pricing. Learn about the cost of provisioning throughput and consuming storage.
3. Request units. Understand the consumption of throughput for different operation types, for example Read,

Write, Query.

https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.readofferasync.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.readoffersfeedasync.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.replaceofferasync.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.linq.documentqueryable.createofferquery.aspx
https://azure.microsoft.com/pricing/details/cosmos-db/

Connect a MongoDB application to Azure Cosmos
DB
6/13/2017 • 2 min to read • Edit Online

Prerequisites

Get the MongoDB connection string using the Quick start

Learn how to connect your MongoDB app to an Azure Cosmos DB account using a MongoDB connection string.
By connecting your MongoDB app to an Azure Cosmos DB database, you can use an Azure Cosmos DB database
as the data store for your MongoDB app.

This tutorial provides two ways to retrieve connection string information:

The Quick start method, for use with .NET, Node.js, MongoDB Shell, Java, and Python drivers.
The custom connection string method, for use with other drivers.

An Azure account. If you don't have an Azure account, create a free Azure account now.
An Azure Cosmos DB account. For instructions, see Build a MongoDB API web app with .NET and the Azure
portal.

1. In an internet browser, sign in to the Azure Portal.
2. In the Azure Cosmos DB blade, select the MongoDB API account.
3. In the Left Navigation bar of the account blade, click Quick start.
4. Choose your platform (.NET driver, Node.js driver, MongoDB Shell, Java driver, Python driver). If you don't see

your driver or tool listed, don't worry, we continuously document more connection code snippets. Please
comment below on what you'd like to see and read Get the account's connection string information to learn
how to craft your own connection.

5. Copy and paste the code snippet into your MongoDB app, and you are ready to go.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/connect-mongodb-account.md
https://azure.microsoft.com/free/
https://portal.azure.com

 Get the MongoDB connection string to customize
1. In an internet browser, sign in to the Azure Portal.
2. In the Azure Cosmos DB blade, select the MongoDB API account.
3. In the Left Navigation bar of the account blade, click Connection String.
4. The Connection String Information blade opens and has all the information necessary to connect to the

account using a driver for MongoDB, including a pre-constructed connection string.

https://portal.azure.com

 Connection string requirements

IMPORTANT

mongodb://username:password@host:port/[database]?ssl=true

Azure Cosmos DB has strict security requirements and standards. Azure Cosmos DB accounts require authentication and
secure communication via SSL.

It is important to note that Azure Cosmos DB supports the standard MongoDB connection string URI format, with
a couple of specific requirements: Azure Cosmos DB accounts require authentication and secure communication
via SSL. Thus, the connection string format is:

Where the values of this string are available in the Connection String blade shown above.

Username (required)

Password (required)

Host (required)

Port (required)

Database (optional)

ssl=true (required)

Azure Cosmos DB account name

Azure Cosmos DB account password

FQDN of Azure Cosmos DB account

10255

The default database used by the connection (if no database is provided, the default database is "test")

For example, consider the account shown in the Connection String Information above. A valid connection string is:

mongodb://contoso123:0Fc3IolnL12312asdfawejunASDF@asdfYXX2t8a97kghVcUzcDv98hawelufhawefafnoQRGwNj2nMPL1Y9qsIr9Srdw==@
anhohmongo.documents.azure.com:10255/mydatabase?ssl=true

Next steps
Learn how to use MongoChef with an Azure Cosmos DB: API for MongoDB account.
Explore Azure Cosmos DB: API for MongoDB samples.

Use MongoChef with an Azure Cosmos DB: API for
MongoDB account
5/30/2017 • 2 min to read • Edit Online

Create the connection in MongoChef

To connect to an Azure Cosmos DB: API for MongoDB account, you must:

Download and install MongoChef
Have your Azure Cosmos DB: API for MongoDB account connection string information

To add your Azure Cosmos DB: API for MongoDB account to the MongoChef connection manager, perform the
following steps.

1. Retrieve your Azure Cosmos DB: API for MongoDB connection information using the instructions here.

2. Click Connect to open the Connection Manager, then click New Connection

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/mongodb-mongochef.md
http://3t.io/mongochef

3. In the New Connection window, on the Server tab, enter the HOST (FQDN) of the Azure Cosmos DB: API
for MongoDB account and the PORT.

4. In the New Connection window, on the Authentication tab, choose Authentication Mode Standard
(MONGODB-CR or SCARM-SHA-1) and enter the USERNAME and PASSWORD. Accept the default
authentication db (admin) or provide your own value.

5. In the New Connection window, on the SSL tab, check the Use SSL protocol to connect check box and
the Accept server self-signed SSL certificates radio button.

6. Click the Test Connection button to validate the connection information, click OK to return to the New

Use MongoChef to create a database, collection, and documents

Connection window, and then click Save.

To create a database, collection, and documents using MongoChef, perform the following steps.

1. In Connection Manager, highlight the connection and click Connect.

2. Right click the host and choose Add Database. Provide a database name and click OK.

3. Right click the database and choose Add Collection. Provide a collection name and click Create.

4. Click the Collection menu item, then click Add Document.

 {
 "_id": "AndersenFamily",
 "lastName": "Andersen",
 "parents": [
 { "firstName": "Thomas" },
 { "firstName": "Mary Kay"}
],
 "children": [
 {
 "firstName": "Henriette Thaulow", "gender": "female", "grade": 5,
 "pets": [{ "givenName": "Fluffy" }]
 }
],
 "address": { "state": "WA", "county": "King", "city": "seattle" },
 "isRegistered": true
 }

5. In the Add Document dialog, paste the following and then click Add Document.

6. Add another document, this time with the following content.

Next steps

 {
 "_id": "WakefieldFamily",
 "parents": [
 { "familyName": "Wakefield", "givenName": "Robin" },
 { "familyName": "Miller", "givenName": "Ben" }
],
 "children": [
 {
 "familyName": "Merriam",
 "givenName": "Jesse",
 "gender": "female", "grade": 1,
 "pets": [
 { "givenName": "Goofy" },
 { "givenName": "Shadow" }
]
 },
 {
 "familyName": "Miller",
 "givenName": "Lisa",
 "gender": "female",
 "grade": 8 }
],
 "address": { "state": "NY", "county": "Manhattan", "city": "NY" },
 "isRegistered": false
 }

7. Execute a sample query. For example, search for families with the last name 'Andersen' and return the
parents and state fields.

Explore Azure Cosmos DB: API for MongoDB samples.

Use Robomongo with an Azure Cosmos DB: API for
MongoDB account
5/30/2017 • 1 min to read • Edit Online

Connect using Robomongo

To connect to an Azure Cosmos DB: API for MongoDB account using Robomongo, you must:

Download and install Robomongo
Have your Azure Cosmos DB: API for MongoDB account connection string information

To add your Azure Cosmos DB: API for MongoDB account to the Robomongo MongoDB Connections, perform the
following steps.

1. Retrieve your Azure Cosmos DB: API for MongoDB account connection information using the instructions
here.

2. Run Robomongo.exe

3. Click the connection button under File to manage your connections. Then, click Create in the MongoDB
Connections window, which will open up the Connection Settings window.

4. In the Connection Settings window, choose a name. Then, find the Host and Port from your connection
information in Step 1 and enter them into Address and Port, respectively.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/mongodb-robomongo.md
https://robomongo.org/

5. On the Authentication tab, click Perform authentication. Then, enter your Database (default is Admin),
User Name and Password. Both User Name and Password can be found in your connection information
in Step 1.

6. On the SSL tab, check Use SSL protocol, then change the Authentication Method to Self-signed
Certificate.

Next steps

7. Finally, click Test to verify that you are able to connect, then Save.

Explore Azure Cosmos DB: API for MongoDB samples.

Build an Azure Cosmos DB: API for MongoDB app
using Node.js
5/30/2017 • 1 min to read • Edit Online

Create the app

This example shows you how to build an Azure Cosmos DB: API for MongoDB console app using Node.js.

To use this example, you must:

Create an Azure Cosmos DB: API for MongoDB account.
Retrieve your MongoDB connection string information.

var MongoClient = require('mongodb').MongoClient;
var assert = require('assert');
var ObjectId = require('mongodb').ObjectID;
var url = 'mongodb://<endpoint>:<password>@<endpoint>.documents.azure.com:10250/?ssl=true';

var insertDocument = function(db, callback) {
db.collection('families').insertOne({
 "id": "AndersenFamily",
 "lastName": "Andersen",
 "parents": [
 { "firstName": "Thomas" },
 { "firstName": "Mary Kay" }
],
 "children": [
 { "firstName": "John", "gender": "male", "grade": 7 }
],
 "pets": [
 { "givenName": "Fluffy" }
],
 "address": { "country": "USA", "state": "WA", "city": "Seattle" }
 }, function(err, result) {
 assert.equal(err, null);
 console.log("Inserted a document into the families collection.");
 callback();
});
};

var findFamilies = function(db, callback) {
var cursor =db.collection('families').find();
cursor.each(function(err, doc) {
 assert.equal(err, null);
 if (doc != null) {
 console.dir(doc);
 } else {
 callback();
 }
});
};

var updateFamilies = function(db, callback) {
db.collection('families').updateOne(
 { "lastName" : "Andersen" },
 {
 $set: { "pets": [
 { "givenName": "Fluffy" },

1. Create a app.js file and copy & paste the code below.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/mongodb-samples.md

Next steps

 { "givenName": "Fluffy" },
 { "givenName": "Rocky"}
] },
 $currentDate: { "lastModified": true }
 }, function(err, results) {
 console.log(results);
 callback();
});
};

var removeFamilies = function(db, callback) {
db.collection('families').deleteMany(
 { "lastName": "Andersen" },
 function(err, results) {
 console.log(results);
 callback();
 }
);
};

MongoClient.connect(url, function(err, db) {
assert.equal(null, err);
insertDocument(db, function() {
 findFamilies(db, function() {
 updateFamilies(db, function() {
 removeFamilies(db, function() {
 db.close();
 });
 });
 });
});
});

var url = 'mongodb://<endpoint>:<password>@<endpoint>.documents.azure.com:10250/?ssl=true';

2. Modify the following variables in the app.js file per your account settings (Learn how to find your
connection string):

3. Open your favorite terminal, run npm install mongodb --save, then run your app with node app.js

Learn how to use MongoChef with your Azure Cosmos DB: API for MongoDB account.

Azure Cosmos DB Gremlin graph support
6/12/2017 • 7 min to read • Edit Online

Gremlin by example

Azure Cosmos DB supports Apache Tinkerpop's graph traversal language, Gremlin which is a Graph API for
creating graph entities, and performing graph query operations. You can use the Gremlin language to create
graph entities (vertices and edges), modify properties within those entities, perform queries and traversals, and
delete entities.

Azure Cosmos DB brings enterprise-ready features to graph databases. This includes global distribution,
independent scaling of storage and throughput, predictable single-digit millisecond latencies, automatic indexing,
and 99.99% SLAs. Because Azure Cosmos DB supports TinkerPop/Gremlin, you can easily migrate applications
written using another graph database without having to make code changes. Additionally, by virtue of Gremlin
support, Azure Cosmos DB seamlessly integrates with TinkerPop-enabled analytics frameworks like Apache
Spark GraphX.

In this article, we provide a quick walkthrough of Gremlin, and enumerate the Gremlin features and steps that are
supported in the preview of Graph API support.

Let's use a sample graph to understand how queries can be expressed in Gremlin. The following figure shows a
business application that manages data about users, interests, and devices in the form of a graph.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/gremlin-support.md
http://tinkerpop.apache.org
http://spark.apache.org/graphx/

:> g.addV('person').property('id', 'thomas.1').property('firstName', 'Thomas').property('lastName', 'Andersen').property('age', 44)

This graph has the following vertex types (called "label" in Gremlin):

People: the graph has three people, Robin, Thomas, and Ben
Interests: their interests, in this example, the game of Football
Devices: the devices that people use
Operating Systems: the operating systems that the devices run on

We represent the relationships between these entities via the following edge types/labels:

Knows: For example, "Thomas knows Robin"
Interested: To represent the interests of the people in our graph, for example, "Ben is interested in Football"
RunsOS: Laptop runs the Windows OS
Uses: To represent which device a person uses. For example, Robin uses a Motorola phone with serial number
77

Let's run some operations against this graph using the Gremlin Console. You can also perform these operations
using Gremlin drivers in the platform of your choice (Java, Node.js, Python, or .NET). Before we look at what's
supported in Azure Cosmos DB, let's look at a few examples to get familiar with the syntax.

First let's look at CRUD. The following Gremlin statement inserts the "Thomas" vertex into the graph:

Next, the following Gremlin statement inserts a "knows" edge between Thomas and Robin.

http://tinkerpop.apache.org/docs/current/reference/#gremlin-console

:> g.V('thomas.1').addE('knows').to(g.V('robin.1'))

:> g.V().hasLabel('person').order().by('firstName', decr)

:> g.V('thomas.1').out('knows').out('uses').out('runsos').group().by('name').by(count())

Gremlin features

CATEGORY AZURE COSMOS DB IMPLEMENTATION NOTES

Graph features Provides Persistence and
ConcurrentAccess in preview. Designed
to support Transactions

Computer methods can be
implemented via the Spark connector.

Variable features Supports Boolean, Integer, Byte,
Double, Float, Integer, Long, String

Supports primitive types, is compatible
with complex types via data model

Vertex features Supports RemoveVertices,
MetaProperties, AddVertices,
MultiProperties, StringIds,
UserSuppliedIds, AddProperty,
RemoveProperty

Supports creating, modifying, and
deleting vertices

Vertex property features StringIds, UserSuppliedIds,
AddProperty, RemoveProperty,
BooleanValues, ByteValues,
DoubleValues, FloatValues,
IntegerValues, LongValues,
StringValues

Supports creating, modifying, and
deleting vertex properties

Edge features AddEges, RemoveEdges, StringIds,
UserSuppliedIds, AddProperty,
RemoveProperty

Supports creating, modifying, and
deleting edges

Edge property features Properties, BooleanValues, ByteValues,
DoubleValues, FloatValues,
IntegerValues, LongValues,
StringValues

Supports creating, modifying, and
deleting edge properties

Gremlin wire format: GraphSON

The following query returns the "person" vertices in descending order of their first names:

Where graphs shine is when you need to answer questions like "What operating systems do friends of Thomas
use?". You can run this simple Gremlin traversal to get that information from the graph:

Now let's look at what Azure Cosmos DB provides for Gremlin developers.

TinkerPop is a standard that covers a wide range of graph technologies. Therefore, it has standard terminology to
describe what features are provided by a graph provider. Azure Cosmos DB provides a persistent, high
concurrency, writeable graph database that can be partitioned across multiple servers or clusters.

The following table lists the TinkerPop features that are implemented by Azure Cosmos DB:

 {
 "id": "a7111ba7-0ea1-43c9-b6b2-efc5e3aea4c0",
 "label": "person",
 "type": "vertex",
 "outE": {
 "knows": [
 {
 "id": "3ee53a60-c561-4c5e-9a9f-9c7924bc9aef",
 "inV": "04779300-1c8e-489d-9493-50fd1325a658"
 },
 {
 "id": "21984248-ee9e-43a8-a7f6-30642bc14609",
 "inV": "a8e3e741-2ef7-4c01-b7c8-199f8e43e3bc"
 }
]
 },
 "properties": {
 "firstName": [
 {
 "value": "Thomas"
 }
],
 "lastName": [
 {
 "value": "Andersen"
 }
],
 "age": [
 {
 "value": 45
 }
]
 }
 }

PROPERTY DESCRIPTION

id The ID for the vertex. Must be unique (in combination with
the value of _partition if applicable)

label The label of the vertex. This is optional, and used to describe
the entity type.

type Used to distinguish vertices from non-graph documents

properties Bag of user-defined properties associated with the vertex.
Each property can have multiple values.

_partition (configurable) The partition key of the vertex. Can be used to scale out
graphs to multiple servers

Azure Cosmos DB uses the GraphSON format when returning results from Gremlin operations. GraphSON is the
Gremlin standard format for representing vertices, edges, and properties (single and multi-valued properties)
using JSON.

For example, the following snippet shows a GraphSON representation of a vertex returned to the client from
Azure Cosmos DB.

The properties used by GraphSON for vertices are the following:

https://github.com/thinkaurelius/faunus/wiki/GraphSON-Format

outE This contains a list of out edges from a vertex. Storing the
adjacency information with vertex allows for fast execution of
traversals. Edges are grouped based on their labels.

PROPERTY DESCRIPTION

PROPERTY DESCRIPTION

id The ID for the edge. Must be unique (in combination with
the value of _partition if applicable)

label The label of the edge. This property is optional, and used to
describe the relationship type.

inV Bag of user-defined properties associated with the edge.
Each property can have multiple values.

properties Bag of user-defined properties associated with the edge.
Each property can have multiple values.

PROPERTY DESCRIPTION

value The value of the property

Gremlin partitioning

Gremlin steps

STEP DESCRIPTION
TINKERPOP 3.2
DOCUMENTATION NOTES

addE Adds an edge between two
vertices

addE step

addV Adds a vertex to the graph addV step

And the edge contains the following information to help with navigation to other parts of the graph.

Each property can store multiple values within an array.

In Azure Cosmos DB, graphs are stored within containers that can scale independently in terms of storage and
throughput (expressed in normalized requests per second). Each container must define an optional, but
recommended partition key property that determines a logical partition boundary for related data. Every
vertex/edge must have an id property that is unique for entities within that partition key value. The details are
covered in Partitioning in Azure Cosmos DB.

Gremlin operations work seamlessly across graph data that span multiple partitions in Azure Cosmos DB.
However, it is recommended to choose a partition key for your graphs that is commonly used as a filter in
queries, has many distinct values, and similar frequency of access these values.

Now let's look at the Gremlin steps supported by Azure Cosmos DB. For a complete reference on Gremlin, see
TinkerPop reference.

http://tinkerpop.apache.org/docs/current/reference
http://tinkerpop.apache.org/docs/current/reference/#addedge-step
http://tinkerpop.apache.org/docs/current/reference/#addvertex-step

and Ensurest that all the
traversals return a value

and step

as A step modulator to assign
a variable to the output of a
step

as step

by A step modulator used with
group and order

by step

coalesce Returns the first traversal
that returns a result

coalesce step

constant Returns a constant value.
Used with coalesce

constant step

count Returns the count from the
traversal

count step

dedup Returns the values with the
duplicates removed

dedup step

drop Drops the values
(vertex/edge)

drop step

fold Acts as a barrier that
computes the aggregate of
results

fold step

group Groups the values based on
the labels specified

group step

has Used to filter properties,
vertices, and edges.
Supports hasLabel ,
hasId , hasNot , and
has variants.

has step

inject Inject values into a stream inject step

is Used to perform a filter
using a boolean expression

is step

limit Used to limit number of
items in the traversal

limit step

local Local wraps a section of a
traversal, similar to a
subquery

local step

not Used to produce the
negation of a filter

not step

STEP DESCRIPTION
TINKERPOP 3.2
DOCUMENTATION NOTES

http://tinkerpop.apache.org/docs/current/reference/#and-step
http://tinkerpop.apache.org/docs/current/reference/#as-step
http://tinkerpop.apache.org/docs/current/reference/#by-step
http://tinkerpop.apache.org/docs/current/reference/#coalesce-step
http://tinkerpop.apache.org/docs/current/reference/#constant-step
http://tinkerpop.apache.org/docs/current/reference/#count-step
http://tinkerpop.apache.org/docs/current/reference/#dedup-step
http://tinkerpop.apache.org/docs/current/reference/#drop-step
http://tinkerpop.apache.org/docs/current/reference/#fold-step
http://tinkerpop.apache.org/docs/current/reference/#group-step
http://tinkerpop.apache.org/docs/current/reference/#has-step
http://tinkerpop.apache.org/docs/current/reference/#inject-step
http://tinkerpop.apache.org/docs/current/reference/#is-step
http://tinkerpop.apache.org/docs/current/reference/#limit-step
http://tinkerpop.apache.org/docs/current/reference/#local-step
http://tinkerpop.apache.org/docs/current/reference/#not-step

optional Returns the result of the
specified traversal if it yields
a result else it returns the
calling element

optional step

or Ensures at least one of the
traversals returns a value

or step

order Returns results in the
specified sort order

order step

path Returns the full path of the
traversal

path step

project Projects the properties as a
Map

project step

properties Returns the properties for
the specified labels

properties step

range Filters to the specified range
of values

range step

repeat Repeats the step for the
specified number of times.
Used for looping

repeat step

sample Used to sample results from
the traversal

sample step

select Used to project results from
the traversal

select step

store Used for non-blocking
aggregates from the
traversal

store step

tree Aggregate paths from a
vertex into a tree

tree step

unfold Unroll an iterator as a step unfold step

union Merge results from multiple
traversals

union step

V Includes the steps necessary
for traversals between
vertices and edges V , E ,
out , in , both , outE ,
inE , bothE , outV ,
inV , bothV , and
otherV for

vertex steps

STEP DESCRIPTION
TINKERPOP 3.2
DOCUMENTATION NOTES

http://tinkerpop.apache.org/docs/current/reference/#optional-step
http://tinkerpop.apache.org/docs/current/reference/#or-step
http://tinkerpop.apache.org/docs/current/reference/#order-step
http://tinkerpop.apache.org/docs/current/reference/#path-step
http://tinkerpop.apache.org/docs/current/reference/#project-step
http://tinkerpop.apache.org/docs/current/reference/#properties-step
http://tinkerpop.apache.org/docs/current/reference/#range-step
http://tinkerpop.apache.org/docs/current/reference/#repeat-step
http://tinkerpop.apache.org/docs/current/reference/#sample-step
http://tinkerpop.apache.org/docs/current/reference/#select-step
http://tinkerpop.apache.org/docs/current/reference/#store-step
http://tinkerpop.apache.org/docs/current/reference/#tree-step
http://tinkerpop.apache.org/docs/current/reference/#unfold-step
http://tinkerpop.apache.org/docs/current/reference/#union-step
http://tinkerpop.apache.org/docs/current/reference/#vertex-steps

where Used to filter results from
the traversal. Supports eq ,
neq , lt , lte , gt ,
gte , and between

operators

where step

STEP DESCRIPTION
TINKERPOP 3.2
DOCUMENTATION NOTES

Next Steps

Azure Cosmos DB's write-optimized engine supports automatic indexing of all properties within vertices and
edges by default. Therefore, queries with filters, range queries, sorting, or aggregates on any property are
processed from the index, and served efficiently. For more information on how indexing works in Azure Cosmos
DB, see our paper on schema-agnostic indexing.

Get started building a graph application using our SDKs
Learn more about Azure Cosmos DB's graph support

http://tinkerpop.apache.org/docs/current/reference/#where-step
http://www.vldb.org/pvldb/vol8/p1668-shukla.pdf

Working with the change feed support in Azure
Cosmos DB
5/30/2017 • 13 min to read • Edit Online

Use cases and scenarios

Azure Cosmos DB is a fast and flexible globally replicated database service that is used for storing high-volume
transactional and operational data with predictable single-digit millisecond latency for reads and writes. This makes
it well-suited for IoT, gaming, retail, and operational logging applications. A common design pattern in these
applications is to track changes made to Azure Cosmos DB data, and update materialized views, perform real-time
analytics, archive data to cold storage, and trigger notifications on certain events based on these changes. The
change feed support in Azure Cosmos DB enables you to build efficient and scalable solutions for each of these
patterns.

With change feed support, Azure Cosmos DB provides a sorted list of documents within an Azure Cosmos DB
collection in the order in which they were modified. This feed can be used to listen for modifications to data within
the collection and perform actions such as:

Trigger a call to an API when a document is inserted or modified
Perform real-time (stream) processing on updates
Synchronize data with a cache, search engine, or data warehouse

Changes in Azure Cosmos DB are persisted and can be processed asynchronously, and distributed across one or
more consumers for parallel processing. Let's look at the APIs for change feed and how you can use them to build
scalable real-time applications. This article shows how to work with spatial data with the Azure Cosmos DB
DocumentDB API.

Change feed allows for efficient processing of large datasets with a high volume of writes, and offers an alternative
to querying entire datasets to identify what has changed. For example, you can perform the following tasks
efficiently:

Update a cache, search index, or a data warehouse with data stored in Azure Cosmos DB.
Implement application-level data tiering and archival, that is, store "hot data" in Azure Cosmos DB, and age out

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/change-feed.md

How change feed works in Azure Cosmos DB

"cold data" to Azure Blob Storage or Azure Data Lake Store.
Implement batch analytics on data using Apache Hadoop.
Implement lambda pipelines on Azure with Azure Cosmos DB. Azure Cosmos DB provides a scalable database
solution that can handle both ingestion and query, and implement lambda architectures with low TCO.
Perform zero down-time migrations to another Azure Cosmos DB account with a different partitioning scheme.

Lambda Pipelines with Azure Cosmos DB for ingestion and query:

You can use Azure Cosmos DB to receive and store event data from devices, sensors, infrastructure, and
applications, and process these events in real-time with Azure Stream Analytics, Apache Storm, or Apache Spark.

Within web and mobile apps, you can track events such as changes to your customer's profile, preferences, or
location to trigger certain actions like sending push notifications to their devices using Azure Functions or App
Services. If you're using Azure Cosmos DB to build a game, you can, for example, use change feed to implement
real-time leaderboards based on scores from completed games.

Azure Cosmos DB provides the ability to incrementally read updates made to an Azure Cosmos DB collection. This
change feed has the following properties:

Changes are persistent in Azure Cosmos DB and can be processed asynchronously.
Changes to documents within a collection are available immediately in the change feed.
Each change to a document appears only once in the change feed. Only the most recent change for a given
document is included in the change log. Intermediate changes may not be available.
The change feed is sorted by order of modification within each partition key value. There is no guaranteed order
across partition-key values.
Changes can be synchronized from any point-in-time, that is, there is no fixed data retention period for which
changes are available.
Changes are available in chunks of partition key ranges. This capability allows changes from large collections to
be processed in parallel by multiple consumers/servers.
Applications can request for multiple change feeds simultaneously on the same collection.

Azure Cosmos DB's change feed is enabled by default for all accounts, and does not incur any additional costs on
your account. You can use your provisioned throughput in your write region or any read region to read from the
change feed, just like any other operation from Azure Cosmos DB. The change feed includes inserts and update
operations made to documents within the collection. You can capture deletes by setting a "soft-delete" flag within
your documents in place of deletes. Alternatively, you can set a finite expiration period for your documents via the
TTL capability, for example, 24 hours and use the value of that property to capture deletes. With this solution, you
have to process changes within a shorter time interval than the TTL expiration period. The change feed is available
for each partition key range within the document collection, and thus can be distributed across one or more
consumers for parallel processing.

https://docs.microsoft.com/en-us/azure/storage/storage-introduction
https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-overview
https://blogs.technet.microsoft.com/msuspartner/2016/01/27/azure-partner-community-big-data-advanced-analytics-and-lambda-architecture/
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-documentdb-output
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-storm-overview
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-apache-spark-overview
https://azure.microsoft.com/services/app-service/

 Working with the REST API and SDK

ReadDocumentFeed API

GET https://mydocumentdb.documents.azure.com/dbs/smalldb/colls/serverlogs HTTP/1.1
x-ms-date: Tue, 22 Nov 2016 17:05:14 GMT
authorization: type%3dmaster%26ver%3d1.0%26sig%3dgo7JEogZDn6ritWhwc5hX%2fNTV4wwM1u9V2Is1H4%2bDRg%3d
Cache-Control: no-cache
x-ms-consistency-level: Strong
User-Agent: Microsoft.Azure.Documents.Client/1.10.27.5
x-ms-version: 2016-07-11
Accept: application/json
Host: mydocumentdb.documents.azure.com

 Change f eed processor library

In the following section, we describe how to access the change feed using the Azure Cosmos DB REST API and
SDKs. For .NET applications, we recommend using the for processing events from the change feed.

Azure Cosmos DB provides elastic containers of storage and throughput called collections. Data within collections
is logically grouped using partition keys for scalability and performance. Azure Cosmos DB provides various APIs
for accessing this data, including lookup by ID (Read/Get), query, and read-feeds (scans). The change feed can be
obtained by populating two new request headers to the DocumentDB ReadDocumentFeed API, and can be processed
in parallel across ranges of partition keys.

Let's take a brief look at how ReadDocumentFeed works. Azure Cosmos DB supports reading a feed of documents
within a collection via the ReadDocumentFeed API. For example, the following request returns a page of documents
inside the serverlogs collection.

Results can be limited by using the x-ms-max-item-count header, and reads can be resumed by resubmitting the
request with a x-ms-continuation header returned in the previous response. When performed from a single client,
ReadDocumentFeed iterates through results across partitions serially.

Serial Read Document Feed

You can also retrieve the feed of documents using one of the supported Azure Cosmos DB SDKs. For example, the

FeedResponse<dynamic> feedResponse = null;
do
{
 feedResponse = await client.ReadDocumentFeedAsync(collection, new FeedOptions { MaxItemCount = -1 });
}
while (feedResponse.ResponseContinuation != null);

Distributed execution of ReadDocumentFeed

Retrieving partition key ranges for a collection

GET https://querydemo.documents.azure.com/dbs/bigdb/colls/serverlogs/pkranges HTTP/1.1
x-ms-date: Tue, 15 Nov 2016 07:26:51 GMT
authorization: type%3dmaster%26ver%3d1.0%26sig%3dEConYmRgDExu6q%2bZ8GjfUGOH0AcOx%2behkancw3LsGQ8%3d
x-ms-consistency-level: Session
x-ms-version: 2016-07-11
Accept: application/json
Host: querydemo.documents.azure.com

following snippet shows how to perform ReadDocumentFeed in .NET.

For collections that contain terabytes of data or more, or ingest a large volume of updates, serial execution of read
feed from a single client machine might not be practical. In order to support these big data scenarios, Azure
Cosmos DB provides APIs to distribute ReadDocumentFeed calls transparently across multiple client
readers/consumers.

Distributed Read Document Feed

To provide scalable processing of incremental changes, Azure Cosmos DB supports a scale-out model for the
change feed API based on ranges of partition keys.

You can obtain a list of partition key ranges for a collection performing a ReadPartitionKeyRanges call.
For each partition key range, you can perform a ReadDocumentFeed to read documents with partition keys within
that range.

You can retrieve the Partition Key Ranges by requesting the pkranges resource within a collection. For example the
following request retrieves the list of partition key ranges for the serverlogs collection:

This request returns the following response containing metadata about the partition key ranges:

HTTP/1.1 200 Ok
Content-Type: application/json
x-ms-item-count: 25
x-ms-schemaversion: 1.1
Date: Tue, 15 Nov 2016 07:26:51 GMT

{
 "_rid":"qYcAAPEvJBQ=",
 "PartitionKeyRanges":[
 {
 "_rid":"qYcAAPEvJBQCAAAAAAAAUA==",
 "id":"0",
 "_etag":"\"00002800-0000-0000-0000-580ac4ea0000\"",
 "minInclusive":"",
 "maxExclusive":"05C1CFFFFFFFF8",
 "_self":"dbs\/qYcAAA==\/colls\/qYcAAPEvJBQ=\/pkranges\/qYcAAPEvJBQCAAAAAAAAUA==\/",
 "_ts":1477100776
 },
 ...
],
 "_count": 25
}

HEADER NAME DESCRIPTION

id

maxExclusive The maximum partition key hash value for the partition key
range. For internal use.

minInclusive The minimum partition key hash value for the partition key
range. For internal use.

string pkRangesResponseContinuation = null;
List<PartitionKeyRange> partitionKeyRanges = new List<PartitionKeyRange>();

do
{
 FeedResponse<PartitionKeyRange> pkRangesResponse = await client.ReadPartitionKeyRangeFeedAsync(
 collectionUri,
 new FeedOptions { RequestContinuation = pkRangesResponseContinuation });

 partitionKeyRanges.AddRange(pkRangesResponse);
 pkRangesResponseContinuation = pkRangesResponse.ResponseContinuation;
}
while (pkRangesResponseContinuation != null);

Partition Key Range Properties: Each partition key range includes the metadata properties in the following table:

The ID for the partition key range. This is a stable and
unique ID within each collection.

Must be used in the following call to read changes by
partition key range.

You can do this using one of the supported Azure Cosmos DB SDKs. For example, the following snippet shows how
to retrieve partition key ranges in .NET.

Azure Cosmos DB supports retrieval of documents per partition key range by setting the optional
x-ms-documentdb-partitionkeyrangeid header.

Performing an incremental ReadDocumentFeed

HEADER NAME DESCRIPTION

A-IM Must be set to "Incremental feed", or omitted otherwise

If-None-Match

x-ms-documentdb-partitionkeyrangeid The partition key range ID for reading data.

HEADER NAME DESCRIPTION

etag

GET https://mydocumentdb.documents.azure.com/dbs/bigdb/colls/bigcoll/docs HTTP/1.1
x-ms-max-item-count: 1
If-None-Match: "28535"
A-IM: Incremental feed
x-ms-documentdb-partitionkeyrangeid: 16
x-ms-date: Tue, 22 Nov 2016 20:43:01 GMT
authorization: type%3dmaster%26ver%3d1.0%26sig%3dzdpL2QQ8TCfiNbW%2fEcT88JHNvWeCgDA8gWeRZ%2btfN5o%3d
x-ms-version: 2016-07-11
Accept: application/json
Host: mydocumentdb.documents.azure.com

ReadDocumentFeed supports the following scenarios/tasks for incremental processing of changes in Azure
Cosmos DB collections:

Read all changes to documents from the beginning, that is, from collection creation.
Read all changes to future updates to documents from current time.
Read all changes to documents from a logical version of the collection (ETag). You can checkpoint your
consumers based on the returned ETag from incremental read-feed requests.

The changes include inserts and updates to documents. To capture deletes, you must use a "soft delete" property
within your documents, or use the built-in TTL property to signal a pending deletion in the change feed.

The following table lists the request and response headers for ReadDocumentFeed operations.

Request Headers for incremental ReadDocumentFeed:

No header: returns all changes from the beginning
(collection creation)

"*": returns all new changes to data within the collection

<etag>: If set to a collection ETag, returns all changes
made since that logical timestamp

Response Headers for incremental ReadDocumentFeed:

The logical sequence number (LSN) of last document
returned in the response.

incremental ReadDocumentFeed can be resumed by
resubmitting this value in If-None-Match.

Here's a sample request to return all incremental changes in collection from the logical version/ETag 28535 and
partition key range = 16 :

Changes are ordered by time within each partition key value within the partition key range. There is no guaranteed
order across partition-key values. If there are more results than can fit in a single page, you can read the next page
of results by resubmitting the request with the If-None-Match header with value equal to the etag from the
previous response. If multiple documents were inserted or updated transactionally within a stored procedure or

NOTE

private async Task<Dictionary<string, string>> GetChanges(
 DocumentClient client,
 string collection,
 Dictionary<string, string> checkpoints)
{
 string pkRangesResponseContinuation = null;
 List<PartitionKeyRange> partitionKeyRanges = new List<PartitionKeyRange>();

 do
 {
 FeedResponse<PartitionKeyRange> pkRangesResponse = await client.ReadPartitionKeyRangeFeedAsync(
 collectionUri,
 new FeedOptions { RequestContinuation = pkRangesResponseContinuation });

 partitionKeyRanges.AddRange(pkRangesResponse);
 pkRangesResponseContinuation = pkRangesResponse.ResponseContinuation;
 }
 while (pkRangesResponseContinuation != null);

 foreach (PartitionKeyRange pkRange in partitionKeyRanges)
 {
 string continuation = null;
 checkpoints.TryGetValue(pkRange.Id, out continuation);

 IDocumentQuery<Document> query = client.CreateDocumentChangeFeedQuery(
 collection,
 new ChangeFeedOptions
 {
 PartitionKeyRangeId = pkRange.Id,
 StartFromBeginning = true,
 RequestContinuation = continuation,
 MaxItemCount = 1
 });

 while (query.HasMoreResults)
 {
 FeedResponse<DeviceReading> readChangesResponse = query.ExecuteNextAsync<DeviceReading>().Result;

 foreach (DeviceReading changedDocument in readChangesResponse)
 {
 Console.WriteLine(changedDocument.Id);
 }

 checkpoints[pkRange.Id] = readChangesResponse.ResponseContinuation;
 }
 }

 return checkpoints;
}

trigger, they will all be returned within the same response page.

With change feed, you might get more items returned in a page than specified in x-ms-max-item-count in the case of
multiple documents inserted or updated inside a stored procedures or triggers.

The .NET SDK provides the CreateDocumentChangeFeedQuery and ChangeFeedOptions helper classes to access
changes made to a collection. The following snippet shows how to retrieve all changes from the beginning using
the .NET SDK from a single client.

And the following snippet shows how to process changes in real-time with Azure Cosmos DB by using the change
feed support and the preceding function. The first call returns all the documents in the collection, and the second

https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createdocumentchangefeedquery.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.changefeedoptions.aspx

// Returns all documents in the collection.
Dictionary<string, string> checkpoints = await GetChanges(client, collection, new Dictionary<string, string>());

await client.CreateDocumentAsync(collection, new DeviceReading { DeviceId = "xsensr-201", MetricType = "Temperature", Unit = "Celsius",
MetricValue = 1000 });
await client.CreateDocumentAsync(collection, new DeviceReading { DeviceId = "xsensr-212", MetricType = "Pressure", Unit = "psi",
MetricValue = 1000 });

// Returns only the two documents created above.
checkpoints = await GetChanges(client, collection, checkpoints);

FeedResponse<DeviceReading> readChangesResponse = query.ExecuteNextAsync<DeviceReading>().Result;

foreach (DeviceReading changedDocument in
 readChangesResponse.AsEnumerable().Where(d => d.MetricType == "Temperature" && d.MetricValue > 1000L))
{
 // trigger an action, like call an API
}

Change feed processor library

only returns the two documents created that were created since the last checkpoint.

You can also filter the change feed using client side logic to selectively process events. For example, here's a
snippet that uses client side LINQ to process only temperature change events from device sensors.

The Azure Cosmos DB change feed processor library can be used to distribute event processing from the change
feed across multiple consumers. You should use this implementation when building change feed readers on the
.NET platform. The ChangeFeedProcessorHost class provides a thread-safe, multi-process, safe runtime environment
for event processor implementations that also provides checkpointing and partition lease management.

To use the ChangeFeedProcessorHost class, you can implement IChangeFeedObserver . This interface contains three
methods:

OpenAsync
CloseAsync
ProcessEventsAsync

To start event processing, instantiate ChangeFeedProcessorHost, providing the appropriate parameters for your
Azure Cosmos DB collection. Then, call RegisterObserverAsync to register your IChangeFeedObserver implementation
with the runtime. At this point, the host will attempt to acquire a lease on every partition key range in the Azure
Cosmos DB collection using a "greedy" algorithm. These leases will last for a given timeframe and must then be
renewed. As new nodes, worker instances in this case, come online, they place lease reservations and over time the
load shifts between nodes as each attempts to acquire more leases.

https://github.com/Azure/azure-documentdb-dotnet/blob/master/samples/ChangeFeedProcessor
https://github.com/Azure/azure-documentdb-dotnet/blob/master/samples/ChangeFeedProcessor/DocumentDB.ChangeFeedProcessor/ChangeFeedEventHost.cs
https://github.com/Azure/azure-documentdb-dotnet/blob/master/samples/ChangeFeedProcessor/DocumentDB.ChangeFeedProcessor/IChangeFeedObserver.cs

 class DocumentFeedObserver : IChangeFeedObserver
 {
 private static int s_totalDocs = 0;
 public Task OpenAsync(ChangeFeedObserverContext context)
 {
 Console.WriteLine("Worker opened, {0}", context.PartitionKeyRangeId);
 return Task.CompletedTask; // Requires targeting .NET 4.6+.
 }
 public Task CloseAsync(ChangeFeedObserverContext context, ChangeFeedObserverCloseReason reason)
 {
 Console.WriteLine("Worker closed, {0}", context.PartitionKeyRangeId);
 return Task.CompletedTask;
 }
 public Task ProcessEventsAsync(IReadOnlyList<Document> docs, ChangeFeedObserverContext context)
 {
 Console.WriteLine("Change feed: total {0} doc(s)", Interlocked.Add(ref s_totalDocs, docs.Count));
 return Task.CompletedTask;
 }
 }

Over time, an equilibrium is established. This dynamic capability enables CPU-based autoscaling to be applied to
consumers for both scale-up and scale-down. If changes are available in Azure Cosmos DB at a faster rate than
consumers can process, the CPU increase on consumers can be used to cause an auto-scale on worker instance
count.

The ChangeFeedProcessorHost class also implements an checkpointing mechanism using a separate Azure Cosmos DB
leases collection. This mechanism stores the offset on a per-partition basis, so that each consumer can determine
what the last checkpoint from the previous consumer was. As partitions transition between nodes via leases, this is
the synchronization mechanism that facilitates load shifting.

Here's a code snippet for a simple change feed processor host that prints changes to the console:

The following code snippet shows how to register a new host to listen to changes from an Azure Cosmos DB
collection. Here, we configure a separate collection to manage the leases to partitions across multiple consumers:

 string hostName = Guid.NewGuid().ToString();
 DocumentCollectionInfo documentCollectionLocation = new DocumentCollectionInfo
 {
 Uri = new Uri("https://YOUR_SERVICE.documents.azure.com:443/"),
 MasterKey = "YOUR_SECRET_KEY==",
 DatabaseName = "db1",
 CollectionName = "documents"
 };

 DocumentCollectionInfo leaseCollectionLocation = new DocumentCollectionInfo
 {
 Uri = new Uri("https://YOUR_SERVICE.documents.azure.com:443/"),
 MasterKey = "YOUR_SECRET_KEY==",
 DatabaseName = "db1",
 CollectionName = "leases"
 };

 ChangeFeedEventHost host = new ChangeFeedEventHost(hostName, documentCollectionLocation, leaseCollectionLocation);
 await host.RegisterObserverAsync<DocumentFeedObserver>();

Next steps

In this article, we provided a walkthrough of Azure Cosmos DB's change feed support, and how to track changes
made to Azure Cosmos DB data using the REST API and/or SDKs.

Try the Azure Cosmos DB Change feed code samples on GitHub
Get started coding with the Azure Cosmos DB SDKs or the REST API

https://github.com/Azure/azure-documentdb-dotnet/tree/master/samples/code-samples/ChangeFeed
https://msdn.microsoft.com/library/azure/dn781481.aspx

Working with geospatial and GeoJSON location data
in Azure Cosmos DB
6/6/2017 • 11 min to read • Edit Online

Introduction to spatial data

GeoJSON

Points, LineStrings and Polygons

{
 "type":"Point",
 "coordinates":[31.9, -4.8]
}

NOTE

This article is an introduction to the geospatial functionality in Azure Cosmos DB. After reading this, you will be
able to answer the following questions:

How do I store spatial data in Azure Cosmos DB?
How can I query geospatial data in Azure Cosmos DB in SQL and LINQ?
How do I enable or disable spatial indexing in Azure Cosmos DB?

This article shows how to work with spatial data with the DocumentDB API. Please see this GitHub project for code
samples.

Spatial data describes the position and shape of objects in space. In most applications, these correspond to objects
on the earth, i.e. geospatial data. Spatial data can be used to represent the location of a person, a place of interest,
or the boundary of a city, or a lake. Common use cases often involve proximity queries, for e.g., "find all coffee
shops near my current location".

Azure Cosmos DB supports indexing and querying of geospatial point data that's represented using the GeoJSON
specification. GeoJSON data structures are always valid JSON objects, so they can be stored and queried using
Azure Cosmos DB without any specialized tools or libraries. The Azure Cosmos DB SDKs provide helper classes
and methods that make it easy to work with spatial data.

A Point denotes a single position in space. In geospatial data, a Point represents the exact location, which could be
a street address of a grocery store, a kiosk, an automobile or a city. A point is represented in GeoJSON (and Azure
Cosmos DB) using its coordinate pair or longitude and latitude. Here's an example JSON for a point.

Points in Azure Cosmos DB

The GeoJSON specification specifies longitude first and latitude second. Like in other mapping applications, longitude and
latitude are angles and represented in terms of degrees. Longitude values are measured from the Prime Meridian and are
between -180 and 180.0 degrees, and latitude values are measured from the equator and are between -90.0 and 90.0
degrees.

Azure Cosmos DB interprets coordinates as represented per the WGS-84 reference system. Please see below for more
details about coordinate reference systems.

This can be embedded in an Azure Cosmos DB document as shown in this example of a user profile containing

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/geospatial.md
https://azure.microsoft.com/services/cosmos-db/
https://github.com/Azure/azure-documentdb-dotnet/blob/master/samples/code-samples/Geospatial/Program.cs
https://tools.ietf.org/html/rfc7946

{
 "id":"documentdb-profile",
 "screen_name":"@CosmosDB",
 "city":"Redmond",
 "topics":["global", "distributed"],
 "location":{
 "type":"Point",
 "coordinates":[31.9, -4.8]
 }
}

{
 "type":"Polygon",
 "coordinates":[
 [31.8, -5],
 [31.8, -4.7],
 [32, -4.7],
 [32, -5],
 [31.8, -5]
]
}

NOTE

Coordinate reference systems

Creating documents with spatial data

location data:

Use Profile with Location stored in Azure Cosmos DB

In addition to points, GeoJSON also supports LineStrings and Polygons. LineStrings represent a series of two or
more points in space and the line segments that connect them. In geospatial data, LineStrings are commonly used
to represent highways or rivers. A Polygon is a boundary of connected points that forms a closed LineString.
Polygons are commonly used to represent natural formations like lakes or political jurisdictions like cities and
states. Here's an example of a Polygon in Azure Cosmos DB.

Polygons in GeoJSON

The GeoJSON specification requires that for valid Polygons, the last coordinate pair provided should be the same as the first,
to create a closed shape.

Points within a Polygon must be specified in counter-clockwise order. A Polygon specified in clockwise order represents the
inverse of the region within it.

In addition to Point, LineString and Polygon, GeoJSON also specifies the representation for how to group multiple
geospatial locations, as well as how to associate arbitrary properties with geolocation as a Feature. Since these
objects are valid JSON, they can all be stored and processed in Azure Cosmos DB. However Azure Cosmos DB only
supports automatic indexing of points.

Since the shape of the earth is irregular, coordinates of geospatial data is represented in many coordinate
reference systems (CRS), each with their own frames of reference and units of measurement. For example, the
"National Grid of Britain" is a reference system is very accurate for the United Kingdom, but not outside it.

The most popular CRS in use today is the World Geodetic System WGS-84. GPS devices, and many mapping
services including Google Maps and Bing Maps APIs use WGS-84. Azure Cosmos DB supports indexing and
querying of geospatial data using the WGS-84 CRS only.

http://earth-info.nga.mil/GandG/wgs84/

var userProfileDocument = {
 "name":"documentdb",
 "location":{
 "type":"Point",
 "coordinates":[-122.12, 47.66]
 }
};

client.createDocument(`dbs/${databaseName}/colls/${collectionName}`, userProfileDocument, (err, created) => {
 // additional code within the callback
});

using Microsoft.Azure.Documents.Spatial;

public class UserProfile
{
 [JsonProperty("name")]
 public string Name { get; set; }

 [JsonProperty("location")]
 public Point Location { get; set; }

 // More properties
}

await client.CreateDocumentAsync(
 UriFactory.CreateDocumentCollectionUri("db", "profiles"),
 new UserProfile
 {
 Name = "documentdb",
 Location = new Point (-122.12, 47.66)
 });

Querying spatial types

Spatial SQL built-in functions

When you create documents that contain GeoJSON values, they are automatically indexed with a spatial index in
accordance to the indexing policy of the collection. If you're working with an Azure Cosmos DB SDK in a
dynamically typed language like Python or Node.js, you must create valid GeoJSON.

Create Document with Geospatial data in Node.js

If you're working with the DocumentDB APIs, you can use the Point and Polygon classes within the
Microsoft.Azure.Documents.Spatial namespace to embed location information within your application objects. These

classes help simplify the serialization and deserialization of spatial data into GeoJSON.

Create Document with Geospatial data in .NET

If you don't have the latitude and longitude information, but have the physical addresses or location name like city
or country, you can look up the actual coordinates by using a geocoding service like Bing Maps REST Services.
Learn more about Bing Maps geocoding here.

Now that we've taken a look at how to insert geospatial data, let's take a look at how to query this data using
Azure Cosmos DB using SQL and LINQ.

Azure Cosmos DB supports the following Open Geospatial Consortium (OGC) built-in functions for geospatial
querying. For more details on the complete set of built-in functions in the SQL language, please refer to Query
Azure Cosmos DB.

https://msdn.microsoft.com/library/ff701713.aspx

Usage Description

ST_DISTANCE (spatial_expr, spatial_expr) Returns the distance between the two GeoJSON Point,
Polygon, or LineString expressions.

ST_WITHIN (spatial_expr, spatial_expr) Returns a Boolean expression indicating whether the first
GeoJSON object (Point, Polygon, or LineString) is within the
second GeoJSON object (Point, Polygon, or LineString).

ST_INTERSECTS (spatial_expr, spatial_expr) Returns a Boolean expression indicating whether the two
specified GeoJSON objects (Point, Polygon, or LineString)
intersect.

ST_ISVALID Returns a Boolean value indicating whether the specified
GeoJSON Point, Polygon, or LineString expression is valid.

ST_ISVALIDDETAILED Returns a JSON value containing a Boolean value if the
specified GeoJSON Point, Polygon, or LineString expression is
valid, and if invalid, additionally the reason as a string value.

SELECT f.id
FROM Families f
WHERE ST_DISTANCE(f.location, {'type': 'Point', 'coordinates':[31.9, -4.8]}) < 30000

[{
 "id": "WakefieldFamily"
}]

Spatial functions can be used to perform proximity queries against spatial data. For example, here's a query that
returns all family documents that are within 30 km of the specified location using the ST_DISTANCE built-in
function.

Query

Results

If you include spatial indexing in your indexing policy, then "distance queries" will be served efficiently through the
index. For more details on spatial indexing, please see the section below. If you don't have a spatial index for the
specified paths, you can still perform spatial queries by specifying x-ms-documentdb-query-enable-scan request header
with the value set to "true". In .NET, this can be done by passing the optional FeedOptions argument to queries
with EnableScanInQuery set to true.

ST_WITHIN can be used to check if a point lies within a Polygon. Commonly Polygons are used to represent
boundaries like zip codes, state boundaries, or natural formations. Again if you include spatial indexing in your
indexing policy, then "within" queries will be served efficiently through the index.

Polygon arguments in ST_WITHIN can contain only a single ring, i.e. the Polygons must not contain holes in them.

Query

https://msdn.microsoft.com/library/microsoft.azure.documents.client.feedoptions.enablescaninquery.aspx#P:Microsoft.Azure.Documents.Client.FeedOptions.EnableScanInQuery

SELECT *
FROM Families f
WHERE ST_WITHIN(f.location, {
 'type':'Polygon',
 'coordinates': [[[31.8, -5], [32, -5], [32, -4.7], [31.8, -4.7], [31.8, -5]]]
})

[{
 "id": "WakefieldFamily",
}]

NOTE

SELECT *
FROM Areas a
WHERE ST_WITHIN({'type': 'Point', 'coordinates':[31.9, -4.8]}, a.location)

[{
 "id": "MyDesignatedLocation",
 "location": {
 "type":"Polygon",
 "coordinates": [[[31.8, -5], [32, -5], [32, -4.7], [31.8, -4.7], [31.8, -5]]]
 }
}]

SELECT ST_ISVALID({ "type": "Point", "coordinates": [31.9, -132.8] })

[{
 "$1": false
}]

Results

Similar to how mismatched types works in Azure Cosmos DB query, if the location value specified in either argument is
malformed or invalid, then it will evaluate to undefined and the evaluated document to be skipped from the query results.
If your query returns no results, run ST_ISVALIDDETAILED To debug why the spatail type is invalid.

Azure Cosmos DB also supports performing inverse queries, i.e. you can index Polygons or lines in Azure Cosmos
DB, then query for the areas that contain a specified point. This pattern is commonly used in logistics to identify
e.g. when a truck enters or leaves a designated area.

Query

Results

ST_ISVALID and ST_ISVALIDDETAILED can be used to check if a spatial object is valid. For example, the following
query checks the validity of a point with an out of range latitude value (-132.8). ST_ISVALID returns just a Boolean
value, and ST_ISVALIDDETAILED returns the Boolean and a string containing the reason why it is considered
invalid.

** Query **

Results

SELECT ST_ISVALIDDETAILED({ "type": "Polygon", "coordinates": [[
 [31.8, -5], [31.8, -4.7], [32, -4.7], [32, -5]
]]})

[{
 "$1": {
 "valid": false,
 "reason": "The Polygon input is not valid because the start and end points of the ring number 1 are not the same. Each ring of a Polygon
must have the same start and end points."
 }
}]

LINQ Querying in the .NET SDK

foreach (UserProfile user in client.CreateDocumentQuery<UserProfile>(UriFactory.CreateDocumentCollectionUri("db", "profiles"))
 .Where(u => u.ProfileType == "Public" && a.Location.Distance(new Point(32.33, -4.66)) < 30000))
{
 Console.WriteLine("\t" + user);
}

Polygon rectangularArea = new Polygon(
 new[]
 {
 new LinearRing(new [] {
 new Position(31.8, -5),
 new Position(32, -5),
 new Position(32, -4.7),
 new Position(31.8, -4.7),
 new Position(31.8, -5)
 })
 });

foreach (UserProfile user in client.CreateDocumentQuery<UserProfile>(UriFactory.CreateDocumentCollectionUri("db", "profiles"))
 .Where(a => a.Location.Within(rectangularArea)))
{
 Console.WriteLine("\t" + user);
}

These functions can also be used to validate Polygons. For example, here we use ST_ISVALIDDETAILED to validate
a Polygon that is not closed.

Query

Results

The DocumentDB .NET SDK also providers stub methods Distance() and Within() for use within LINQ expressions.
The DocumentDB LINQ provider translates these method calls to the equivalent SQL built-in function calls
(ST_DISTANCE and ST_WITHIN respectively).

Here's an example of a LINQ query that finds all documents in the Azure Cosmos DB collection whose "location"
value is within a radius of 30km of the specified point using LINQ.

LINQ query for Distance

Similarly, here's a query for finding all the documents whose "location" is within the specified box/Polygon.

LINQ query for Within

Now that we've taken a look at how to query documents using LINQ and SQL, let's take a look at how to configure

Indexing

NOTE

Azure Cosmos DB for spatial indexing.

As we described in the Schema Agnostic Indexing with Azure Cosmos DB paper, we designed Azure Cosmos DB’s
database engine to be truly schema agnostic and provide first class support for JSON. The write optimized
database engine of Azure Cosmos DB natively understands spatial data (points, Polygons and lines) represented in
the GeoJSON standard.

In a nutshell, the geometry is projected from geodetic coordinates onto a 2D plane then divided progressively into
cells using a quadtree. These cells are mapped to 1D based on the location of the cell within a Hilbert space
filling curve, which preserves locality of points. Additionally when location data is indexed, it goes through a
process known as tessellation, i.e. all the cells that intersect a location are identified and stored as keys in the
Azure Cosmos DB index. At query time, arguments like points and Polygons are also tessellated to extract the
relevant cell ID ranges, then used to retrieve data from the index.

If you specify an indexing policy that includes spatial index for /* (all paths), then all points found within the
collection are indexed for efficient spatial queries (ST_WITHIN and ST_DISTANCE). Spatial indexes do not have a
precision value, and always use a default precision value.

Azure Cosmos DB supports automatic indexing of Points, Polygons, and LineStrings

The following JSON snippet shows an indexing policy with spatial indexing enabled, i.e. index any GeoJSON point
found within documents for spatial querying. If you are modifying the indexing policy using the Azure Portal, you
can specify the following JSON for indexing policy to enable spatial indexing on your collection.

Collection Indexing Policy JSON with Spatial enabled for points and Polygons

http://www.vldb.org/pvldb/vol8/p1668-shukla.pdf

{
 "automatic":true,
 "indexingMode":"Consistent",
 "includedPaths":[
 {
 "path":"/*",
 "indexes":[
 {
 "kind":"Range",
 "dataType":"String",
 "precision":-1
 },
 {
 "kind":"Range",
 "dataType":"Number",
 "precision":-1
 },
 {
 "kind":"Spatial",
 "dataType":"Point"
 },
 {
 "kind":"Spatial",
 "dataType":"Polygon"
 }
]
 }
],
 "excludedPaths":[
]
}

DocumentCollection spatialData = new DocumentCollection()
spatialData.IndexingPolicy = new IndexingPolicy(new SpatialIndex(DataType.Point)); //override to turn spatial on by default
collection = await client.CreateDocumentCollectionAsync(UriFactory.CreateDatabaseUri("db"), spatialData);

Console.WriteLine("Updating collection with spatial indexing enabled in indexing policy...");
collection.IndexingPolicy = new IndexingPolicy(new SpatialIndex(DataType.Point));
await client.ReplaceDocumentCollectionAsync(collection);

Console.WriteLine("Waiting for indexing to complete...");
long indexTransformationProgress = 0;
while (indexTransformationProgress < 100)
{
 ResourceResponse<DocumentCollection> response = await
client.ReadDocumentCollectionAsync(UriFactory.CreateDocumentCollectionUri("db", "coll"));
 indexTransformationProgress = response.IndexTransformationProgress;

 await Task.Delay(TimeSpan.FromSeconds(1));
}

Here's a code snippet in .NET that shows how to create a collection with spatial indexing turned on for all paths
containing points.

Create a collection with spatial indexing

And here's how you can modify an existing collection to take advantage of spatial indexing over any points that
are stored within documents.

Modify an existing collection with spatial indexing

NOTE

Next steps

If the location GeoJSON value within the document is malformed or invalid, then it will not get indexed for spatial querying.
You can validate location values using ST_ISVALID and ST_ISVALIDDETAILED.

If your collection definition includes a partition key, indexing transformation progress is not reported.

Now that you've learnt about how to get started with geospatial support in Azure Cosmos DB, you can:

Start coding with the Geospatial .NET code samples on GitHub
Get hands on with geospatial querying at the Azure Cosmos DB Query Playground
Learn more about Azure Cosmos DB Query
Learn more about Azure Cosmos DB Indexing Policies

https://github.com/Azure/azure-documentdb-dotnet/blob/fcf23d134fc5019397dcf7ab97d8d6456cd94820/samples/code-samples/Geospatial/Program.cs
http://www.documentdb.com/sql/demo#geospatial

How does Azure Cosmos DB index data?
6/9/2017 • 19 min to read • Edit Online

Customizing the indexing policy of a collection

DocumentCollection collection = new DocumentCollection { Id = "myCollection" };

collection.IndexingPolicy = new IndexingPolicy(new RangeIndex(DataType.String) { Precision = -1 });
collection.IndexingPolicy.IndexingMode = IndexingMode.Consistent;

await client.CreateDocumentCollectionAsync(UriFactory.CreateDatabaseUri("db"), collection);

By default, all Azure Cosmos DB data is indexed. And while many customers are happy to let Azure Cosmos DB
automatically handle all aspects of indexing, Azure Cosmos DB also supports specifying a custom indexing
policy for collections during creation. Indexing policies in Azure Cosmos DB are more flexible and powerful than
secondary indexes offered in other database platforms, because they let you design and customize the shape of
the index without sacrificing schema flexibility. To learn how indexing works in Azure Cosmos DB, you must
understand that by managing indexing policy, you can make fine-grained tradeoffs between index storage
overhead, write and query throughput, and query consistency.

In this article, we take a close look at Azure Cosmos DB indexing policies, how you can customize indexing
policy, and the associated trade-offs.

After reading this article, you'll be able to answer the following questions:

How can I override the properties to include or exclude from indexing?
How can I configure the index for eventual updates?
How can I configure indexing to perform Order By or range queries?
How do I make changes to a collection’s indexing policy?
How do I compare storage and performance of different indexing policies?

Developers can customize the trade-offs between storage, write/query performance, and query consistency, by
overriding the default indexing policy on an Azure Cosmos DB collection and configuring the following aspects.

Including/Excluding documents and paths to/from index. Developers can choose certain documents to
be excluded or included in the index at the time of inserting or replacing them to the collection. Developers
can also choose to include or exclude certain JSON properties a.k.a. paths (including wildcard patterns) to be
indexed across documents which are included in an index.
Configuring Various Index Types. For each of the included paths, developers can also specify the type of
index they require over a collection based on their data and expected query workload and the numeric/string
“precision” for each path.
Configuring Index Update Modes. Azure Cosmos DB supports three indexing modes which can be
configured via the indexing policy on an Azure Cosmos DB collection: Consistent, Lazy and None.

The following .NET code snippet shows how to set a custom indexing policy during the creation of a collection.
Here we set the policy with Range index for strings and numbers at the maximum precision. This policy lets us
execute Order By queries against strings.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/indexing-policies.md

NOTE

Database indexing modes

NOTE

CONSISTENCY INDEXING MODE: CONSISTENT INDEXING MODE: LAZY

Strong Strong Eventual

Bounded Staleness Bounded Staleness Eventual

Session Session Eventual

Eventual Eventual Eventual

The JSON schema for indexing policy was changed with the release of REST API version 2015-06-03 to support Range
indexes against strings. .NET SDK 1.2.0 and Java, Python, and Node.js SDKs 1.1.0 support the new policy schema. Older
SDKs use the REST API version 2015-04-08 and support the older schema of Indexing Policy.

By default, Azure Cosmos DB indexes all string properties within documents consistently with a Hash index, and numeric
properties with a Range index.

Azure Cosmos DB supports three indexing modes which can be configured via the indexing policy on an Azure
Cosmos DB collection – Consistent, Lazy and None.

Consistent: If an Azure Cosmos DB collection’s policy is designated as "consistent", the queries on a given Azure
Cosmos DB collection follow the same consistency level as specified for the point-reads (i.e. strong, bounded-
staleness, session or eventual). The index is updated synchronously as part of the document update (i.e. insert,
replace, update, and delete of a document in an Azure Cosmos DB collection). Consistent indexing supports
consistent queries at the cost of possible reduction in write throughput. This reduction is a function of the
unique paths that need to be indexed and the “consistency level”. Consistent indexing mode is designed for
“write quickly, query immediately” workloads.

Lazy: To allow maximum document ingestion throughput, an Azure Cosmos DB collection can be configured
with lazy consistency; meaning queries are eventually consistent. The index is updated asynchronously when an
Azure Cosmos DB collection is quiescent i.e. when the collection’s throughput capacity is not fully utilized to
serve user requests. For "ingest now, query later" workloads requiring unhindered document ingestion, "lazy"
indexing mode may be suitable.

None: A collection marked with index mode of “None” has no index associated with it. This is commonly used if
Azure Cosmos DB is utilized as a key-value storage and documents are accessed only by their ID property.

Configuring the indexing policy with “None” has the side effect of dropping any existing index. Use this if your access
patterns are only require “id” and/or “self-link”.

The following sample show how create an Azure Cosmos DB collection using the .NET SDK with consistent
automatic indexing on all document insertions.

The following table shows the consistency for queries based on the indexing mode (Consistent and Lazy)
configured for the collection and the consistency level specified for the query request. This applies to queries
made using any interface - REST API, SDKs or from within stored procedures and triggers.

Azure Cosmos DB returns an error for queries made on collections with None indexing mode. Queries can still
be executed as scans via the explicit x-ms-documentdb-enable-scan header in the REST API or the EnableScanInQuery

CONSISTENCY
INDEXING MODE:
CONSISTENT INDEXING MODE: LAZY INDEXING MODE: NONE

Strong Strong Eventual Strong

Bounded Staleness Bounded Staleness Eventual Bounded Staleness

Session Session Eventual Session

Eventual Eventual Eventual Eventual

 // Default collection creates a hash index for all string fields and a range index for all numeric
 // fields. Hash indexes are compact and offer efficient performance for equality queries.

 var collection = new DocumentCollection { Id ="defaultCollection" };

 collection.IndexingPolicy.IndexingMode = IndexingMode.Consistent;

 collection = await client.CreateDocumentCollectionAsync(UriFactory.CreateDatabaseUri("mydb"), collection);

Index paths

PATH DESCRIPTION/USE CASE

/ Default path for collection. Recursive and applies to whole
document tree.

/prop/? Index path required to serve queries like the following (with
Hash or Range types respectively):

SELECT FROM collection c WHERE c.prop = "value"

SELECT FROM collection c WHERE c.prop > 5

SELECT FROM collection c ORDER BY c.prop

request option using the .NET SDK. Some query features like ORDER BY are not supported as scans with
EnableScanInQuery .

The following table shows the consistency for queries based on the indexing mode (Consistent, Lazy, and None)
when EnableScanInQuery is specified.

The following code sample show how create an Azure Cosmos DB collection using the .NET SDK with consistent
indexing on all document insertions.

Azure Cosmos DB models JSON documents and the index as trees, and allows you to tune to policies for paths
within the tree. Within documents, you can choose which paths must be included or excluded from indexing.
This can offer improved write performance and lower index storage for scenarios when the query patterns are
known beforehand.

Index paths start with the root (/) and typically end with the ? wildcard operator, denoting that there are multiple
possible values for the prefix. For example, to serve SELECT * FROM Families F WHERE F.familyName =
"Andersen", you must include an index path for /familyName/? in the collection’s index policy.

Index paths can also use the * wildcard operator to specify the behavior for paths recursively under the prefix.
For example, /payload/* can be used to exclude everything under the payload property from indexing.

Here are the common patterns for specifying index paths:

/prop/* Index path for all paths under the specified label. Works with
the following queries

SELECT FROM collection c WHERE c.prop = "value"

SELECT FROM collection c WHERE c.prop.subprop > 5

SELECT FROM collection c WHERE c.prop.subprop.nextprop
= "value"

SELECT FROM collection c ORDER BY c.prop

/props/[]/? Index path required to serve iteration and JOIN queries
against arrays of scalars like ["a", "b", "c"]:

SELECT tag FROM tag IN collection.props WHERE tag =
"value"

SELECT tag FROM collection c JOIN tag IN c.props WHERE
tag > 5

/props/[]/subprop/? Index path required to serve iteration and JOIN queries
against arrays of objects like [{subprop: "a"}, {subprop: "b"}]:

SELECT tag FROM tag IN collection.props WHERE
tag.subprop = "value"

SELECT tag FROM collection c JOIN tag IN c.props WHERE
tag.subprop = "value"

/prop/subprop/? Index path required to serve queries (with Hash or Range
types respectively):

SELECT FROM collection c WHERE c.prop.subprop = "value"

SELECT FROM collection c WHERE c.prop.subprop > 5

PATH DESCRIPTION/USE CASE

NOTE

While setting custom index paths, you are required to specify the default indexing rule for the entire document tree
denoted by the special path "/*".

The following example configures a specific path with range indexing and a custom precision value of 20 bytes:

var collection = new DocumentCollection { Id = "rangeSinglePathCollection" };

collection.IndexingPolicy.IncludedPaths.Add(
 new IncludedPath {
 Path = "/Title/?",
 Indexes = new Collection<Index> {
 new RangeIndex(DataType.String) { Precision = 20 } }
 });

// Default for everything else
collection.IndexingPolicy.IncludedPaths.Add(
 new IncludedPath {
 Path = "/*" ,
 Indexes = new Collection<Index> {
 new HashIndex(DataType.String) { Precision = 3 },
 new RangeIndex(DataType.Number) { Precision = -1 }
 }
 });

collection = await client.CreateDocumentCollectionAsync(UriFactory.CreateDatabaseUri("db"), pathRange);

Index data types, kinds and precisions

Index kindIndex kind

NOTE

INDEX KIND DESCRIPTION/USE CASE

Now that we've taken a look at how to specify paths, let's look at the options we can use to configure the
indexing policy for a path. You can specify one or more indexing definitions for every path:

Data type: String, Number, Point, Polygon, or LineString (can contain only one entry per data type per
path)
Index kind: Hash (equality queries), Range (equality, range or Order By queries), or Spatial (spatial queries)
Precision: 1-8 or -1 (Maximum precision) for numbers, 1-100 (Maximum precision) for string

Azure Cosmos DB supports Hash and Range index kinds for every path (that can configured for strings, numbers
or both).

Hash supports efficient equality and JOIN queries. For most use cases, hash indexes do not need a higher
precision than the default value of 3 bytes. DataType can be String or Number.
Range supports efficient equality queries, range queries (using >, <, >=, <=, !=), and Order By queries.
Order By queries by default also require maximum index precision (-1). DataType can be String or Number.

Azure Cosmos DB also supports the Spatial index kind for every path, that can be specified for the Point,
Polygon, or LineString data types. The value at the specified path must be a valid GeoJSON fragment like
{"type": "Point", "coordinates": [0.0, 10.0]} .

Spatial supports efficient spatial (within and distance) queries. DataType can be Point, Polygon, or LineString.

Azure Cosmos DB supports automatic indexing of Points, Polygons, and LineStrings.

Here are the supported index kinds and examples of queries that they can be used to serve:

Hash Hash over /prop/? (or /) can be used to serve the following
queries efficiently:

SELECT FROM collection c WHERE c.prop = "value"

Hash over /props/[]/? (or / or /props/) can be used to serve
the following queries efficiently:

SELECT tag FROM collection c JOIN tag IN c.props WHERE
tag = 5

Range Range over /prop/? (or /) can be used to serve the following
queries efficiently:

SELECT FROM collection c WHERE c.prop = "value"

SELECT FROM collection c WHERE c.prop > 5

SELECT FROM collection c ORDER BY c.prop

Spatial Range over /prop/? (or /) can be used to serve the following
queries efficiently:

SELECT FROM collection c

WHERE ST_DISTANCE(c.prop, {"type": "Point", "coordinates":
[0.0, 10.0]}) < 40

SELECT FROM collection c WHERE ST_WITHIN(c.prop, {"type":
"Polygon", ... }) --with indexing on points enabled

SELECT FROM collection c WHERE ST_WITHIN({"type":
"Point", ... }, c.prop) --with indexing on polygons enabled

INDEX KIND DESCRIPTION/USE CASE

Index precisionIndex precision

By default, an error is returned for queries with range operators such as >= if there is no range index (of any
precision) in order to signal that a scan might be necessary to serve the query. Range queries can be performed
without a range index using the x-ms-documentdb-enable-scan header in the REST API or the
EnableScanInQuery request option using the .NET SDK. If there are any other filters in the query that Azure
Cosmos DB can use the index to filter against, then no error will be returned.

The same rules apply for spatial queries. By default, an error is returned for spatial queries if there is no spatial
index, and there are no other filters that can be served from the index. They can be performed as a scan using x-
ms-documentdb-enable-scan/EnableScanInQuery.

Index precision lets you tradeoff between index storage overhead and query performance. For numbers, we
recommend using the default precision configuration of -1 ("maximum"). Since numbers are 8 bytes in JSON,
this is equivalent to a configuration of 8 bytes. Picking a lower value for precision, such as 1-7, means that
values within some ranges map to the same index entry. Therefore you will reduce index storage space, but
query execution might have to process more documents and consequently consume more throughput i.e.,
request units.

Index precision configuration has more practical application with string ranges. Since strings can be any
arbitrary length, the choice of the index precision can impact the performance of string range queries, and
impact the amount of index storage space required. String range indexes can be configured with 1-100 or -1
("maximum"). If you would like to perform Order By queries against string properties, then you must specify a
precision of -1 for the corresponding paths.

var rangeDefault = new DocumentCollection { Id = "rangeCollection" };

// Override the default policy for Strings to range indexing and "max" (-1) precision
rangeDefault.IndexingPolicy = new IndexingPolicy(new RangeIndex(DataType.String) { Precision = -1 });

await client.CreateDocumentCollectionAsync(UriFactory.CreateDatabaseUri("db"), rangeDefault);

NOTE

var collection = new DocumentCollection { Id = "excludedPathCollection" };
collection.IndexingPolicy.IncludedPaths.Add(new IncludedPath { Path = "/*" });
collection.IndexingPolicy.ExcludedPaths.Add(new ExcludedPath { Path = "/nonIndexedContent/*" });

collection = await client.CreateDocumentCollectionAsync(UriFactory.CreateDatabaseUri("db"), excluded);

Opting in and opting out of indexing

// If you want to override the default collection behavior to either
// exclude (or include) a Document from indexing,
// use the RequestOptions.IndexingDirective property.
client.CreateDocumentAsync(UriFactory.CreateDocumentCollectionUri("db", "coll"),
 new { id = "AndersenFamily", isRegistered = true },
 new RequestOptions { IndexingDirective = IndexingDirective.Include });

Modifying the indexing policy of a collection

Spatial indexes always use the default index precision for all types (Points, LineStrings, and Polygons) and
cannot be overriden.

The following example shows how to increase the precision for range indexes in a collection using the .NET SDK.

Create a collection with a custom index precision

Azure Cosmos DB returns an error when a query uses Order By but does not have a range index against the queried path
with the maximum precision.

Similarly, paths can be completely excluded from indexing. The next example shows how to exclude an entire
section of the documents (a.k.a. a sub-tree) from indexing using the "*" wildcard.

You can choose whether you want the collection to automatically index all documents. By default, all documents
are automatically indexed, but you can choose to turn it off. When indexing is turned off, documents can be
accessed only through their self-links or by queries using ID.

With automatic indexing turned off, you can still selectively add only specific documents to the index.
Conversely, you can leave automatic indexing on and selectively choose to exclude only specific documents.
Indexing on/off configurations are useful when you have only a subset of documents that need to be queried.

For example, the following sample shows how to include a document explicitly using the DocumentDB API .NET
SDK and the RequestOptions.IndexingDirective property.

Azure Cosmos DB allows you to make changes to the indexing policy of a collection on the fly. A change in
indexing policy on an Azure Cosmos DB collection can lead to a change in the shape of the index including the
paths can be indexed, their precision, as well as the consistency model of the index itself. Thus a change in
indexing policy, effectively requires a transformation of the old index into a new one.

https://github.com/Azure/azure-documentdb-java
http://msdn.microsoft.com/library/microsoft.azure.documents.client.requestoptions.indexingdirective.aspx

Online Index Transformations

Index transformations are made online, meaning that the documents indexed per the old policy are efficiently
transformed per the new policy without affecting the write availability or the provisioned throughput of
the collection. The consistency of read and write operations made using the REST API, SDKs or from within
stored procedures and triggers is not impacted during index transformation. This means that there is no
performance degradation or downtime to your apps when you make an indexing policy change.

However, during the time that index transformation is progress, queries are eventually consistent regardless of
the indexing mode configuration (Consistent or Lazy). This also applies to queries from all interfaces – REST API,
SDKs, and from within stored procedures and triggers. Just like with Lazy indexing, index transformation is
performed asynchronously in the background on the replicas using the spare resources available for a given
replica.

Index transformations are also made in-situ (in place), i.e. Azure Cosmos DB does not maintain two copies of
the index and swap the old index out with the new one. This means that no additional disk space is required or
consumed in your collections while performing index transformations.

When you change indexing policy, how the changes are applied to move from the old index to the new one
depend primarily on the indexing mode configurations more so than the other values like included/excluded
paths, index kinds and precisions. If both your old and new policies use consistent indexing, then Azure Cosmos
DB performs an online index transformation. You cannot apply another indexing policy change with consistent
indexing mode while the transformation is in progress.

You can however move to Lazy or None indexing mode while a transformation is in progress.

When you move to Lazy, the index policy change is made effective immediately and Azure Cosmos DB starts
recreating the index asynchronously.
When you move to None, then the index is dropped effective immediately. Moving to None is useful when
you want to cancel an in progress transformation and start fresh with a different indexing policy.

If you’re using the .NET SDK, you can kick of an indexing policy change using the new
ReplaceDocumentCollectionAsync method and track the percentage progress of the index transformation
using the IndexTransformationProgress response property from a ReadDocumentCollectionAsync call.
Other SDKs and the REST API support equivalent properties and methods for making indexing policy changes.

Here's a code snippet that shows how to modify a collection's indexing policy from Consistent indexing mode to
Lazy.

// Switch to lazy indexing.
Console.WriteLine("Changing from Default to Lazy IndexingMode.");

collection.IndexingPolicy.IndexingMode = IndexingMode.Lazy;

await client.ReplaceDocumentCollectionAsync(collection);

long smallWaitTimeMilliseconds = 1000;
long progress = 0;

while (progress < 100)
{
 ResourceResponse<DocumentCollection> collectionReadResponse = await client.ReadDocumentCollectionAsync(
 UriFactory.CreateDocumentCollectionUri("db", "coll"));

 progress = collectionReadResponse.IndexTransformationProgress;

 await Task.Delay(TimeSpan.FromMilliseconds(smallWaitTimeMilliseconds));
}

// Switch to lazy indexing.
Console.WriteLine("Dropping index by changing to to the None IndexingMode.");

collection.IndexingPolicy.IndexingMode = IndexingMode.None;

await client.ReplaceDocumentCollectionAsync(collection);

NOTE

Modify Indexing Policy from Consistent to Lazy

You can check the progress of an index transformation by calling ReadDocumentCollectionAsync, for example,
as shown below.

Track Progress of Index Transformation

You can drop the index for a collection by moving to the None indexing mode. This might be a useful
operational tool if you want to cancel an in-progress transformation and start a new one immediately.

Dropping the index for a collection

When would you make indexing policy changes to your Azure Cosmos DB collections? The following are the
most common use cases:

Serve consistent results during normal operation, but fall back to lazy indexing during bulk data imports
Start using new indexing features on your current Azure Cosmos DB collections, e.g., like geospatial querying
which require the Spatial index kind, or Order By/string range queries which require the string Range index
kind
Hand select the properties to be indexed and change them over time
Tune indexing precision to improve query performance or reduce storage consumed

To modify indexing policy using ReplaceDocumentCollectionAsync, you need version >= 1.3.0 of the .NET SDK

For index transformation to complete successfully, you must ensure that there is sufficient free storage space available on
the collection. If the collection reaches its storage quota, then the index transformation will be paused. Index
transformation will automatically resume once storage space is available, e.g. if you delete some documents.

Performance tuning

 // Measure the document size usage (which includes the index size) against
 // different policies.
 ResourceResponse<DocumentCollection> collectionInfo = await
client.ReadDocumentCollectionAsync(UriFactory.CreateDocumentCollectionUri("db", "coll"));
 Console.WriteLine("Document size quota: {0}, usage: {1}", collectionInfo.DocumentQuota, collectionInfo.DocumentUsage);

 // Measure the performance (request units) of writes.
 ResourceResponse<Document> response = await client.CreateDocumentAsync(UriFactory.CreateDocumentCollectionUri("db", "coll"),
myDocument);
 Console.WriteLine("Insert of document consumed {0} request units", response.RequestCharge);

 // Measure the performance (request units) of queries.
 IDocumentQuery<dynamic> queryable = client.CreateDocumentQuery(UriFactory.CreateDocumentCollectionUri("db", "coll"),
queryString).AsDocumentQuery();

 double totalRequestCharge = 0;
 while (queryable.HasMoreResults)
 {
 FeedResponse<dynamic> queryResponse = await queryable.ExecuteNextAsync<dynamic>();
 Console.WriteLine("Query batch consumed {0} request units",queryResponse.RequestCharge);
 totalRequestCharge += queryResponse.RequestCharge;
 }

 Console.WriteLine("Query consumed {0} request units in total", totalRequestCharge);

Changes to the indexing policy specification

The DocumentDB APIs provide information about performance metrics such as the index storage used, and the
throughput cost (request units) for every operation. This information can be used to compare various indexing
policies and for performance tuning.

To check the storage quota and usage of a collection, run a HEAD or GET request against the collection resource,
and inspect the x-ms-request-quota and the x-ms-request-usage headers. In the .NET SDK, the
DocumentSizeQuota and DocumentSizeUsage properties in ResourceResponse contain these corresponding
values.

To measure the overhead of indexing on each write operation (create, update, or delete), inspect the x-ms-
request-charge header (or the equivalent RequestCharge property in ResourceResponse in the .NET SDK) to
measure the number of request units consumed by these operations.

A change in the schema for indexing policy was introduced on July 7, 2015 with REST API version 2015-06-03.
The corresponding classes in the SDK versions have new implementations to match the schema.

The following changes were implemented in the JSON specification:

Indexing Policy supports Range indexes for strings
Each path can have multiple index definitions, one for each data type
Indexing precision supports 1-8 for numbers, 1-100 for strings, and -1 (maximum precision)
Paths segments do not require a double quotation to escape each path. For example, you can add a path for
/title/? instead of /"title"/?
The root path representing "all paths" can be represented as /* (in addition to /)

If you have code that provisions collections with a custom indexing policy written with version 1.1.0 of the .NET
SDK or older, you will need to change your application code to handle these changes in order to move to SDK
version 1.2.0. If you do not have code that configures indexing policy, or plan to continue using an older SDK

http://msdn.microsoft.com/library/dn850325.aspx
http://msdn.microsoft.com/library/azure/dn850324.aspx
http://msdn.microsoft.com/library/dn799209.aspx
http://msdn.microsoft.com/library/dn799099.aspx
http://msdn.microsoft.com/library/dn799209.aspx

{
 "automatic":true,
 "indexingMode":"Consistent",
 "IncludedPaths":[
 {
 "IndexType":"Hash",
 "Path":"/",
 "NumericPrecision":7,
 "StringPrecision":3
 }
],
 "ExcludedPaths":[
 "/\"nonIndexedContent\"/*"
]
}

{
 "automatic":true,
 "indexingMode":"Consistent",
 "includedPaths":[
 {
 "path":"/*",
 "indexes":[
 {
 "kind":"Hash",
 "dataType":"String",
 "precision":3
 },
 {
 "kind":"Hash",
 "dataType":"Number",
 "precision":7
 }
]
 }
],
 "ExcludedPaths":[
 {
 "path":"/nonIndexedContent/*"
 }
]
}

Next Steps

version, no changes are required.

For a practical comparison, here is one example custom indexing policy written using the REST API version
2015-06-03 as well as the previous version 2015-04-08.

Previous Indexing Policy JSON

Current Indexing Policy JSON

Follow the links below for index policy management samples and to learn more about Azure Cosmos DB's query
language.

1. DocumentDB API .NET Index Management code samples
2. DocumentDB API REST Collection Operations
3. Query with SQL

https://github.com/Azure/azure-documentdb-net/blob/master/samples/code-samples/IndexManagement/Program.cs
https://msdn.microsoft.com/library/azure/dn782195.aspx

Azure Cosmos DB as a key value store – Cost
overview
6/6/2017 • 4 min to read • Edit Online

Why we use Request Units (RUs)

Why we use Request Units (RUs)

Azure Cosmos DB is a globally distributed, multi-model database service for building highly available, large scale
applications easily. By default, Azure Cosmos DB automatically indexes all the data it ingests, efficiently. This
enables fast and consistent SQL (and JavaScript) queries on any kind of data.

This article describes the cost of Azure Cosmos DB for simple write and read operations when it’s used as a
key/value store. Write operations include inserts, replaces, deletes, and upserts of documents. Besides guaranteeing
99.99% high availability, Azure Cosmos DB offers guaranteed <10 ms latency for reads and <15 ms latency for the
(indexed) writes respectively, at the 99th percentile.

Azure Cosmos DB performance is based on the amount of provisioned Request Units (RU) for the partition. The
provisioning is at a second granularity and is purchased in RUs/sec (not to be confused with the hourly billing).
RUs should be considered as a currency that simplifies the provisioning of required throughput for the application.
Our customers do not have to think of differentiating between read and write capacity units. The single currency
model of RUs creates efficiencies to share the provisioned capacity between reads and writes. This provisioned
capacity model enables the service to provide a predictable and consistent throughput, guaranteed low latency, and
high availability. Finally, we use RU to model throughput but each provisioned RU has also a defined amount of
resources (Memory, Core). RU/sec is not only IOPS.

As a globally distributed database system, Azure Cosmos DB is the only Azure service that provides an SLA on
latency, throughput, and consistency in addition to high availability. The throughput you provision is applied to
each of the regions associated with your Azure Cosmos DB database account. For reads, Azure Cosmos DB offers
multiple, well-defined consistency levels for you to choose from. Azure Cosmos DB is a globally distributed, multi-
model database service for building highly available, large scale, globally distributed applications easily. By default,
Cosmos DB automatically indexes all the data it ingests, efficiently. This enables fast and consistent SQL (and
JavaScript) queries on any kind of data.

This article describes the cost of Cosmos DB for simple write and read operations when it’s used as a key/value
store. Write operations include inserts, replaces, deletes, and upserts of documents. Besides guaranteeing 99.99%
high availability, Cosmos DB offers guaranteed <10 ms latency for reads and <15 ms latency for the (indexed)
writes respectively, at the 99th percentile.

Cosmos DB performance is based on the amount of provisioned Request Units (RU) for the partition. The
provisioning is at a second granularity and is purchased in RUs/sec and RUs/min (not to be confused with the
hourly billing). RUs should be considered as a currency that simplifies the provisioning of required throughput for
the application. Our customers do not have to think of differentiating between read and write capacity units. The
single currency model of RUs creates efficiencies to share the provisioned capacity between reads and writes. This
provisioned capacity model enables the service to provide a predictable and consistent throughput, guaranteed low
latency, and high availability. Finally, we use RU to model throughput but each provisioned RU has also a defined
amount of resources (Memory, Core). RU/sec is not only IOPS.

As a globally distributed database system, Cosmos DB is the only Azure service that provides an SLA on latency,
throughput, and consistency in addition to high availability. The throughput you provision is applied to each of the

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/key-value-store-cost.md
https://azure.microsoft.com/pricing/details/cosmos-db/
https://azure.microsoft.com/pricing/details/cosmos-db/

ITEM SIZE 1 READ 1 WRITE

1 KB 1 RU 5 RUs

100 KB 10 RUs 50 RUs

Cost of Reads and Writes

ITEM SIZE 1M READ 1M WRITE

1 KB $0.022 $0.111

100 KB $0.222 $1.111

Next steps

regions associated with your Cosmos DB database account. For reads, Cosmos DB offers multiple, well-defined
consistency levels for you to choose from.

The following table shows the number of RUs required to perform read and write transactions based on document
size of 1KB and 100KBs.

If you provision 1,000 RU/sec, this amounts to 3.6m RU/hour and will cost $0.08 for the hour (in the US and
Europe). For a 1KB size document, this means that you can consume 3.6m reads or 0.72m writes (3.6mRU / 5)
using your provisioned throughput. Normalized to million reads and writes, the cost would be $0.022 /m reads
($0.08 / 3.6) and $0.111/m writes ($0.08 / 0.72). The cost per million becomes minimal as shown in the table
below.

Most of the basic blob or object stores services charge $0.40 per million read transaction and $5 per million write
transaction. If used optimally, Cosmos DB can be up to 98% cheaper than these other solutions (for 1KB
transactions).

Stay tuned for new articles on optimizing Cosmos DB resource provisioning. In the meantime, feel free to use our
RU calculator.

https://www.documentdb.com/capacityplanner

Expire data in Azure Cosmos DB collections
automatically with time to live
5/30/2017 • 7 min to read • Edit Online

TTL behavior

DEFAULTTTL MISSING/NOT
SET ON THE COLLECTION

DEFAULTTTL = -1 ON
COLLECTION

DEFAULTTTL = "N" ON
COLLECTION

TTL Missing on document Nothing to override at
document level since both
the document and collection
have no concept of TTL.

No documents in this
collection will expire.

The documents in this
collection will expire when
interval n elapses.

Applications can produce and store vast amounts of data. Some of this data, like machine generated event data,
logs, and user session information is only useful for a finite period of time. Once the data becomes surplus to the
needs of the application it is safe to purge this data and reduce the storage needs of an application.

With "time to live" or TTL, Microsoft Azure Cosmos DB provides the ability to have documents automatically
purged from the database after a period of time. The default time to live can be set at the collection level, and
overridden on a per-document basis. Once TTL is set, either as a collection default or at a document level, Cosmos
DB will automatically remove documents that exist after that period of time, in seconds, since they were last
modified.

Time to live in Cosmos DB uses an offset against when the document was last modified. To do this it uses the _ts

field which exists on every document. The _ts field is a unix-style epoch timestamp representing the date and time.
The _ts field is updated every time a document is modified.

The TTL feature is controlled by TTL properties at two levels - the collection level and the document level. The
values are set in seconds and are treated as a delta from the _ts that the document was last modified at.

1. DefaultTTL for the collection

If missing (or set to null), documents are not deleted automatically.
If present and the value is "-1" = infinite – documents don’t expire by default
If present and the value is some number ("n") – documents expire "n” seconds after last modification

2. TTL for the documents:

Property is applicable only if DefaultTTL is present for the parent collection.
Overrides the DefaultTTL value for the parent collection.

As soon as the document has expired (ttl + _ts >= current server time), the document is marked as "expired”. No
operation will be allowed on these documents after this time and they will be excluded from the results of any
queries performed. The documents are physically deleted in the system, and are deleted in the background
opportunistically at a later time. This does not consume any Request Units (RUs) from the collection budget.

The above logic can be shown in the following matrix:

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/time-to-live.md

TTL = -1 on document Nothing to override at the
document level since the
collection doesn’t define the
DefaultTTL property that a
document can override. TTL
on a document is un-
interpreted by the system.

No documents in this
collection will expire.

The document with TTL=-1
in this collection will never
expire. All other documents
will expire after "n" interval.

TTL = n on document Nothing to override at the
document level. TTL on a
document in un-interpreted
by the system.

The document with TTL = n
will expire after interval n, in
seconds. Other documents
will inherit interval of -1 and
never expire.

The document with TTL = n
will expire after interval n, in
seconds. Other documents
will inherit "n" interval from
the collection.

DEFAULTTTL MISSING/NOT
SET ON THE COLLECTION

DEFAULTTTL = -1 ON
COLLECTION

DEFAULTTTL = "N" ON
COLLECTION

Configuring TTL

Enabling TTL

DocumentCollection collectionDefinition = new DocumentCollection();
collectionDefinition.Id = "orders";
collectionDefinition.PartitionKey.Paths.Add("/customerId");
collectionDefinition.DefaultTimeToLive =-1; //never expire by default

DocumentCollection ttlEnabledCollection = await client.CreateDocumentCollectionAsync(
 UriFactory.CreateDatabaseUri(databaseName),
 collectionDefinition,
 new RequestOptions { OfferThroughput = 20000 });

Configuring default TTL on a collection

DocumentCollection collectionDefinition = new DocumentCollection();
collectionDefinition.Id = "orders";
collectionDefinition.PartitionKey.Paths.Add("/customerId");
collectionDefinition.DefaultTimeToLive = 90 * 60 * 60 * 24; // expire all documents after 90 days

DocumentCollection ttlEnabledCollection = await client.CreateDocumentCollectionAsync(
 "/dbs/salesdb",
 collectionDefinition,
 new RequestOptions { OfferThroughput = 20000 });

Setting TTL on a document

By default, time to live is disabled by default in all Cosmos DB collections and on all documents.

To enable TTL on a collection, or the documents within a collection, you need to set the DefaultTTL property of a
collection to either -1 or a non-zero positive number. Setting the DefaultTTL to -1 means that by default all
documents in the collection will live forever but the Cosmos DB service should monitor this collection for
documents that have overridden this default.

You are able to configure a default time to live at a collection level. To set the TTL on a collection, you need to
provide a non-zero positive number that indicates the period, in seconds, to expire all documents in the collection
after the last modified timestamp of the document (_ts). Or, you can set the default to -1, which implies that all
documents inserted in to the collection will live indefinitely by default.

// Include a property that serializes to "ttl" in JSON
public class SalesOrder
{
 [JsonProperty(PropertyName = "id")]
 public string Id { get; set; }

 [JsonProperty(PropertyName="cid")]
 public string CustomerId { get; set; }

 // used to set expiration policy
 [JsonProperty(PropertyName = "ttl", NullValueHandling = NullValueHandling.Ignore)]
 public int? TimeToLive { get; set; }

 //...
}

// Set the value to the expiration in seconds
SalesOrder salesOrder = new SalesOrder
{
 Id = "SO05",
 CustomerId = "CO18009186470",
 TimeToLive = 60 * 60 * 24 * 30; // Expire sales orders in 30 days
};

Extending TTL on an existing document

response = await client.ReadDocumentAsync(
 "/dbs/salesdb/colls/orders/docs/SO05"),
 new RequestOptions { PartitionKey = new PartitionKey("CO18009186470") });

Document readDocument = response.Resource;
readDocument.TimeToLive = 60 * 30 * 30; // update time to live

response = await client.ReplaceDocumentAsync(salesOrder);

Removing TTL from a document

In addition to setting a default TTL on a collection you can set specific TTL at a document level. Doing this will
override the default of the collection.

To set the TTL on a document, you need to provide a non-zero positive number which indicates the period, in
seconds, to expire the document after the last modified timestamp of the document (_ts).
If a document has no TTL field, then the default of the collection will apply.
If TTL is disabled at the collection level, the TTL field on the document will be ignored until TTL is enabled again
on the collection.

Here's a snippet showing how to set the TTL expiration on a document:

You can reset the TTL on a document by doing any write operation on the document. Doing this will set the _ts to
the current time, and the countdown to the document expiry, as set by the ttl , will begin again. If you wish to
change the ttl of a document, you can update the field as you can do with any other settable field.

If a TTL has been set on a document and you no longer want that document to expire, then you can retrieve the
document, remove the TTL field and replace the document on the server. When the TTL field is removed from the
document, the default of the collection will be applied. To stop a document from expiring and not inherit from the
collection then you need to set the TTL value to -1.

response = await client.ReadDocumentAsync(
 "/dbs/salesdb/colls/orders/docs/SO05"),
 new RequestOptions { PartitionKey = new PartitionKey("CO18009186470") });

Document readDocument = response.Resource;
readDocument.TimeToLive = null; // inherit the default TTL of the collection

response = await client.ReplaceDocumentAsync(salesOrder);

Disabling TTL

DocumentCollection collection = await client.ReadDocumentCollectionAsync("/dbs/salesdb/colls/orders");

// Disable TTL
collection.DefaultTimeToLive = null;

await client.ReplaceDocumentCollectionAsync(collection);

FAQ

Next steps

To disable TTL entirely on a collection and stop the background process from looking for expired documents the
DefaultTTL property on the collection should be deleted. Deleting this property is different from setting it to -1.
Setting to -1 means new documents added to the collection will live forever but you can override this on specific
documents in the collection. Removing this property entirely from the collection means that no documents will
expire, even if there are documents that have explicitly overridden a previous default.

What will TTL cost me?

There is no additional cost to setting a TTL on a document.

How long will it take to delete my document once the TTL is up?

The documents are expired immediately once the TTL is up, and will not be accessible via CRUD or query APIs.

Will TTL on a document have any impact on RU charges?

No, there will be no impact on RU charges for deletions of expired documents via TTL in Cosmos DB.

Does the TTL feature only apply to entire documents, or can I expire individual document property
values?

TTL applies to the entire document. If you would like to expire just a portion of a document, then it is
recommended that you extract the portion from the main document in to a separate "linked” document and then
use TTL on that extracted document.

Does the TTL feature have any specific indexing requirements?

Yes. The collection must have indexing policy set to either Consistent or Lazy. Trying to set DefaultTTL on a
collection with indexing set to None will result in an error, as will trying to turn off indexing on a collection that has
a DefaultTTL already set.

To learn more about Azure Cosmos DB, refer to the service documentation page.

https://azure.microsoft.com/documentation/services/cosmos-db/

Automatic online backup and restore with Azure
Cosmos DB
5/30/2017 • 3 min to read • Edit Online

High availability with Cosmos DB - a recap

Azure Cosmos DB automatically takes backups of all your data at regular intervals. The automatic backups are
taken without affecting the performance or availability of your database operations. All your backups are stored
separately in another storage service, and those backups are globally replicated for resiliency against regional
disasters. The automatic backups are intended for scenarios when you accidentally delete your Comos DB
container and later require data recovery or a disaster recovery solution.

This article starts with a quick recap of the data redundancy and availability in Cosmos DB, and then discusses
backups.

Cosmos DB is designed to be globally distributed – it allows you to scale throughput across multiple Azure regions
along with policy driven failover and transparent multi-homing APIs. As a database system offering 99.99%
availability SLAs, all the writes in Cosmos DB are durably committed to local disks by a quorum of replicas within a
local data center before acknowledging to the client. Note that the high availability of Cosmos DB relies on local
storage and does not depend on any external storage technologies. Additionally, if your database account is
associated with more than one Azure region, your writes are replicated across other regions as well. To scale your
throughput and access data at low latencies, you can have as many read regions associated with your database
account as you like. In each read region, the (replicated) data is durably persisted across a replica set.

As illustrated in the following diagram, a single Cosmos DB container is horizontally partitioned. A “partition” is
denoted by a circle in the following diagram, and each partition is made highly available via a replica set. This is the
local distribution within a single Azure region (denoted by the X axis). Further, each partition (with its
corresponding replica set) is then globally distributed across multiple regions associated with your database
account (for example, in this illustration the three regions – East US, West US and Central India). The “partition set”
is a globally distributed entity comprising of multiple copies of your data in each region (denoted by the Y axis).
You can assign priority to the regions associated with your database account and Cosmos DB will transparently
failover to the next region in case of disaster. You can also manually simulate failover to test the end-to-end
availability of your application.

The following image illustrates the high degree of redundancy with Cosmos DB.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/online-backup-and-restore.md
https://azure.microsoft.com/support/legal/sla/cosmos-db

Full, automatic, online backups
Oops, I deleted my container or database! With Cosmos DB, not only your data, but the backups of your data are
also made highly redundant and resilient to regional disasters. These automated backups are currently taken
approximately every four hours and latest 2 backups are stored at all times. If the data is accidently dropped or
corrupted, please contact Azure support within 8 hours.

https://azure.microsoft.com/support/options/

Retention period for a given snapshot

Restore database from the online backup

Next steps

The backups are taken without affecting the performance or availability of your database operations. Cosmos DB
takes the backup in the background without consuming your provisioned RUs or affecting the performance and
without affecting the availability of your database.

Unlike your data that is stored inside Cosmos DB, the automatic backups are stored in Azure Blob Storage service.
To guarantee the low latency/efficient upload, the snapshot of your backup is uploaded to an instance of Azure
Blob storage in the same region as the current write region of your Cosmos DB database account. For resiliency
against regional disaster, each snapshot of your backup data in Azure Blob Storage is again replicated via geo-
redundant storage (GRS) to another region. The following diagram shows that the entire Cosmos DB container
(with all three primary partitions in West US, in this example) is backed up in a remote Azure Blob Storage account
in West US and then GRS replicated to East US.

The following image illustrates periodic full backups of all Cosmos DB entities in GRS Azure Storage.

As described above, we periodically take snapshots of your data and per our compliance regulations, we retain the
latest snapshot up to 90 days before it eventually gets purged. If a container or account is deleted, Cosmos DB
stores the last backup for 90 days.

In case you accidentally delete your data, you can file a support ticket or call Azure support to restore the data from
the last automatic backup. For a specific snapshot of your backup to be restored, Cosmos DB requires that the data
was at least available with us for the duration of the backup cycle for that snapshot.

To replicate your database in multiple data centers, see distribute your data globally with Cosmos DB.

To file contact Azure Support, file a ticket from the Azure portal.

https://portal.azure.com/?#blade/Microsoft_Azure_Support/HelpAndSupportBlade
https://azure.microsoft.com/support/options/
https://portal.azure.com/?#blade/Microsoft_Azure_Support/HelpAndSupportBlade

Automatic regional failover for business continuity in
Azure Cosmos DB
5/30/2017 • 6 min to read • Edit Online

Configuring multi-region applications

Azure Cosmos DB simplifies the global distribution of data by offering fully managed, multi-region database
accounts that provide clear tradeoffs between consistency, availability, and performance, all with corresponding
guarantees. Cosmos DB accounts offer high availability, single digit ms latencies, well-defined consistency levels,
transparent regional failover with multi-homing APIs, and the ability to elastically scale throughput and storage
across the globe.

Cosmos DB supports both explicit and policy driven failovers that allow you to control the end-to-end system
behavior in the event of failures. In this article, we look at:

How do manual failovers work in Cosmos DB?
How do automatic failovers work in Cosmos DB and what happens when a data center goes down?
How can you use manual failovers in application architectures?

You can also learn about regional failovers in this Azure Friday video with Scott Hanselman and Principal
Engineering Manager Karthik Raman.

Before we dive into failover modes, we look at how you can configure an application to take advantage of multi-
region availability and be resilient in the face of regional failovers.

First, deploy your application in multiple regions
To ensure low latency access from every region your application is deployed, configure the corresponding
preferred regions list for each region via one of the supported SDKs.

The following snippet shows how to initialize a multi-region application. Here, the Azure Cosmos DB account
contoso.documents.azure.com is configured with two regions - West US and North Europe.

The application is deployed in the West US region (using Azure App Services for example)
Configured with West US as the first preferred region for low latency reads
Configured with North Europe as the second preferred region (for high availability during regional failures)

In the DocumentDB API, this configuration looks like the following snippet:

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/regional-failover.md
https://msdn.microsoft.com/library/microsoft.azure.documents.client.connectionpolicy.preferredlocations.aspx#P:Microsoft.Azure.Documents.Client.ConnectionPolicy.PreferredLocations

ConnectionPolicy usConnectionPolicy = new ConnectionPolicy
{
 ConnectionMode = ConnectionMode.Direct,
 ConnectionProtocol = Protocol.Tcp
};

usConnectionPolicy.PreferredLocations.Add(LocationNames.WestUS);
usConnectionPolicy.PreferredLocations.Add(LocationNames.NorthEurope);

DocumentClient usClient = new DocumentClient(
 new Uri("https://contosodb.documents.azure.com"),
 "memf7qfF89n6KL9vcb7rIQl6tfgZsRt5gY5dh3BIjesarJanYIcg2Edn9uPOUIVwgkAugOb2zUdCR2h0PTtMrA==",
 usConnectionPolicy);

Automatic Failovers

The application is also deployed in the North Europe region with the order of preferred regions reversed. That is,
the North Europe region is specified first for low latency reads. Then, the West US region is specified as the
second preferred region for high availability during regional failures.

The following architecture diagram shows a multi-region application deployment where Cosmos DB and the
application are configured to be available in four Azure geographic regions.

Now, let's look at how the Cosmos DB service handles regional failures via automatic failovers.

In the rare event of an Azure regional outage or data center outage, Cosmos DB automatically triggers failovers
of all Cosmos DB accounts with a presence in the affected region.

What happens if a read region has an outage?

Cosmos DB accounts with a read region in one of the affected regions are automatically disconnected from their
write region and marked offline. The Cosmos DB SDKs implement a regional discovery protocol that allows them
to automatically detect when a region is available and redirect read calls to the next available region in the
preferred region list. If none of the regions in the preferred region list is available, calls automatically fall back to
the current write region. No changes are required in your application code to handle regional failovers. During
this entire process, consistency guarantees continue to be honored by Cosmos DB.

Once the affected region recovers from the outage, all the affected Cosmos DB accounts in the region are
automatically recovered by the service. Cosmos DB accounts that had a read region in the affected region will
then automatically sync with current write region and turn online. The Cosmos DB SDKs discover the availability
of the new region and evaluate whether the region should be selected as the current read region based on the
preferred region list configured by the application. Subsequent reads are redirected to the recovered region
without requiring any changes to your application code.

What happens if a write region has an outage?

If the affected region is the current write region for a given Cosmos DB account, then the region will be
automatically marked as offline. Then, an alternative region is promoted as the write region each affected
Cosmos DB account. You can fully control the region selection order for your Cosmos DB accounts via the Azure
portal or programmatically.

During automatic failovers, Cosmos DB automatically chooses the next write region for a given Cosmos DB
account based on the specified priority order.

https://docs.microsoft.com/rest/api/documentdbresourceprovider/databaseaccounts#DatabaseAccounts_FailoverPriorityChange

 Manual Failovers

Once the affected region recovers from the outage, all the affected Cosmos DB accounts in the region are
automatically recovered by the service.

Cosmos DB accounts with their previous write region in the affected region will stay in an offline mode with
read availability even after the recovery of the region.
You can query this region to compute any unreplicated writes during the outage by comparing with the data
available in the current write region. Based on the needs of your application, you can perform merge and/or
conflict resolution and write the final set of changes back to the current write region.
Once you've completed merging changes, you can bring the affected region back online by removing and
readding the region to your Cosmos DB account. Once the region is added back, you can configure it back as
the write region by performing a manual failover via the Azure portal or programmatically.

In addition to automatic failovers, the current write region of a given Cosmos DB account can be manually
changed dynamically to one of the existing read regions. Manual failovers can be initiated via the Azure portal or
programmatically.

Manual failovers ensure zero data loss and zero availability loss and gracefully transfer write status from the
old write region to the new one for the specified Cosmos DB account. Like in automatic failovers, the Cosmos DB
SDK automatically handles write region changes during manual failovers and ensures that calls are automatically
redirected to the new write region. No code or configuration changes are required in your application to manage
failovers.

https://docs.microsoft.com/rest/api/documentdbresourceprovider/databaseaccounts#DatabaseAccounts_CreateOrUpdate
https://docs.microsoft.com/rest/api/documentdbresourceprovider/databaseaccounts#DatabaseAccounts_CreateOrUpdate

 Next Steps

Some of the common scenarios where manual failover can be useful are:

Follow the clock model: If your applications have predictable traffic patterns based on the time of the day, you
can periodically change the write status to the most active geographic region based on time of the day.

Service update: Certain globally distributed application deployment may involve rerouting traffic to different
region via traffic manager during their planned service update. Such application deployment now can use
manual failover to keep the write status to the region where there is going to be active traffic during the service
update window.

Business Continuity and Disaster Recovery (BCDR) and High Availability and Disaster Recovery
(HADR) drills: Most enterprise applications include business continuity tests as part of their development and
release process. BCDR and HADR testing is often an important step in compliance certifications and
guaranteeing service availability in the case of regional outages. You can test the BCDR readiness of your
applications that use Cosmos DB for storage by triggering a manual failover of your Cosmos DB account and/or
adding and removing a region dynamically.

In this article, we reviewed how manual and automatic failovers work in Cosmos DB, and how you can configure
your Cosmos DB accounts and applications to be globally available. By using Cosmos DB's global replication
support, you can improve end-to-end latency and ensure that they are highly available even in the event of
region failures.

Learn about how Cosmos DB supports global distribution
Learn about global consistency with Azure Cosmos DB
Develop with multiple regions using Azure Cosmos DB's DocumentDB SDK
Learn how to build Multi-region writer architectures with Azure DocumentDB

Set throughput for Azure Cosmos DB containers
6/12/2017 • 1 min to read • Edit Online

To set the throughput by using the Azure portal

To set the throughput by using the DocumentDB API for .NET
//Fetch the resource to be updated
Offer offer = client.CreateOfferQuery()
 .Where(r => r.ResourceLink == collection.SelfLink)
 .AsEnumerable()
 .SingleOrDefault();

// Set the throughput to the new value, for example 12,000 request units per second
offer = new OfferV2(offer, 12000);

//Now persist these changes to the database by replacing the original resource
await client.ReplaceOfferAsync(offer);

Throughput FAQ

You can set throughput for your Azure Cosmos DB containers in the Azure portal or by using the client SDKs.

The following table lists the throughput available for containers:

Single Partition Container Partitioned Container

Minimum Throughput 400 request units per second 2,500 request units per second

Maximum Throughput 10,000 request units per second Unlimited

1. In a new window, open the Azure portal.
2. On the left bar, click Azure Cosmos DB, or click More Services at the bottom, then scroll to Databases, and

then click Azure Cosmos DB.
3. Select your Cosmos DB account.
4. In the new window, click Data Explorer (Preview) in the navigation menu.
5. In the new window, expand your database and container and then click Scale & Settings.
6. In the new window, type the new throughput value in the Throughput box, and then click Save.

Can I set my throughput to less than 400 RU/s?

400 RU/s is the minimum throughput available on Cosmos DB single partition collections (2500 RU/s is the
minimum for partitioned collections). Request units are set in 100 RU/s intervals, but throughput cannot be set to
100 RU/s or any value smaller than 400 RU/s. If you're looking for a cost effective method to develop and test
Cosmos DB, you can use the free Azure Cosmos DB Emulator, which you can deploy locally at no cost.

How do I set througput using the MongoDB API?

There's no MongoDB API extension to set throughput. The recommendation is to use the DocumentDB API, as

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/set-throughput.md
https://portal.azure.com

Next steps

shown in To set the throughput by using the DocumentDB API for .NET.

To learn more about provisioning and going planet-scale with Cosmos DB, see Partitioning and scaling with
Cosmos DB.

Monitor Azure Cosmos DB requests, usage, and
storage
5/30/2017 • 4 min to read • Edit Online

View performance metrics on the Metrics blade

View performance metrics by using Azure Monitoring

View performance metrics on the account blade

You can monitor your Azure Cosmos DB accounts in the Azure portal. For each Azure Cosmos DB account, both
performance metrics, such as requests and server errors, and usage metrics, such as storage consumption, are
available.

Metrics can be reviewed on the Account blade, the new Metrics blade, or in Azure Monitor.

1. In the Azure portal, click More Services, scroll to Databases, click Azure Cosmos DB, and then click the name
of the Azure Cosmos DB account for which you would like to view performance metrics.

2. In the resource menu, under Monitoring, click Metrics.

The Metrics blade opens, and you can select the collection to review. You can review Availability, Requests,
Throughput, and Storage metrics and compare them to the Azure Cosmos DB SLAs.

1. In the Azure portal, click Monitor on the Jumpbar.
2. In the resource menu, click Metrics.
3. In the Monitor - Metrics window, in the esource group drop-down menu, select the resource group

associated with the Azure Cosmos DB account that you'd like to monitor.
4. In the Resource drop-down menu, select the database account to monitor.
5. In the list of Available metrics, select the metrics to display. Use the CTRL button to multi-select.

Your metrics are displayed on in the Plot window.

1. In the Azure portal, click More Services, scroll to Databases, click Azure Cosmos DB, and then click the name
of the Azure Cosmos DB account for which you would like to view performance metrics.

2. The Monitoring lens displays the following tiles by default:

Total requests for the current day.
Storage used.

If your table displays No data available and you believe there is data in your database, see the
Troubleshooting section.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/monitor-accounts.md
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/

Customize performance metric views in the portal

3. Clicking on the Requests or Usage Quota tile opens a detailed Metric blade.
4. The Metric blade shows you details about the metrics you have selected. At the top of the blade is a graph

of requests charted hourly, and below that is table that shows aggregation values for throttled and total
requests. The metric blade also shows the list of alerts which have been defined, filtered to the metrics that
appear on the current metric blade (this way, if you have a number of alerts, you'll only see the relevant
ones presented here).

1. To customize the metrics that display in a particular chart, click the chart to open it in the Metric blade, and
then click Edit chart.

2. On the Edit Chart blade, there are options to modify the metrics that display in the chart, as well as their time
range.

3. To change the metrics displayed in the part, simply select or clear the available performance metrics, and then
click OK at the bottom of the blade.

4. To change the time range, choose a different range (for example, Custom), and then click OK at the bottom
of the blade.

Create side-by-side charts in the portal
The Azure Portal allows you to create side-by-side metric charts.

1. First, right-click on the chart you want to copy and select Customize.

2. Click Clone on the menu to copy the part and then click Done customizing.

Set up alerts in the portal

You may now treat this part as any other metric part, customizing the metrics and time range displayed in the
part. By doing this, you can see two different metrics chart side-by-side at the same time.

1. In the Azure portal, click More Services, click Azure Cosmos DB, and then click the name of the Azure
Cosmos DB account for which you would like to setup performance metric alerts.

2. In the resource menu, click Alert Rules to open the Alert rules blade.

https://portal.azure.com/

3. In the Alert rules blade, click Add alert.

4. In the Add an alert rule blade, specify:

The name of the alert rule you are setting up.
A description of the new alert rule.
The metric for the alert rule.
The condition, threshold, and period that determine when the alert activates. For example, a server error
count greater than 5 over the last 15 minutes.
Whether the service administrator and coadministrators are emailed when the alert fires.
Additional email addresses for alert notifications.

Monitor Azure Cosmos DB programatically

https://management.azure.com/subscriptions/{SubscriptionId}/resourceGroups/{ResourceGroup}/providers/Microsoft.DocumentDb/database
Accounts/{DocumentDBAccountName}/metricDefinitions?api-version=2015-04-08

The account level metrics available in the portal, such as account storage usage and total requests, are not
available via the DocumentDB APIs. However, you can retrieve usage data at the collection level by using the
DocumentDB APIs. To retrieve collection level data, do the following:

To use the REST API, perform a GET on the collection. The quota and usage information for the collection is
returned in the x-ms-resource-quota and x-ms-resource-usage headers in the response.
To use the .NET SDK, use the DocumentClient.ReadDocumentCollectionAsync method, which returns a
ResourceResponse that contains a number of usage properties such as CollectionSizeUsage,
DatabaseUsage, DocumentUsage, and more.

To access additional metrics, use the Azure Monitor SDK. Available metric definitions can be retrieved by calling:

https://msdn.microsoft.com/library/mt489073.aspx
https://msdn.microsoft.com/library/microsoft.azure.documents.client.documentclient.readdocumentcollectionasync.aspx
https://msdn.microsoft.com/library/dn799209.aspx
https://www.nuget.org/packages/Microsoft.Azure.Insights

https://management.azure.com/subscriptions/{SubecriptionId}/resourceGroups/{ResourceGroup}/providers/Microsoft.DocumentDb/database
Accounts/{DocumentDBAccountName}/metrics?api-version=2015-04-
08&$filter=%28name.value%20eq%20%27Total%20Requests%27%29%20and%20timeGrain%20eq%20duration%27PT5M%27%20and%20start
Time%20eq%202016-06-03T03%3A26%3A00.0000000Z%20and%20endTime%20eq%202016-06-10T03%3A26%3A00.0000000Z

Troubleshooting

Edit a tile to refresh current data

Queries to retrieve individual metrics use the following format:

For more information, see Retrieving Resource Metrics via the Azure Monitor REST API. Note that "Azure Inights"
was renamed "Azure Monitor". This blog entry refers to the older name.

If your monitoring tiles display the No data available message, and you recently made requests or added data
to the database, you can edit the tile to reflect the recent usage.

1. To customize the metrics that display in a particular part, click the chart to open the Metric blade, and then
click Edit Chart.

2. On the Edit Chart blade, in the Time Range section, click past hour, and then click OK.

3. Your tile should now refresh showing your current data and usage.

https://blogs.msdn.microsoft.com/cloud_solution_architect/2016/02/23/retrieving-resource-metrics-via-the-azure-insights-api/

Next steps
To learn more about Azure Cosmos DB capacity planning, see the Azure Cosmos DB capacity planner calculator.

https://www.documentdb.com/capacityplanner

How to manage an Azure Cosmos DB account
5/30/2017 • 4 min to read • Edit Online

Manage Azure Cosmos DB consistency settings

To specify the default consistency for an Azure Cosmos DB account

View, copy, and regenerate access keys

Learn how to set global consistency, work with keys, and delete an Azure Cosmos DB account in the Azure portal.

Selecting the right consistency level depends on the semantics of your application. You should familiarize yourself
with the available consistency levels in Azure Cosmos DB by reading Using consistency levels to maximize
availability and performance in Azure Cosmos DB. Azure Cosmos DB provides consistency, availability, and
performance guarantees, at every consistency level available for your database account. Configuring your
database account with a consistency level of Strong requires that your data is confined to a single Azure region
and not globally available. On the other hand, the relaxed consistency levels - bounded staleness, session or
eventual enable you to associate any number of Azure regions with your database account. The following simple
steps show you how to select the default consistency level for your database account.

1. In the Azure portal, access your Azure Cosmos DB account.
2. In the account blade, click Default consistency.
3. In the Default Consistency blade, select the new consistency level and click Save.

When you create an Azure Cosmos DB account, the service generates two master access keys that can be used for
authentication when the Azure Cosmos DB account is accessed. By providing two access keys, Azure Cosmos DB
enables you to regenerate the keys with no interruption to your Azure Cosmos DB account.

In the Azure portal, access the Keys blade from the resource menu on the Azure Cosmos DB account blade to
view, copy, and regenerate the access keys that are used to access your Azure Cosmos DB account.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/manage-account.md
https://portal.azure.com/
https://portal.azure.com/

NOTE

Copy an access key in the Azure Portal

Regenerate access keys

WARNING

The Keys blade also includes primary and secondary connection strings that can be used to connect to your account from
the Data Migration Tool.

Read-only keys are also available on this blade. Reads and queries are read-only operations, while creates, deletes,
and replaces are not.

On the Keys blade, click the Copy button to the right of the key you wish to copy.

You should change the access keys to your Azure Cosmos DB account periodically to help keep your connections
more secure. Two access keys are assigned to enable you to maintain connections to the Azure Cosmos DB
account using one access key while you regenerate the other access key.

Regenerating your access keys affects any applications that are dependent on the current key. All clients that use the access
key to access the Azure Cosmos DB account must be updated to use the new key.

If you have applications or cloud services using the Azure Cosmos DB account, you will lose the connections if you
regenerate keys, unless you roll your keys. The following steps outline the process involved in rolling your keys.

1. Update the access key in your application code to reference the secondary access key of the Azure Cosmos DB
account.

2. Regenerate the primary access key for your Azure Cosmos DB account. In the Azure Portal, access your Azure
Cosmos DB account.

3. In the Azure Cosmos DB Account blade, click Keys.

https://portal.azure.com/

NOTE

Get the connection string

Delete an Azure Cosmos DB account

4. On the Keys blade, click the regenerate button, then click Ok to confirm that you want to generate a new key.

5. Once you have verified that the new key is available for use (approximately 5 minutes after regeneration),
update the access key in your application code to reference the new primary access key.

6. Regenerate the secondary access key.

It can take several minutes before a newly generated key can be used to access your Azure Cosmos DB account.

To retrieve your connection string, do the following:

1. In the Azure portal, access your Azure Cosmos DB account.
2. In the resource menu, click Keys.
3. Click the Copy button next to the Primary Connection String or Secondary Connection String box.

If you are using the connection string in the Azure Cosmos DB Database Migration Tool, append the database
name to the end of the connection string. AccountEndpoint=< >;AccountKey=< >;Database=< > .

To remove an Azure Cosmos DB account from the Azure Portal that you are no longer using, right-click the
account name, and click Delete account.

1. In the Azure portal, access the Azure Cosmos DB account you wish to delete.
2. On the Azure Cosmos DB account blade, right-click the account, and then click Delete Account.
3. On the resulting confirmation blade, type the Azure Cosmos DB account name to confirm that you want to

delete the account.
4. Click the Delete button.

https://portal.azure.com
https://portal.azure.com/

 Next steps
Learn how to get started with your Azure Cosmos DB account.

http://go.microsoft.com/fwlink/p/?LinkId=402364

Azure Cosmos DB database encryption at rest
5/30/2017 • 3 min to read • Edit Online

Implement encryption at rest

Encryption at rest is a phrase that commonly refers to the encryption of data on nonvolatile storage devices, such
as solid state drives (SSDs) and hard disk drives (HDDs). Cosmos DB stores its primary databases on SSDs. Its
media attachments and backups are stored in Azure Blob storage, which is generally backed up by HDDs. With the
release of encryption at rest for Cosmos DB, all your databases, media attachments, and backups are encrypted.
Your data is now encrypted in transit (over the network) and at rest (nonvolatile storage), giving you end-to-end
encryption.

As a PaaS service, Cosmos DB is very easy to use. Because all user data stored in Cosmos DB is encrypted at rest
and in transport, you don't have to take any action. Another way to put this is that encryption at rest is "on" by
default. There are no controls to turn it off or on. We provide this feature while we continue to meet our availability
and performance SLAs.

Encryption at rest is implemented by using a number of security technologies, including secure key storage
systems, encrypted networks, and cryptographic APIs. Systems that decrypt and process data have to communicate
with systems that manage keys. The diagram shows how storage of encrypted data and the management of keys is
separated.

The basic flow of a user request is as follows:

The user database account is made ready, and storage keys are retrieved via a request to the Management
Service Resource Provider.
A user creates a connection to Cosmos DB via HTTPS/secure transport. (The SDKs abstract the details.)
The user sends a JSON document to be stored over the previously created secure connection.
The JSON document is indexed unless the user has turned off indexing.
Both the JSON document and index data are written to secure storage.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/database-encryption-at-rest.md
https://azure.microsoft.com/support/legal/sla/cosmos-db

Frequently asked questions
Q: How much more does Azure Storage cost if Storage Service Encryption is enabled?

Q: Who manages the encryption keys?

Q: How often are encryption keys rotated?

Q: Can I use my own encryption keys?

Q: What regions have encryption turned on?

Q: Does encryption affect the performance latency and throughput SLAs?

Q: Does the local emulator support encryption at rest?

Next steps

Periodically, data is read from the secure storage and backed up to the Azure Encrypted Blob Store.

A: There is no additional cost.

A: The keys are managed by Microsoft.

A: Microsoft has a set of internal guidelines for encryption key rotation, which Cosmos DB follows. The specific
guidelines are not published. Microsoft does publish the Security Development Lifecycle (SDL), which is seen as a
subset of internal guidance and has useful best practices for developers.

A: Cosmos DB is a PaaS service, and we worked hard to keep the service easy to use. We've noticed this question is
often asked as a proxy question for meeting a compliance requirement like PCI-DSS. As part of building this
feature, we worked with compliance auditors to ensure that customers who use Cosmos DB meet their
requirements without the need to manage keys themselves. As a result, we currently do not offer users the option
to burden themselves with key management.

A: All Azure Cosmos DB regions have encryption turned on for all user data.

A: There is no impact or changes to the performance SLAs now that encryption at rest is enabled for all existing and
new accounts. You can read more on the SLA for Cosmos DB page to see the latest guarantees.

A: The emulator is a standalone dev/test tool and does not use the key management services that the managed
Cosmos DB service uses. Our recommendation is to enable BitLocker on drives where you are storing sensitive
emulator test data. The emulator supports changing the default data directory as well as using a well-known
location.

For an overview of Cosmos DB security and the latest improvements, see Azure Cosmos DB database security. For
more information about Microsoft certifications, see the Azure Trust Center.

https://www.microsoft.com/sdl/default.aspx
https://azure.microsoft.com/support/legal/sla/cosmos-db
https://azure.microsoft.com/en-us/support/trust-center/

Azure Cosmos DB firewall support
5/30/2017 • 4 min to read • Edit Online

IP access control overview

Connections from cloud services

To secure data stored in an Azure Cosmos DB database account, Azure Cosmos DB has provided support for a
secret based authorization model that utilizes a strong Hash-based message authentication code (HMAC). Now, in
addition to the secret based authorization model, Azure Cosmos DB supports policy driven IP-based access controls
for inbound firewall support. This model is very similar to the firewall rules of a traditional database system and
provides an additional level of security to the Azure Cosmos DB database account. With this model, you can now
configure an Azure Cosmos DB database account to be accessible only from an approved set of machines and/or
cloud services. Access to Azure Cosmos DB resources from these approved sets of machines and services still
require the caller to present a valid authorization token.

By default, an Azure Cosmos DB database account is accessible from public internet as long as the request is
accompanied by a valid authorization token. To configure IP policy-based access control, the user must provide the
set of IP addresses or IP address ranges in CIDR form to be included as the allowed list of client IPs for a given
database account. Once this configuration is applied, all requests originating from machines outside this allowed
list will be blocked by the server. The connection processing flow for the IP-based access control is described in the
following diagram.

In Azure, cloud services are a very common way for hosting middle tier service logic using Azure Cosmos DB. To
enable access to an Azure Cosmos DB database account from a cloud service, the public IP address of the cloud
service must be added to the allowed list of IP addresses associated with your Azure Cosmos DB database account
by configuring the IP access control policy. This ensures that all role instances of cloud services have access to your
Azure Cosmos DB database account. You can retrieve IP addresses for your cloud services in the Azure portal, as
shown in the following screenshot.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/firewall-support.md
https://msdn.microsoft.com/library/azure/dn783368.aspx

Connections from virtual machines

When you scale out your cloud service by adding additional role instance(s), those new instances will automatically
have access to the Azure Cosmos DB database account since they are part of the same cloud service.

Virtual machines or virtual machine scale sets can also be used to host middle tier services using Azure Cosmos DB.
To configure the Azure Cosmos DB database account to allow access from virtual machines, public IP addresses of
virtual machine and/or virtual machine scale set must be configured as one of the allowed IP addresses for your
Azure Cosmos DB database account by configuring the IP access control policy. You can retrieve IP addresses for
virtual machines in the Azure portal, as shown in the following screenshot.

When you add additional virtual machine instances to the group, they are automatically provided access to your
Azure Cosmos DB database account.

https://azure.microsoft.com/services/virtual-machines/
https://docs.microsoft.com/en-us/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-overview

Connections from the internet

Configuring the IP access control policy

NOTE

When you access an Azure Cosmos DB database account from a computer on the internet, the client IP address or
IP address range of the machine must be added to the allowed list of IP address for the Azure Cosmos DB database
account.

The IP access control policy can be set in the Azure portal, or programmatically through Azure CLI, Azure
Powershell, or the REST API by updating the ipRangeFilter property. IP addresses/ranges must be comma separated
and must not contain any spaces. Example: "13.91.6.132,13.91.6.1/24". When updating your database account
through these methods, be sure to populate all of the properties to prevent resetting to default settings.

By enabling an IP access control policy for your Azure Cosmos DB database account, all access to your Azure Cosmos DB
database account from machines outside the configured allowed list of IP address ranges are blocked. By virtue of this model,
browsing the data plane operation from the portal will also be blocked to ensure the integrity of access control.

To simplify development, the Azure portal helps you identify and add the IP of your client machine to the allowed
list, so that apps running your machine can access the Azure Cosmos DB account. Note that the client IP address
here is detected as seen by the portal. It may be the client IP address of your machine, but it could also be the IP
address of your network gateway. Do not forget to remove it before going to production.

To set the IP access control policy in the Azure portal, navigate to the Azure Cosmos DB account blade, click
Firewall in the navigation menu, then click ON

In the new pane, specify whether the Azure portal can access the account, and add other addresses and ranges as
appropriate, then click Save.

https://msdn.microsoft.com/library/azure/dn781481.aspx

NOTE

REGION IP ADDRESS

All regions except those specified below 104.42.195.92

Germany 51.4.229.218

China 139.217.8.252

US Gov Arizona 52.244.48.71

Troubleshooting the IP access control policy
Portal operations

When you enable an IP access control policy, you need to add the IP address for the Azure portal to maintain access. The
portal IP addresses are:

By enabling an IP access control policy for your Azure Cosmos DB database account, all access to your Azure
Cosmos DB database account from machines outside the configured allowed list of IP address ranges are blocked.
Therefore if you want to enable portal data plane operations like browsing collections and query documents, you
need to explicitly allow Azure portal access using the Firewall blade in the portal.

SDK & Rest API

Next steps

For security reasons, access via SDK or REST API from machines not on the allowed list will return a generic 404
Not Found response with no additional details. Please verify the IP allowed list configured for your Azure Cosmos
DB database account to ensure the correct policy configuration is applied to your Azure Cosmos DB database
account.

For information about network related performance tips, see Performance tips.

Securing access to Azure Cosmos DB data
6/6/2017 • 6 min to read • Edit Online

KEY TYPE RESOURCES

Master keys Used for administrative resources: database accounts,
databases, users, and permissions

Resource tokens Used for application resources: collections, documents,
attachments, stored procedures, triggers, and UDFs

Master keys

This article provides an overview of securing access to data stored in Microsoft Azure Cosmos DB.

Azure Cosmos DB uses two types of keys to authenticate users and provide access to its data and resources.

Master keys provide access to the all the administrative resources for the database account. Master keys:

Provide access to accounts, databases, users, and permissions.
Cannot be used to provide granular access to collections and documents.
Are created during the creation of an account.
Can be regenerated at any time.

Each account consists of two Master keys: a primary key and secondary key. The purpose of dual keys is so that
you can regenerate, or roll keys, providing continuous access to your account and data.

In addition to the two master keys for the Cosmos DB account, there are two read-only keys. These read-only keys
only allow read operations on the account. Read-only keys do not provide access to read permissions resources.

Primary, secondary, read only, and read-write master keys can be retrieved and regenerated using the Azure
portal. For instructions, see View, copy, and regenerate access keys.

The process of rotating your master key is simple. Navigate to the Azure portal to retrieve your secondary key,
then replace your primary key with your secondary key in your application, then rotate the primary key in the
Azure portal.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/secure-access-to-data.md
https://azure.microsoft.com/services/cosmos-db/

Code sample to use a master key

//Read the DocumentDB endpointUrl and authorization keys from config.
//These values are available from the Azure portal on the Azure Cosmos DB account blade under "Keys".
//NB > Keep these values in a safe and secure location. Together they provide Administrative access to your DocDB account.

private static readonly string endpointUrl = ConfigurationManager.AppSettings["EndPointUrl"];
private static readonly SecureString authorizationKey = ToSecureString(ConfigurationManager.AppSettings["AuthorizationKey"]);

client = new DocumentClient(new Uri(endpointUrl), authorizationKey);

// Create Database
Database database = await client.CreateDatabaseAsync(
 new Database
 {
 Id = databaseName
 });

Resource tokens

The following code sample illustrates how to use a Cosmos DB account endpoint and master key to instantiate a
DocumentClient and create a database.

Resource tokens provide access to the application resources within a database. Resource tokens:

Provide access to specific collections, partition keys, documents, attachments, stored procedures, triggers, and
UDFs.
Are created when a user is granted permissions to a specific resource.
Are recreated when a permission resource is acted upon on by POST, GET, or PUT call.
Use a hash resource token specifically constructed for the user, resource, and permission.
Are time bound with a customizable validity period. The default valid timespan is one hour. Token lifetime,
however, may be explicitly specified, up to a maximum of five hours.
Provide a safe alternative to giving out the master key.
Enable clients to read, write, and delete resources in the Cosmos DB account according to the permissions
they've been granted.

You can use a resource token (by creating Cosmos DB users and permissions) when you want to provide access to
resources in your Cosmos DB account to a client that cannot be trusted with the master key.

Cosmos DB resource tokens provide a safe alternative that enables clients to read, write, and delete resources in
your Cosmos DB account according to the permissions you've granted, and without need for either a master or
read only key.

Here is a typical design pattern whereby resource tokens may be requested, generated, and delivered to clients:

1. A mid-tier service is set up to serve a mobile application to share user photos.
2. The mid-tier service possesses the master key of the Cosmos DB account.
3. The photo app is installed on end-user mobile devices.
4. On login, the photo app establishes the identity of the user with the mid-tier service. This mechanism of identity

establishment is purely up to the application.

Users

//Create a user.
User docUser = new User
{
 Id = "mobileuser"
};

docUser = await client.CreateUserAsync(UriFactory.CreateDatabaseUri("db"), docUser);

NOTE

Permissions

5. Once the identity is established, the mid-tier service requests permissions based on the identity.
6. The mid-tier service sends a resource token back to the phone app.
7. The phone app can continue to use the resource token to directly access Cosmos DB resources with the

permissions defined by the resource token and for the interval allowed by the resource token.
8. When the resource token expires, subsequent requests receive a 401 unauthorized exception. At this point,

the phone app re-establishes the identity and requests a new resource token.

Resource token generation and management is handled by the native Cosmos DB client libraries; however, if you
use REST you must construct the request/authentication headers. For more information on creating authentication
headers for REST, see Access Control on Cosmos DB Resources or the source code for our SDKs.

For an example of a middle tier service used to generate or broker resource tokens, see the ResourceTokenBroker
app.

Cosmos DB users are associated with a Cosmos DB database. Each database can contain zero or more Cosmos DB
users. The following code sample shows how to create a Cosmos DB user resource.

Each Cosmos DB user has a PermissionsLink property that can be used to retrieve the list of permissions associated with the
user.

A Cosmos DB permission resource is associated with a Cosmos DB user. Each user may contain zero or more
Cosmos DB permissions. A permission resource provides access to a security token that the user needs when
trying to access a specific application resource. There are two available access levels that may be provided by a
permission resource:

All: The user has full permission on the resource.
Read: The user can only read the contents of the resource but cannot perform write, update, or delete
operations on the resource.

https://docs.microsoft.com/rest/api/documentdb/access-control-on-documentdb-resources
https://github.com/Azure/azure-documentdb-node/blob/master/source/lib/auth.js
https://github.com/Azure/azure-documentdb-dotnet/tree/master/samples/xamarin/UserItems/ResourceTokenBroker/ResourceTokenBroker/Controllers

NOTE

Code sample to create permission

// Create a permission.
Permission docPermission = new Permission
{
 PermissionMode = PermissionMode.Read,
 ResourceLink = documentCollection.SelfLink,
 Id = "readperm"
};

docPermission = await client.CreatePermissionAsync(UriFactory.CreateUserUri("db", "user"), docPermission);
Console.WriteLine(docPermission.Id + " has token of: " + docPermission.Token);

Code sample to read permissions for user

//Read a permission feed.
FeedResponse<Permission> permFeed = await client.ReadPermissionFeedAsync(
 UriFactory.CreateUserUri("db", "myUser"));
 List<Permission> permList = new List<Permission>();

foreach (Permission perm in permFeed)
{
 permList.Add(perm);
}

DocumentClient userClient = new DocumentClient(new Uri(endpointUrl), permList);

Next steps

In order to run Cosmos DB stored procedures the user must have the All permission on the collection in which the stored
procedure will be run.

The following code sample shows how to create a permission resource, read the resource token of the permission
resource, and associate the permissions with the user created above.

If you have specified a partition key for your collection, then the permission for collection, document, and
attachment resources must also include the ResourcePartitionKey in addition to the ResourceLink.

To easily obtain all permission resources associated with a particular user, Cosmos DB makes available a
permission feed for each user object. The following code snippet shows how to retrieve the permission associated
with the user created above, construct a permission list, and instantiate a new DocumentClient on behalf of the
user.

To learn more about Cosmos DB database security, see Cosmos DB: Database security.
To learn about managing master and read-only keys, see How to manage an Azure Cosmos DB account.
To learn how to construct Azure Cosmos DB authorization tokens, see Access Control on Azure Cosmos DB
Resources.

https://docs.microsoft.com/rest/api/documentdb/access-control-on-documentdb-resources

Accelerate real-time big-data analytics with the Spark
to Azure Cosmos DB connector
6/14/2017 • 10 min to read • Edit Online

Download

Connector components

COMPONENT VERSION

Apache Spark 2.0+

Scala 2.11

Azure DocumentDB Java SDK 1.10.0

The Spark to Azure Cosmos DB connector enables Cosmos DB to act as an input source or output sink for Apache
Spark jobs. Connecting Spark to Azure Cosmos DB accelerates your ability to solve fast-moving data science
problems where you can use Cosmos DB to quickly persist and query data. The Spark to Azure Cosmos DB
connector efficiently utilizes the native Cosmos DB managed indexes. The indexes enable updateable columns when
you perform analytics and push-down predicate filtering against fast-changing globally distributed data, which
range from Internet of Things (IoT) to data science and analytics scenarios.

For working with Spark GraphX and the Gremlin graph APIs of Azure Cosmos DB, see Perform graph analytics
using Spark and Apache TinkerPop Gremlin.

To get started, download the Spark to Azure Cosmos DB connector (preview) from the azure-cosmosdb-spark
repository on GitHub.

The connector utilizes the following components:

Azure Cosmos DB enables customers to provision and elastically scale both throughput and storage across
any number of geographical regions. The service offers:

Turn key global distribution and horizontal scale
Guaranteed single digit latencies at the 99th percentile
Multiple well-defined consistency models
Guaranteed high availability with multi-homing capabilities

All features are backed by industry-leading, comprehensive service level agreements (SLAs).

Apache Spark is a powerful open source processing engine that's built around speed, ease of use, and
sophisticated analytics.

Apache Spark on Azure HDInsight so that you can deploy Apache Spark in the cloud for mission-critical
deployments by using Azure HDInsight.

Officially supported versions:

This article helps you run some simple samples by using Python (via pyDocumentDB) and the Scala interfaces.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/spark-connector.md
http://spark.apache.org/
https://azure.microsoft.com/services/cosmos-db/
https://github.com/Azure/azure-cosmosdb-spark/
http://documentdb.com
https://azure.microsoft.com/support/legal/sla/cosmos-db
http://spark.apache.org/
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-apache-spark-jupyter-spark-sql
https://azure.microsoft.com/services/hdinsight/apache-spark/

pyDocumentDB implementation

Data flow of the pyDocumentDB implementation

Install pyDocumentDB

pip install pyDocumentDB

Connect Spark to Cosmos DB via pyDocumentDB

There are two approaches to connect Apache Spark and Azure Cosmos DB:

Use pyDocumentDB via the Azure DocumentDB Python SDK.
Create a Java-based Spark to Cosmos DB connector by utilizing the Azure DocumentDB Java SDK.

The current pyDocumentDB SDK enables you to connect Spark to Cosmos DB as shown in the following diagram:

The data flow is as follows:

1. The Spark master node connects to the Cosmos DB gateway node via pyDocumentDB. A user specifies only the
Spark and Cosmos DB connections. Connections to the respective master and gateway nodes are transparent to
the user.

2. The gateway node makes the query against Cosmos DB where the query subsequently runs against the
collection's partitions in the data nodes. The response for those queries is sent back to the gateway node, and
that result set is returned to the Spark master node.

3. Subsequent queries (for example, against a Spark DataFrame) are sent to the Spark worker nodes for
processing.

Communication between Spark and Cosmos DB is limited to the Spark master node and Cosmos DB gateway
nodes. The queries go as fast as the transport layer between these two nodes allows.

You can install pyDocumentDB on your driver node by using pip, for example:

The simplicity of the communication transport makes execution of a query from Spark to Cosmos DB by using
pyDocumentDB relatively simple.

The following code snippet shows how to use pyDocumentDB in a Spark context.

https://github.com/Azure/azure-documentdb-python
https://github.com/Azure/azure-documentdb-java
https://github.com/Azure/azure-documentdb-python

Import Necessary Libraries
import pydocumentdb
from pydocumentdb import document_client
from pydocumentdb import documents
import datetime

Configuring the connection policy (allowing for endpoint discovery)
connectionPolicy = documents.ConnectionPolicy()
connectionPolicy.EnableEndpointDiscovery
connectionPolicy.PreferredLocations = ["Central US", "East US 2", "Southeast Asia", "Western Europe","Canada Central"]

Set keys to connect to Cosmos DB
masterKey = 'le1n99i1w5l7uvokJs3RT5ZAH8dc3ql7lx2CG0h0kK4lVWPkQnwpRLyAN0nwS1z4Cyd1lJgvGUfMWR3v8vkXKA=='
host = 'https://doctorwho.documents.azure.com:443/'
client = document_client.DocumentClient(host, {'masterKey': masterKey}, connectionPolicy)

Execute Spark Queries via pyDocumentDB

Configure Database and Collections
databaseId = 'airports'
collectionId = 'codes'

Configurations the Cosmos DB client will use to connect to the database and collection
dbLink = 'dbs/' + databaseId
collLink = dbLink + '/colls/' + collectionId

Set query parameter
querystr = "SELECT c.City FROM c WHERE c.State='WA'"

Query documents
query = client.QueryDocuments(collLink, querystr, options=None, partition_key=None)

Query for partitioned collections
query = client.QueryDocuments(collLink, query, options= { 'enableCrossPartitionQuery': True }, partition_key=None)

Push into list `elements`
elements = list(query)

Create `df` Spark DataFrame from `elements` Python list
df = spark.createDataFrame(elements)

Why use the pyDocumentDB to connect Spark to Cosmos DB?

As noted in the code snippet:

The Cosmos DB Python SDK (pyDocumentDB) contains the all the necessary connection parameters. For example,
the preferred locations parameter chooses the read replica and priority order.
Import the necessary libraries and configure your masterKey and host to create the Cosmos DB client
(pydocumentdb.document_client).

The following examples use the Cosmos DB instance that was created in the previous snippet by using the specified
read-only keys. The following code snippet connects to the airports.codes collection in the DoctorWho account as
specified earlier and runs a query to extract the airport cities in Washington state.

After the query has been executed via query, the result is a query_iterable.QueryIterable that is converted to a
Python list. A Python list can be easily converted to a Spark DataFrame by using the following code:

Connecting Spark to Cosmos DB by using pyDocumentDB is typically for scenarios where:

You want to use Python.

Spark to Cosmos DB connector

Build the Spark to Cosmos DB connector

mvn clean package

Include the Azure Cosmos DB Spark JAR

spark-shell --master $master --jars /$location/azure-cosmosdb-spark-0.0.3-jar-with-dependencies.jar

You are returning a relatively small result set from Cosmos DB to Spark. Note that the underlying dataset in
Cosmos DB can be quite large. You are applying filters, that is, running predicate filters, against your Cosmos DB
source.

The Spark to Cosmos DB connector utilizes the Azure DocumentDB Java SDK and moves data between the Spark
worker nodes and Cosmos DB as shown in the following diagram:

The data flow is as follows:

1. The Spark master node connects to the Cosmos DB gateway node to obtain the partition map. A user specifies
only the Spark and Cosmos DB connections. Connections to the respective master and gateway nodes are
transparent to the user.

2. This information is provided back to the Spark master node. At this point, you should be able to parse the query
to determine the partitions and their locations in Cosmos DB that you need to access.

3. This information is transmitted to the Spark worker nodes.
4. The Spark worker nodes connect to the Cosmos DB partitions directly to extract the data and return the data to

the Spark partitions in the Spark worker nodes.

Communication between Spark and Cosmos DB is significantly faster because the data movement is between the
Spark worker nodes and the Cosmos DB data nodes (partitions).

Currently, the connector project uses maven. To build the connector without dependencies, you can run:

You can also download the latest versions of the JAR from the releases folder.

Before you execute any code, you need to include the Azure Cosmos DB Spark JAR. If you are using the spark-
shell, then you can include the JAR by using the --jars option.

If you want to execute the JAR without dependencies, use the following code:

https://github.com/Azure/azure-documentdb-java

spark-shell --master $master --jars /$location/azure-cosmosdb-spark-0.0.3.jar,/$location/azure-documentdb-1.10.0.jar

%%configure
{ "jars": ["wasb:///example/jars/azure-documentdb-1.10.0.jar","wasb:///example/jars/azure-cosmosdb-spark-0.0.3.jar"],
 "conf": {
 "spark.jars.excludes": "org.scala-lang:scala-reflect"
 }
}

Connect Spark to Cosmos DB using the connector

// Import Necessary Libraries
import org.joda.time._
import org.joda.time.format._
import com.microsoft.azure.cosmosdb.spark.schema._
import com.microsoft.azure.cosmosdb.spark._
import com.microsoft.azure.cosmosdb.spark.config.Config

// Configure connection to your collection
val readConfig2 = Config(Map("Endpoint" -> "https://doctorwho.documents.azure.com:443/",
"Masterkey" -> "le1n99i1w5l7uvokJs3RT5ZAH8dc3ql7lx2CG0h0kK4lVWPkQnwpRLyAN0nwS1z4Cyd1lJgvGUfMWR3v8vkXKA==",
"Database" -> "DepartureDelays",
"preferredRegions" -> "Central US;East US2;",
"Collection" -> "flights_pcoll",
"SamplingRatio" -> "1.0"))

// Create collection connection
val coll = spark.sqlContext.read.cosmosDB(readConfig2)
coll.createOrReplaceTempView("c")

Execute Spark queries via the connector

If you are using a notebook service such as Azure HDInsight Jupyter notebook service, you can use the spark
magic commands:

The jars command enables you to include the two JARs that are needed for azure-cosmosdb-spark (itself and the
Azure DocumentDB Java SDK) and exclude scala-reflect so that it does not interfere with the Livy calls (Jupyter
notebook > Livy > Spark).

Although the communication transport is a little more complicated, executing a query from Spark to Cosmos DB by
using the connector is significantly faster.

The following code snippet shows how to use the connector in a Spark context.

As noted in the code snippet:

azure-cosmosdb-spark contains the all the necessary connection parameters, which include the preferred
locations. For example, you can choose the read replica and priority order.
Just import the necessary libraries and configure your masterKey and host to create the Cosmos DB client.

The following example uses the Cosmos DB instance that was created in the previous snippet by using the specified
read-only keys. The following code snippet connects to the DepartureDelays.flights_pcoll collection (in the
DoctorWho account as specified earlier) and runs a query to extract the flight delay information of flights that are
departing from Seattle.

// Queries
var query = "SELECT c.date, c.delay, c.distance, c.origin, c.destination FROM c WHERE c.origin = 'SEA'"
val df = spark.sql(query)

// Run DF query (count)
df.count()

// Run DF query (show)
df.show()

Why use the Spark to Cosmos DB connector implementation?

Distributed aggregation example

Connect to flights sample data

// Import Spark to Cosmos DB connector
import com.microsoft.azure.cosmosdb.spark.schema._
import com.microsoft.azure.cosmosdb.spark._
import com.microsoft.azure.cosmosdb.spark.config.Config

// Connect to Cosmos DB Database
val readConfig2 = Config(Map("Endpoint" -> "https://doctorwho.documents.azure.com:443/",
"Masterkey" -> "le1n99i1w5l7uvokJs3RT5ZAH8dc3ql7lx2CG0h0kK4lVWPkQnwpRLyAN0nwS1z4Cyd1lJgvGUfMWR3v8vkXKA==",
"Database" -> "DepartureDelays",
"preferredRegions" -> "Central US;East US 2;",
"Collection" -> "flights_pcoll",
"SamplingRatio" -> "1.0"))

// Create collection connection
val coll = spark.sqlContext.read.cosmosDB(readConfig2)
coll.createOrReplaceTempView("c")

// Run, get row count, and time query
val originSEA = spark.sql("SELECT c.date, c.delay, c.distance, c.origin, c.destination FROM c WHERE c.origin = 'SEA'")
originSEA.createOrReplaceTempView("originSEA")

Connecting Spark to Cosmos DB by using the connector is typically for scenarios where:

You want to use Scala and update it to include a Python wrapper as noted in Issue 3: Add Python wrapper and
examples.
You have a large amount of data to transfer between Apache Spark and Cosmos DB.

To give you an idea of the query performance difference, see the Query Test Runs wiki.

This section provides some examples of how you can do distributed aggregations and analytics by using Apache
Spark and Azure Cosmos DB together. Azure Cosmos DB already supports aggregations, which is discussed in the
Planet scale aggregates with Azure Cosmos DB blog. Here is how you can take it to the next level with Apache
Spark.

Note that these aggregations are in reference to the Spark to Cosmos DB Connector notebook.

These aggregation examples access some flight performance data that's stored in our DoctorWho Cosmos DB
database. To connect to it, you need to utilize the following code snippet:

With this snippet, we are also going to run a base query that transfers the filtered set of data from Cosmos DB to
Spark where the latter can perform distributed aggregates. In this case, we are asking for flights that depart from
Seattle (SEA).

The following results were generated by running the queries from the Jupyter notebook service. Note that all the

https://github.com/Azure/azure-cosmosdb-spark/issues/3
https://github.com/Azure/azure-cosmosdb-spark/wiki/Query-Test-Runs
https://azure.microsoft.com/blog/planet-scale-aggregates-with-azure-documentdb/
https://github.com/Azure/azure-cosmosdb-spark/blob/master/samples/notebooks/Spark-to-DocumentDB_Connector.ipynb

Running LIMIT and COUNT queries

GROUP BY query

select destination, sum(delay) as TotalDelays
from originSEA
group by destination
order by sum(delay) desc limit 10

code snippets are generic and not specific to any service.

Just like you're used to in SQL/Spark SQL, let's start off with a LIMIT query:

The next query is a simple and fast COUNT query:

In this next set, we can easily run GROUP BY queries against our Cosmos DB database:

DISTINCT, ORDER BY query

Continue the flight data analysis

Top 5 delayed destinations (cities) departing from SeattleTop 5 delayed destinations (cities) departing from Seattle

select destination, sum(delay)
from originSEA
where delay < 0
group by destination
order by sum(delay) limit 5

And here is a DISTINCT, ORDER BY query:

You can use the following example queries to continue analysis of the flight data:

Calculate median delays by destination cities departing from SeattleCalculate median delays by destination cities departing from Seattle

select destination, percentile_approx(delay, 0.5) as median_delay
from originSEA
where delay < 0
group by destination
order by percentile_approx(delay, 0.5)

Next steps
If you haven't already, download the Spark to Cosmos DB connector from the azure-cosmosdb-spark GitHub
repository and explore the additional resources in the repo:

Distributed Aggregations Examples
Sample Scripts and Notebooks

You might also want to review the Apache Spark SQL, DataFrames, and Datasets Guide and the Apache Spark on
Azure HDInsight article.

https://github.com/Azure/azure-cosmosdb-spark
https://github.com/Azure/azure-cosmosdb-spark/wiki/Aggregations-Examples
https://github.com/Azure/azure-cosmosdb-spark/tree/master/samples
http://spark.apache.org/docs/latest/sql-programming-guide.html
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-apache-spark-jupyter-spark-sql

Azure Cosmos DB: Perform graph analytics by using Spark and Apache TinkerPop
Gremlin
6/12/2017 • 9 min to read • Edit Online

Prerequisites

Create an Azure Cosmos DB database account

Azure Cosmos DB is the globally distributed, multi-model database service from Microsoft. You can create and query document, key/value, and graph databases, all of which
benefit from the global-distribution and horizontal-scale capabilities at the core of Azure Cosmos DB. Azure Cosmos DB supports online transaction processing (OLTP) graph
workloads that use Apache TinkerPop Gremlin.

Spark is an Apache Software Foundation project that's focused on general-purpose online analytical processing (OLAP) data processing. Spark provides a hybrid in-
memory/disk-based distributed computing model that is similar to the Hadoop MapReduce model. You can deploy Apache Spark in the cloud by using Azure HDInsight.

By combining Azure Cosmos DB and Spark, you can perform both OLTP and OLAP workloads when you use Gremlin. This quick-start article demonstrates how to run Gremlin
queries against Azure Cosmos DB on an Azure HDInsight Spark cluster.

Before you can run this sample, you must have the following prerequisites:

Azure HDInsight Spark cluster 2.0
JDK 1.8+ (If you don't have JDK, run apt-get install default-jdk .)
Maven (If you don't have Maven, run apt-get install maven .)
An Azure subscription (If you don't have an Azure subscription, create a free account before you begin.)

For information about how to set up an Azure HDInsight Spark cluster, see Provisioning HDInsight clusters.

First, create a database account with the Graph API by doing the following:

1. In a new window, sign in to the Azure portal.
2. In the left pane, click New, click Databases, and then click Azure Cosmos DB.

3. On the New account blade, specify the configuration that you want for the Azure Cosmos DB account.

With Azure Cosmos DB, you can choose one of four programming models: Gremlin (graph), MongoDB, SQL (DocumentDB), and Table (key-value).

In this quick-start article we program against the DocumentDB API, so choose SQL (DocumentDB) as you fill out the form. But if you have graph data for a social
media app, or key/value (table) data, or data migrated from a MongoDB app, realize that Azure Cosmos DB can provide a highly available, globally distributed database
service platform for all your mission-critical applications.

Complete the fields on the New account blade, using the information in the following screenshot as a guide. When you set up your account, choose unique values that
do not match those in the screenshot.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/spark-connector-graph.md
http://spark.apache.org/
https://azure.microsoft.com/services/hdinsight/apache-spark/
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-provision-linux-clusters
https://portal.azure.com/

SETTING SUGGESTED VALUE DESCRIPTION

ID Unique value A unique name that identifies your Azure Cosmos DB
account. The string documents.azure.com is appended to
the ID you provide to create your URI, so use a unique but
identifiable ID. The ID can contain only lowercase letters,
numbers, and the hyphen (-) character, and it must contain
from 3 through 50 characters.

API SQL (DocumentDB) We program against the DocumentDB API later in this
article.

Subscription Your subscription The Azure subscription that you want to use for your Azure
Cosmos DB account.

Resource Group The same value as ID The new resource-group name for your account. For
simplicity, you can use the same name as your ID.

Location The region closest to your users The geographic location in which to host your Azure
Cosmos DB account. Choose the location that's closest to
your users to give them the fastest access to the data.

4. Click Create to create the account.
5. On the top toolbar, click Notifications to monitor the deployment process.

6. When the deployment is complete, open the new account from the All Resources tile.

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-introduction

Add a collection
You can now use Data Explorer to create a collection and add data to your database.

SETTING SUGGESTED VALUE DESCRIPTION

Database id Items The ID for your new database. Database names must
contain from 1 through 255 characters, and they cannot
contain /, \, #, ?, or a trailing space.

Collection id ToDoList The ID for your new collection. Collection names have the
same character requirements as database IDs.

Storage capacity Fixed (10 GB) Use the default value. This is the storage capacity of the
database.

Throughput 400 RU Use the default value. If you want to reduce latency, you
can scale up the throughput later.

1. In the Azure portal, in the left pane, click Data Explorer.

2. On the Data Explorer blade, click New Collection, and then provide the following information:

Get Apache TinkerPop

Prepare TinkerPop3 dependencies

Partition key /userid A partition key that distributes data evenly to each
partition. Selecting the correct partition key is important in
creating a performant collection. To learn more, see
Designing for partitioning.

SETTING SUGGESTED VALUE DESCRIPTION

3. After you've completed the form, click OK.

Get Apache TinkerPop by doing the following:

git clone https://github.com/apache/tinkerpop.git
cd tinkerpop
mvn clean install

<ivysettings>
<settings defaultResolver="downloadGrapes"/>
<resolvers>
 <chain name="downloadGrapes">
 <filesystem name="cachedGrapes">
 <ivy pattern="${user.home}/.groovy/grapes/[organisation]/[module]/ivy-[revision].xml"/>
 <artifact pattern="${user.home}/.groovy/grapes/[organisation]/[module]/[type]s/[artifact]-[revision].[ext]"/>
 </filesystem>
 <ibiblio name="codehaus" root="http://repository.codehaus.org/" m2compatible="true"/>
 <ibiblio name="central" root="http://central.maven.org/maven2/" m2compatible="true"/>
 <ibiblio name="jitpack" root="https://jitpack.io" m2compatible="true"/>
 <ibiblio name="java.net2" root="http://download.java.net/maven/2/" m2compatible="true"/>
 <ibiblio name="apache-snapshots" root="http://repository.apache.org/snapshots/" m2compatible="true"/>
 <ibiblio name="local" root="file:${user.home}/.m2/repository/" m2compatible="true"/>
 </chain>
</resolvers>
</ivysettings>

$ bin/gremlin.sh

 \,,,/
 (o o)
-----oOOo-(3)-oOOo-----
plugin activated: tinkerpop.server
plugin activated: tinkerpop.utilities
plugin activated: tinkerpop.tinkergraph
gremlin> :install org.apache.tinkerpop spark-gremlin 3.3.0-SNAPSHOT
==>loaded: [org.apache.tinkerpop, spark-gremlin, 3.3.0-SNAPSHOT] - restart the console to use [tinkerpop.spark]
gremlin> :q
$ bin/gremlin.sh

 \,,,/
 (o o)
-----oOOo-(3)-oOOo-----
plugin activated: tinkerpop.server
plugin activated: tinkerpop.utilities
plugin activated: tinkerpop.tinkergraph
gremlin> :plugin use tinkerpop.spark
==>tinkerpop.spark activated

1. Remote to the master node of the HDInsight cluster ssh tinkerpop3-cosmosdb-demo-ssh.azurehdinsight.net .

2. Clone the TinkerPop3 source code, build it locally, and install it to Maven cache.

3. Install the Spark-Gremlin plug-in

a. The installation of the plug-in is handled by Grape. Populate the repositories information for Grape so it can download the plug-in and its dependencies.

Create the grape configuration file if it's not present at ~/.groovy/grapeConfig.xml . Use the following settings:

b. Start Gremlin console bin/gremlin.sh .

c. Install the Spark-Gremlin plug-in with version 3.3.0-SNAPSHOT, which you built in the previous steps:

4. Check to see whether Hadoop-Gremlin is activated with :plugin list . Disable this plug-in, because it could interfere with the Spark-Gremlin plug-in
:plugin unuse tinkerpop.hadoop .

When you built TinkerPop3 in the previous step, the process also pulled all jar dependencies for Spark and Hadoop in the target directory. Use the jars that are pre-installed
with HDI, and pull in additional dependencies only as necessary.

1. Go to the Gremlin Console target directory at tinkerpop/gremlin-console/target/apache-tinkerpop-gremlin-console-3.3.0-SNAPSHOT-standalone .

2. Move all jars under ext/ to lib/ : find ext/ -name '*.jar' -exec mv {} lib/ \; .

3. Remove all jar libraries under lib/ that are not in the following list:

Get the Azure Cosmos DB Spark connector

Distribute the dependencies to the Spark worker nodes

TinkerPop3
gremlin-console-3.3.0-SNAPSHOT.jar
gremlin-core-3.3.0-SNAPSHOT.jar
gremlin-groovy-3.3.0-SNAPSHOT.jar
gremlin-shaded-3.3.0-SNAPSHOT.jar
hadoop-gremlin-3.3.0-SNAPSHOT.jar
spark-gremlin-3.3.0-SNAPSHOT.jar
tinkergraph-gremlin-3.3.0-SNAPSHOT.jar

Gremlin depedencies
asm-3.2.jar
avro-1.7.4.jar
caffeine-2.3.1.jar
cglib-2.2.1-v20090111.jar
gbench-0.4.3-groovy-2.4.jar
gprof-0.3.1-groovy-2.4.jar
groovy-2.4.9-indy.jar
groovy-2.4.9.jar
groovy-console-2.4.9.jar
groovy-groovysh-2.4.9-indy.jar
groovy-json-2.4.9-indy.jar
groovy-jsr223-2.4.9-indy.jar
groovy-sql-2.4.9-indy.jar
groovy-swing-2.4.9.jar
groovy-templates-2.4.9.jar
groovy-xml-2.4.9.jar
hadoop-yarn-server-nodemanager-2.7.2.jar
hppc-0.7.1.jar
javatuples-1.2.jar
jaxb-impl-2.2.3-1.jar
jbcrypt-0.4.jar
jcabi-log-0.14.jar
jcabi-manifests-1.1.jar
jersey-core-1.9.jar
jersey-guice-1.9.jar
jersey-json-1.9.jar
jettison-1.1.jar
scalatest_2.11-2.2.6.jar
servlet-api-2.5.jar
snakeyaml-1.15.jar
unused-1.0.0.jar
xml-apis-1.3.04.jar

mvn install:install-file -Dfile="gremlin-core-3.3.0-SNAPSHOT.jar" -DgroupId=org.apache.tinkerpop -DartifactId=gremlin-core -Dversion=3.3.0-SNAPSHOT -Dpackaging=jar
mvn install:install-file -Dfile="gremlin-groovy-3.3.0-SNAPSHOT.jar" -DgroupId=org.apache.tinkerpop -DartifactId=gremlin-groovy -Dversion=3.3.0-SNAPSHOT -Dpackaging=jar`
mvn install:install-file -Dfile="gremlin-shaded-3.3.0-SNAPSHOT.jar" -DgroupId=org.apache.tinkerpop -DartifactId=gremlin-shaded -Dversion=3.3.0-SNAPSHOT -Dpackaging=jar`
mvn install:install-file -Dfile="hadoop-gremlin-3.3.0-SNAPSHOT.jar" -DgroupId=org.apache.tinkerpop -DartifactId=hadoop-gremlin -Dversion=3.3.0-SNAPSHOT -Dpackaging=jar`
mvn install:install-file -Dfile="spark-gremlin-3.3.0-SNAPSHOT.jar" -DgroupId=org.apache.tinkerpop -DartifactId=spark-gremlin -Dversion=3.3.0-SNAPSHOT -Dpackaging=jar`
mvn install:install-file -Dfile="tinkergraph-gremlin-3.3.0-SNAPSHOT.jar" -DgroupId=org.apache.tinkerpop -DartifactId=tinkergraph-gremlin -Dversion=3.3.0-SNAPSHOT -Dpackaging=jar`

git clone https://github.com/Azure/azure-cosmosdb-spark.git
cd azure-documentdb-spark
mvn clean package

$ azure-documentdb-spark:
mkdir ~/azure-documentdb-spark
cp target/azure-documentdb-spark-0.0.3-SNAPSHOT.jar ~/azure-documentdb-spark
cp target/alternateLocation/azure-documentdb-1.10.0.jar ~/azure-documentdb-spark

1. Get the Azure Cosmos DB Spark connector azure-documentdb-spark-0.0.3-SNAPSHOT.jar and Cosmos DB Java SDK azure-documentdb-1.10.0.jar from Azure Cosmos DB Spark
Connector on GitHub.

2. Alternatively, you can build it locally. Because the latest version of Spark-Gremlin was built with Spark 1.6.1 and is not compatible with Spark 2.0.2, which is currently
used in the Azure Cosmos DB Spark connector, you can build the latest TinkerPop3 code and install the jars manually. Do the following:

a. Clone the Azure Cosmos DB Spark connector.

b. Build TinkerPop3 (already done in previous steps). Install all TinkerPop 3.3.0-SNAPSHOT jars locally.

c. Update tinkerpop.version azure-documentdb-spark/pom.xml to 3.3.0-SNAPSHOT .

d. Build with Maven. The needed jars are placed in target and target/alternateLocation .

3. Copy the previously mentioned jars to a local directory at ~/azure-documentdb-spark:

$ /home/sshuser/tinkerpop/gremlin-console/target/apache-tinkerpop-gremlin-console-3.3.0-SNAPSHOT-standalone:
cp lib/* ~/azure-documentdb-spark

scp -r ~/azure-documentdb-spark sshuser@wn0-cosmos:/home/sshuser
scp -r ~/azure-documentdb-spark sshuser@wn1-cosmos:/home/sshuser
...

1. Because the transformation of graph data depends on TinkerPop3, you must distribute the related dependencies to all Spark worker nodes.

2. Copy the previously mentioned Gremlin dependencies, the CosmosDB Spark connector jar, and CosmosDB Java SDK to the worker nodes by doing the following:

a. Copy all the jars into ~/azure-documentdb-spark .

b. Get the list of all Spark worker nodes, which you can find on Ambari Dashboard, in the Spark2 Clients list in the Spark2 section.

c. Copy that directory to each of the nodes.

https://github.com/Azure/azure-cosmosdb-spark/tree/master/releases/azure-cosmosdb-spark-0.0.3_2.0.2_2.11

Set up the environment variables

Prepare the graph configuration

Load the TinkerPop graph, and save it to Azure Cosmos DB

export HADOOP_GREMLIN_LIBS=/home/sshuser/tinkerpop/gremlin-console/target/apache-tinkerpop-gremlin-console-3.3.0-SNAPSHOT-standalone/ext/spark-gremlin/lib
export CLASSPATH=$CLASSPATH:$HADOOP_CONF_DIR:/usr/hdp/current/spark2-client/jars/*:/home/sshuser/azure-documentdb-spark/*
export HDP_VERSION=2.5.4.2-7
export HADOOP_HOME=${HADOOP_HOME:-/usr/hdp/current/hadoop-client}

1. Find the HDP version of the Spark cluster. It is the directory name under /usr/hdp/ (for example, 2.5.4.2-7).

2. Set hdp.version for all nodes. In Ambari Dashboard, go to YARN section > Configs > Advanced, and then do the following:

a. In Custom yarn-site , add a new property hdp.version with the value of the HDP version on the master node.

b. Save the configurations. There are warnings, which you can ignore.

c. Restart the YARN and Oozie services as the notification icons indicate.

3. Set the following environment variables on the master node (replace the values as appropriate):

gremlin.graph=org.apache.tinkerpop.gremlin.hadoop.structure.HadoopGraph
gremlin.hadoop.jarsInDistributedCache=true
gremlin.hadoop.defaultGraphComputer=org.apache.tinkerpop.gremlin.spark.process.computer.SparkGraphComputer

gremlin.hadoop.graphReader=com.microsoft.azure.documentdb.spark.gremlin.DocumentDBInputRDD
gremlin.hadoop.graphWriter=com.microsoft.azure.documentdb.spark.gremlin.DocumentDBOutputRDD

####################################
SparkGraphComputer Configuration
####################################
spark.master=yarn
spark.executor.memory=3g
spark.executor.instances=6
spark.serializer=org.apache.spark.serializer.KryoSerializer
spark.kryo.registrator=org.apache.tinkerpop.gremlin.spark.structure.io.gryo.GryoRegistrator
gremlin.spark.persistContext=true

Classpath for the driver and executors
spark.driver.extraClassPath=/usr/hdp/current/spark2-client/jars/*:/home/sshuser/azure-documentdb-spark/*
spark.executor.extraClassPath=/usr/hdp/current/spark2-client/jars/*:/home/sshuser/azure-documentdb-spark/*

######################################
DocumentDB Spark connector
######################################
spark.documentdb.connectionMode=Gateway
spark.documentdb.schema_samplingratio=1.0
spark.documentdb.Endpoint=https://FILLIN.documents.azure.com:443/
spark.documentdb.Masterkey=FILLIN
spark.documentdb.Database=FILLIN
spark.documentdb.Collection=FILLIN
spark.documentdb.preferredRegions=FILLIN

spark.documentdb.Endpoint=https://FILLIN.documents.azure.com:443/
spark.documentdb.Masterkey=FILLIN
spark.documentdb.Database=FILLIN
spark.documentdb.Collection=FILLIN
Optional
#spark.documentdb.preferredRegions=West\ US;West\ US\ 2

1. Create a configuration file with the Azure Cosmos DB connection parameters and Spark settings, and put it at
tinkerpop/gremlin-console/target/apache-tinkerpop-gremlin-console-3.3.0-SNAPSHOT-standalone/conf/hadoop/gremlin-spark.properties .

2. Update the spark.driver.extraClassPath and spark.executor.extraClassPath to include the directory of the jars that you distributed in the previous step, in this case
/home/sshuser/azure-documentdb-spark/* .

3. Provide the following details for Azure Cosmos DB:

To demonstrate how to persist a graph into Azure Cosmos DB, this example uses the TinkerPop predefined TinkerPop modern graph. The graph is stored in Kryo format, and
it's provided in the TinkerPop repository.

$ tinkerpop:
hadoop fs -mkdir /graphData
hadoop fs -copyFromLocal ~/tinkerpop/data/tinkerpop-modern.kryo /graphData/tinkerpop-modern.kryo

gremlin.hadoop.graphReader=org.apache.tinkerpop.gremlin.hadoop.structure.io.gryo.GryoInputFormat
gremlin.hadoop.inputLocation=/graphData/tinkerpop-modern.kryo

1. Because you are running Gremlin in YARN mode, you must make the graph data available in the Hadoop file system. Use the following commands to make a directory
and copy the local graph file into it.

2. Temporarily update the gremlin-spark.properties file to use GryoInputFormat to read the graph. Also indicate inputLocation as the directory you create, as in the following:

3. Start Gremlin Console, and then create the following computation steps to persist data to the configured Azure Cosmos DB collection:

a. Create the graph graph = GraphFactory.open("conf/hadoop/gremlin-spark.properties") .

b. Use SparkGraphComputer for writing
graph.compute(SparkGraphComputer.class).result(GraphComputer.ResultGraph.NEW).persist(GraphComputer.Persist.EDGES).program(TraversalVertexProgram.build().traversal(graph.traversal().withComputer(Computer.compute(SparkGraphComputer.class)),"gremlin-
groovy","g.V()").create(graph)).submit().get()

.

Load the graph from Azure Cosmos DB, and run Gremlin queries

NOTE

Next steps

gremlin> graph = GraphFactory.open("conf/hadoop/gremlin-spark.properties")
==>hadoopgraph[gryoinputformat->documentdboutputrdd]
gremlin> hg = graph.
 compute(SparkGraphComputer.class).
 result(GraphComputer.ResultGraph.NEW).
 persist(GraphComputer.Persist.EDGES).
 program(TraversalVertexProgram.build().
 traversal(graph.traversal().withComputer(Computer.compute(SparkGraphComputer.class)), "gremlin-groovy", "g.V()").
 create(graph)).
 submit().
 get()
==>result[hadoopgraph[documentdbinputrdd->documentdboutputrdd],memory[size:1]]

4. From Data Explorer, you can verify that the data has been persisted to Azure Cosmos DB.

gremlin.hadoop.graphReader=com.microsoft.azure.documentdb.spark.gremlin.DocumentDBInputRDD

gremlin> graph = GraphFactory.open("conf/hadoop/gremlin-spark.properties")
==>hadoopgraph[documentdbinputrdd->documentdboutputrdd]
gremlin> g = graph.traversal().withComputer(SparkGraphComputer)
==>graphtraversalsource[hadoopgraph[documentdbinputrdd->documentdboutputrdd], sparkgraphcomputer]
gremlin> g.V().count()
==>6
gremlin> g.E().count()
==>6
gremlin> g.V(1).out().values('name')
==>josh
==>vadas
==>lop
gremlin> g.V().hasLabel('person').coalesce(values('nickname'), values('name'))
==>josh
==>peter
==>vadas
==>marko
gremlin> g.V().hasLabel('person').
 choose(values('name')).
 option('marko', values('age')).
 option('josh', values('name')).
 option('vadas', valueMap()).
 option('peter', label())
==>josh
==>person
==>[name:[vadas],age:[27]]
==>29

1. To load the graph, edit gremlin-spark.properties to set graphReader to DocumentDBInputRDD :

2. Load the graph, traverse the data, and run Gremlin queries with it by doing the following:

a. Start the Gremlin Console bin/gremlin.sh .

b. Create the graph with the configuration graph = GraphFactory.open('conf/hadoop/gremlin-spark.properties') .

c. Create a graph traversal with SparkGraphComputer g = graph.traversal().withComputer(SparkGraphComputer) .

d. Run the following Gremlin graph queries:

To see more detailed logging, set the log level in conf/log4j-console.properties to a more verbose level.

In this quick-start article, you've learned how to work with graphs by combining Azure Cosmos DB and Spark.

Deploy Azure Cosmos DB and Azure App Service
Web Apps using an Azure Resource Manager
Template
6/6/2017 • 6 min to read • Edit Online

Prerequisites

TIP

Step 1: Download the template files

Step 2: Deploy the Azure Cosmos DB account, App Service web app
and demo application sample

This tutorial shows you how to use an Azure Resource Manager template to deploy and integrate Microsoft Azure
Cosmos DB, an Azure App Service web app, and a sample web application.

Using Azure Resource Manager templates, you can easily automate the deployment and configuration of your
Azure resources. This tutorial shows how to deploy a web application and automatically configure Azure Cosmos
DB account connection information.

After completing this tutorial, you will be able to answer the following questions:

How can I use an Azure Resource Manager template to deploy and integrate an Azure Cosmos DB account and a
web app in Azure App Service?
How can I use an Azure Resource Manager template to deploy and integrate an Azure Cosmos DB account, a
web app in App Service Web Apps, and a Webdeploy application?

While this tutorial does not assume prior experience with Azure Resource Manager templates or JSON, should you wish to
modify the referenced templates or deployment options, then knowledge of each of these areas will be required.

Before following the instructions in this tutorial, ensure that you have the following:

An Azure subscription. Azure is a subscription-based platform. For more information about obtaining a
subscription, see Purchase Options, Member Offers, or Free Trial.

Let's start by downloading the template files we will use in this tutorial.

1. Download the Create an Azure Cosmos DB account, Web Apps, and deploy a demo application sample template
to a local folder (e.g. C:\Azure Cosmos DBTemplates). This template will deploy an Azure Cosmos DB account, an
App Service web app, and a web application. It will also automatically configure the web application to connect
to the Azure Cosmos DB account.

2. Download the Create an Azure Cosmos DB account and Web Apps sample template to a local folder (e.g.
C:\Azure Cosmos DBTemplates). This template will deploy an Azure Cosmos DB account, an App Service web
app, and will modify the site's application settings to easily surface Azure Cosmos DB connection information,
but does not include a web application.

Now let's deploy our first template.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/create-website.md
https://azure.microsoft.com/services/cosmos-db/
http://go.microsoft.com/fwlink/?LinkId=529714
https://azure.microsoft.com/pricing/purchase-options/
https://azure.microsoft.com/pricing/member-offers/
https://azure.microsoft.com/pricing/free-trial/
https://portalcontent.blob.core.windows.net/samples/DocDBWebsiteTodo.json
https://portalcontent.blob.core.windows.net/samples/DocDBWebSite.json

TIP

The template does not validate that the web app name and Azure Cosmos DB account name entered below are a) valid and
b) available. It is highly recommended that you verify the availability of the names you plan to supply prior to submitting the
deployment.

1. Login to the Azure Portal, click New and search for "Template deployment".

2. Select the Template deployment item and click Create

https://portal.azure.com

3. Click Edit template, paste the contents of the DocDBWebsiteTodo.json template file, and click Save.

4. Click Edit parameters, provide values for each of the mandatory parameters, and click OK. The parameters
are as follows:

a. SITENAME: Specifies the App Service web app name and is used to construct the URL that you will use to
access the web app (e.g. if you specify "mydemodocdbwebapp", then the URL by which you will access
the web app will be mydemodocdbwebapp.azurewebsites.net).

b. HOSTINGPLANNAME: Specifies the name of App Service hosting plan to create.
c. LOCATION: Specifies the Azure location in which to create the Azure Cosmos DB and web app resources.
d. DATABASEACCOUNTNAME: Specifies the name of the Azure Cosmos DB account to create.

5. Choose an existing Resource group or provide a name to make a new resource group, and choose a location
for the resource group.

6. Click Review legal terms, Purchase, and then click Create to begin the deployment. Select Pin to dashboard
so the resulting deployment is easily visible on your Azure portal home page.

7. When the deployment finishes, the Resource group blade will open.

8. To use the application, simply navigate to the web app URL (in the example above, the URL would be
http://mydemodocdbwebapp.azurewebsites.net). You'll see the following web application:

http://mydemodocdbwebapp.azurewebsites.net

9. Go ahead and create a couple of tasks in the web app and then return to the Resource group blade in the Azure
portal. Click the Azure Cosmos DB account resource in the Resources list and then click Query Explorer.

11. Feel free to explore the Azure Cosmos DB portal experience or modify the sample Todo application. When
you're ready, let's deploy another template.

10. Run the default query, "SELECT * FROM c" and inspect the results. Notice that the query has retrieved the
JSON representation of the todo items you created in step 7 above. Feel free to experiment with queries; for
example, try running SELECT * FROM c WHERE c.isComplete = true to return all todo items which have been
marked as complete.

Step 3: Deploy the Document account and web app sample

TIP

Now let's deploy our second template. This template is useful to show how you can inject Azure Cosmos DB
connection information such as account endpoint and master key into a web app as application settings or as a
custom connection string. For example, perhaps you have your own web application that you would like to deploy
with an Azure Cosmos DB account and have the connection information automatically populated during
deployment.

The template does not validate that the web app name and Azure Cosmos DB account name entered below are a) valid and
b) available. It is highly recommended that you verify the availability of the names you plan to supply prior to submitting the
deployment.

1. In the Azure Portal, click New and search for "Template deployment".

2. Select the Template deployment item and click Create

https://portal.azure.com

3. Click Edit template, paste the contents of the DocDBWebSite.json template file, and click Save.

4. Click Edit parameters, provide values for each of the mandatory parameters, and click OK. The parameters
are as follows:

a. SITENAME: Specifies the App Service web app name and is used to construct the URL that you will use to
access the web app (e.g. if you specify "mydemodocdbwebapp", then the URL by which you will access
the web app will be mydemodocdbwebapp.azurewebsites.net).

b. HOSTINGPLANNAME: Specifies the name of App Service hosting plan to create.
c. LOCATION: Specifies the Azure location in which to create the Azure Cosmos DB and web app resources.
d. DATABASEACCOUNTNAME: Specifies the name of the Azure Cosmos DB account to create.

5. Choose an existing Resource group or provide a name to make a new resource group, and choose a location
for the resource group.

6. Click Review legal terms, Purchase, and then click Create to begin the deployment. Select Pin to dashboard
so the resulting deployment is easily visible on your Azure portal home page.

7. When the deployment finishes, the Resource group blade will open.

8. Click the Web App resource in the Resources list and then click Application settings

9. Note how there are application settings present for the Azure Cosmos DB endpoint and each of the Azure
Cosmos DB master keys.

10. Feel free to continue exploring the Azure Portal, or follow one of our Azure Cosmos DB samples to create your
own Azure Cosmos DB application.

http://go.microsoft.com/fwlink/?LinkID=402386

Next steps

What's changed

NOTE

Congratulations! You've deployed Azure Cosmos DB, App Service web app and a sample web application using
Azure Resource Manager templates.

To learn more about Azure Cosmos DB, click here.
To learn more about Azure App Service Web apps, click here.
To learn more about Azure Resource Manager templates, click here.

For a guide to the change from Websites to App Service see: Azure App Service and Its Impact on Existing Azure
Services
For a guide to the change of the old portal to the new portal see: Reference for navigating the Azure Classic
Portal

If you want to get started with Azure App Service before signing up for an Azure account, go to Try App Service, where you
can immediately create a short-lived starter web app in App Service. No credit cards required; no commitments.

http://azure.com/docdb
http://go.microsoft.com/fwlink/?LinkId=325362
https://msdn.microsoft.com/library/azure/dn790549.aspx
http://go.microsoft.com/fwlink/?LinkId=529714
http://go.microsoft.com/fwlink/?LinkId=529715
http://go.microsoft.com/fwlink/?LinkId=523751

Scenario: Exception handling and error logging for
logic apps
5/24/2017 • 7 min to read • Edit Online

NOTE

Scenario and use case overview

TIP

How we solved the problem

IMPORTANT

Create the logic app

This scenario describes how you can extend a logic app to better support exception handling. We've used a real-life
use case to answer the question: "Does Azure Logic Apps support exception and error handling?"

The current Azure Logic Apps schema provides a standard template for action responses. This template includes both internal
validation and error responses returned from an API app.

Here's the story as the use case for this scenario:

A well-known healthcare organization engaged us to develop an Azure solution that would create a patient portal
by using Microsoft Dynamics CRM Online. They needed to send appointment records between the Dynamics CRM
Online patient portal and Salesforce. We were asked to use the HL7 FHIR standard for all patient records.

The project had two major requirements:

A method to log records sent from the Dynamics CRM Online portal
A way to view any errors that occurred within the workflow

For a high-level video about this project, see Integration User Group.

We chose Azure Cosmos DB As a repository for the log and error records (Cosmos DB refers to records as
documents). Because Azure Logic Apps has a standard template for all responses, we would not have to create a
custom schema. We could create an API app to Insert and Query for both error and log records. We could also
define a schema for each within the API app.

Another requirement was to purge records after a certain date. Cosmos DB has a property called Time to Live (TTL),
which allowed us to set a Time to Live value for each record or collection. This capability eliminated the need to
manually delete records in Cosmos DB.

To complete this tutorial, you need to create a Cosmos DB database and two collections (Logging and Errors).

The first step is to create the logic app and open the app in Logic App Designer. In this example, we are using
parent-child logic apps. Let's assume that we have already created the parent and are going to create one child

https://github.com/Microsoft/azure-docs/blob/master/articles/logic-apps/logic-apps-scenario-error-and-exception-handling.md
http://www.hl7.org/implement/standards/fhir/
http://www.integrationusergroup.com/logic-apps-support-error-handling/
https://azure.microsoft.com/services/documentdb/
https://azure.microsoft.com/blog/documentdb-now-supports-time-to-live-ttl/

Logic app trigger

"triggers": {
 "request": {
 "type": "request",
 "kind": "http",
 "inputs": {
 "schema": {
 "properties": {
 "CRMid": {
 "type": "string"
 },
 "recordType": {
 "type": "string"
 },
 "salesforceID": {
 "type": "string"
 },
 "update": {
 "type": "boolean"
 }
 },
 "required": [
 "CRMid",
 "recordType",
 "salesforceID",
 "update"
],
 "type": "object"
 }
 }
 }
 },

Steps

logic app.

Because we are going to log the record coming out of Dynamics CRM Online, let's start at the top. We must use a
Request trigger because the parent logic app triggers this child.

We are using a Request trigger as shown in the following example:

We must log the source (request) of the patient record from the Dynamics CRM Online portal.

1. We must get a new appointment record from Dynamics CRM Online.

The trigger coming from CRM provides us with the CRM PatentId, record type, New or Updated Record
(new or update Boolean value), and SalesforceId. The SalesforceId can be null because it's only used for an
update. We get the CRM record by using the CRM PatientID and the Record Type.

2. Next, we need to add our DocumentDB API app InsertLogEntry operation as shown here in Logic App
Designer.

Insert log entry

Insert error entry

Check for create record failure

Logic app source code

NOTE

Logging

Log entryLog entry

"InsertLogEntry": {
 "metadata": {
 "apiDefinitionUrl": "https://.../swagger/docs/v1",
 "swaggerSource": "website"
 },
 "type": "Http",
 "inputs": {
 "body": {
 "date": "@{outputs('Gets_NewPatientRecord')['headers']['Date']}",
 "operation": "New Patient",
 "patientId": "@{triggerBody()['CRMid']}",
 "providerId": "@{triggerBody()['providerID']}",
 "source": "@{outputs('Gets_NewPatientRecord')['headers']}"
 },
 "method": "post",
 "uri": "https://.../api/Log"
 },
 "runAfter": {
 "Gets_NewPatientecord": ["Succeeded"]
 }
}

Log requestLog request

 {
 "uri": "https://.../api/Log",
 "method": "post",
 "body": {
 "date": "Fri, 10 Jun 2016 22:31:56 GMT",
 "operation": "New Patient",
 "patientId": "6b115f6d-a7ee-e511-80f5-3863bb2eb2d0",
 "providerId": "",
 "source": "{/"Pragma/":/"no-cache/",/"x-ms-request-id/":/"e750c9a9-bd48-44c4-bbba-1688b6f8a132/",/"OData-Version/":/"4.0/",/"Cache-
Control/":/"no-cache/",/"Date/":/"Fri, 10 Jun 2016 22:31:56 GMT/",/"Set-
Cookie/":/"ARRAffinity=785f4334b5e64d2db0b84edcc1b84f1bf37319679aefce206b51510e56fd9770;Path=/;Domain=127.0.0.1/",/"Server/":/"Micros
oft-IIS/8.0,Microsoft-HTTPAPI/2.0/",/"X-AspNet-Version/":/"4.0.30319/",/"X-Powered-By/":/"ASP.NET/",/"Content-
Length/":/"1935/",/"Content-Type/":/"application/json; odata.metadata=minimal; odata.streaming=true/",/"Expires/":/"-1/"}"
 }
 }

Log responseLog response

The following examples are samples only. Because this tutorial is based on an implementation now in production, the value of
a Source Node might not display properties that are related to scheduling an appointment.>

The following logic app code sample shows how to handle logging.

Here is the logic app source code for inserting a log entry.

Here is the log request message posted to the API app.

Here is the log response message from the API app.

{
 "statusCode": 200,
 "headers": {
 "Pragma": "no-cache",
 "Cache-Control": "no-cache",
 "Date": "Fri, 10 Jun 2016 22:32:17 GMT",
 "Server": "Microsoft-IIS/8.0",
 "X-AspNet-Version": "4.0.30319",
 "X-Powered-By": "ASP.NET",
 "Content-Length": "964",
 "Content-Type": "application/json; charset=utf-8",
 "Expires": "-1"
 },
 "body": {
 "ttl": 2592000,
 "id": "6b115f6d-a7ee-e511-80f5-3863bb2eb2d0_1465597937",
 "_rid": "XngRAOT6IQEHAAAAAAAAAA==",
 "_self": "dbs/XngRAA==/colls/XngRAOT6IQE=/docs/XngRAOT6IQEHAAAAAAAAAA==/",
 "_ts": 1465597936,
 "_etag": "/"0400fc2f-0000-0000-0000-575b3ff00000/"",
 "patientID": "6b115f6d-a7ee-e511-80f5-3863bb2eb2d0",
 "timestamp": "2016-06-10T22:31:56Z",
 "source": "{/"Pragma/":/"no-cache/",/"x-ms-request-id/":/"e750c9a9-bd48-44c4-bbba-1688b6f8a132/",/"OData-Version/":/"4.0/",/"Cache-
Control/":/"no-cache/",/"Date/":/"Fri, 10 Jun 2016 22:31:56 GMT/",/"Set-
Cookie/":/"ARRAffinity=785f4334b5e64d2db0b84edcc1b84f1bf37319679aefce206b51510e56fd9770;Path=/;Domain=127.0.0.1/",/"Server/":/"Micros
oft-IIS/8.0,Microsoft-HTTPAPI/2.0/",/"X-AspNet-Version/":/"4.0.30319/",/"X-Powered-By/":/"ASP.NET/",/"Content-
Length/":/"1935/",/"Content-Type/":/"application/json; odata.metadata=minimal; odata.streaming=true/",/"Expires/":/"-1/"}",
 "operation": "New Patient",
 "salesforceId": "",
 "expired": false
 }
}

Error handling

Create error recordCreate error record

Now let's look at the error handling steps.

The following logic app code sample shows how you can implement error handling.

Here is the logic app source code for creating an error record.

"actions": {
 "CreateErrorRecord": {
 "metadata": {
 "apiDefinitionUrl": "https://.../swagger/docs/v1",
 "swaggerSource": "website"
 },
 "type": "Http",
 "inputs": {
 "body": {
 "action": "New_Patient",
 "isError": true,
 "crmId": "@{triggerBody()['CRMid']}",
 "patientID": "@{triggerBody()['CRMid']}",
 "message": "@{body('Create_NewPatientRecord')['message']}",
 "providerId": "@{triggerBody()['providerId']}",
 "severity": 4,
 "source": "@{actions('Create_NewPatientRecord')['inputs']['body']}",
 "statusCode": "@{int(outputs('Create_NewPatientRecord')['statusCode'])}",
 "salesforceId": "",
 "update": false
 },
 "method": "post",
 "uri": "https://.../api/CrMtoSfError"
 },
 "runAfter":
 {
 "Create_NewPatientRecord": ["Failed"]
 }
 }
}

Insert error into Cosmos DB--requestInsert error into Cosmos DB--request

{
 "uri": "https://.../api/CrMtoSfError",
 "method": "post",
 "body": {
 "action": "New_Patient",
 "isError": true,
 "crmId": "6b115f6d-a7ee-e511-80f5-3863bb2eb2d0",
 "patientId": "6b115f6d-a7ee-e511-80f5-3863bb2eb2d0",
 "message": "Salesforce failed to complete task: Message: duplicate value found: Account_ID_MED__c duplicates value on record with id:
001U000001c83gK",
 "providerId": "",
 "severity": 4,
 "salesforceId": "",
 "update": false,
 "source": "{/"Account_Class_vod__c/":/"PRAC/",/"Account_Status_MED__c/":/"I/",/"CRM_HUB_ID__c/":/"6b115f6d-a7ee-e511-80f5-
3863bb2eb2d0/",/"Credentials_vod__c/",/"DTC_ID_MED__c/":/"/",/"Fax/":/"/",/"FirstName/":/"A/",/"Gender_vod__c/":/"/",/"IMS_ID__c/":/"/"
,/"LastName/":/"BAILEY/",/"MasterID_mp__c/":/"/",/"C_ID_MED__c/":/"851588/",/"Middle_vod__c/":/"/",/"NPI_vod__c/":/"/",/"PDRP_MED
__c/":false,/"PersonDoNotCall/":false,/"PersonEmail/":/"/",/"PersonHasOptedOutOfEmail/":false,/"PersonHasOptedOutOfFax/":false,/"PersonMo
bilePhone/":/"/",/"Phone/":/"/",/"Practicing_Specialty__c/":/"FM - FAMILY
MEDICINE/",/"Primary_City__c/":/"/",/"Primary_State__c/":/"/",/"Primary_Street_Line2__c/":/"/",/"Primary_Street__c/":/"/",/"Primary_Zip__c/"
:/"/",/"RecordTypeId/":/"012U0000000JaPWIA0/",/"Request_Date__c/":/"2016-06-
10T22:31:55.9647467Z/",/"ONY_ID__c/":/"/",/"Specialty_1_vod__c/":/"/",/"Suffix_vod__c/":/"/",/"Website/":/"/"}",
 "statusCode": "400"
 }
}

Insert error into Cosmos DB--responseInsert error into Cosmos DB--response

{
 "statusCode": 200,
 "headers": {
 "Pragma": "no-cache",
 "Cache-Control": "no-cache",
 "Date": "Fri, 10 Jun 2016 22:31:57 GMT",
 "Server": "Microsoft-IIS/8.0",
 "X-AspNet-Version": "4.0.30319",
 "X-Powered-By": "ASP.NET",
 "Content-Length": "1561",
 "Content-Type": "application/json; charset=utf-8",
 "Expires": "-1"
 },
 "body": {
 "id": "6b115f6d-a7ee-e511-80f5-3863bb2eb2d0-1465597917",
 "_rid": "sQx2APhVzAA8AAAAAAAAAA==",
 "_self": "dbs/sQx2AA==/colls/sQx2APhVzAA=/docs/sQx2APhVzAA8AAAAAAAAAA==/",
 "_ts": 1465597912,
 "_etag": "/"0c00eaac-0000-0000-0000-575b3fdc0000/"",
 "prescriberId": "6b115f6d-a7ee-e511-80f5-3863bb2eb2d0",
 "timestamp": "2016-06-10T22:31:57.3651027Z",
 "action": "New_Patient",
 "salesforceId": "",
 "update": false,
 "body": "CRM failed to complete task: Message: duplicate value found: CRM_HUB_ID__c duplicates value on record with id:
001U000001c83gK",
 "source": "{/"Account_Class_vod__c/":/"PRAC/",/"Account_Status_MED__c/":/"I/",/"CRM_HUB_ID__c/":/"6b115f6d-a7ee-e511-80f5-
3863bb2eb2d0/",/"Credentials_vod__c/":/"DO - Degree level is
DO/",/"DTC_ID_MED__c/":/"/",/"Fax/":/"/",/"FirstName/":/"A/",/"Gender_vod__c/":/"/",/"IMS_ID__c/":/"/",/"LastName/":/"BAILEY/",/"MterI
D_mp__c/":/"/",/"Medicis_ID_MED__c/":/"851588/",/"Middle_vod__c/":/"/",/"NPI_vod__c/":/"/",/"PDRP_MED__c/":false,/"PersonDoNotCall/
":false,/"PersonEmail/":/"/",/"PersonHasOptedOutOfEmail/":false,/"PersonHasOptedOutOfFax/":false,/"PersonMobilePhone/":/"/",/"Phone/":/"/"
,/"Practicing_Specialty__c/":/"FM - FAMILY
MEDICINE/",/"Primary_City__c/":/"/",/"Primary_State__c/":/"/",/"Primary_Street_Line2__c/":/"/",/"Primary_Street__c/":/"/",/"Primary_Zip__c/"
:/"/",/"RecordTypeId/":/"012U0000000JaPWIA0/",/"Request_Date__c/":/"2016-06-
10T22:31:55.9647467Z/",/"XXXXXXX/":/"/",/"Specialty_1_vod__c/":/"/",/"Suffix_vod__c/":/"/",/"Website/":/"/"}",
 "code": 400,
 "errors": null,
 "isError": true,
 "severity": 4,
 "notes": null,
 "resolved": 0
 }
}

Salesforce error responseSalesforce error response

{
 "statusCode": 400,
 "headers": {
 "Pragma": "no-cache",
 "x-ms-request-id": "3e8e4884-288e-4633-972c-8271b2cc912c",
 "X-Content-Type-Options": "nosniff",
 "Cache-Control": "no-cache",
 "Date": "Fri, 10 Jun 2016 22:31:56 GMT",
 "Set-Cookie": "ARRAffinity=785f4334b5e64d2db0b84edcc1b84f1bf37319679aefce206b51510e56fd9770;Path=/;Domain=127.0.0.1",
 "Server": "Microsoft-IIS/8.0,Microsoft-HTTPAPI/2.0",
 "X-AspNet-Version": "4.0.30319",
 "X-Powered-By": "ASP.NET",
 "Content-Length": "205",
 "Content-Type": "application/json; charset=utf-8",
 "Expires": "-1"
 },
 "body": {
 "status": 400,
 "message": "Salesforce failed to complete task: Message: duplicate value found: Account_ID_MED__c duplicates value on record with id:
001U000001c83gK",
 "source": "Salesforce.Common",
 "errors": []
 }
}

Return the response back to parent logic app

Return success response to parent logic appReturn success response to parent logic app

"SuccessResponse": {
 "runAfter":
 {
 "UpdateNew_CRMPatientResponse": ["Succeeded"]
 },
 "inputs": {
 "body": {
 "status": "Success"
 },
 "headers": {
 " Content-type": "application/json",
 "x-ms-date": "@utcnow()"
 },
 "statusCode": 200
 },
 "type": "Response"
}

Return error response to parent logic appReturn error response to parent logic app

After you get the response, you can pass the response back to the parent logic app.

"ErrorResponse": {
 "runAfter":
 {
 "Create_NewPatientRecord": ["Failed"]
 },
 "inputs": {
 "body": {
 "status": "BadRequest"
 },
 "headers": {
 "Content-type": "application/json",
 "x-ms-date": "@utcnow()"
 },
 "statusCode": 400
 },
 "type": "Response"
}

Cosmos DB repository and portal

Error management portal

NOTE

Error management listError management list

Error management detail viewError management detail view

Our solution added capabilities with Cosmos DB.

To view the errors, you can create an MVC web app to display the error records from Cosmos DB. The List, Details,
Edit, and Delete operations are included in the current version.

Edit operation: Cosmos DB replaces the entire document. The records shown in the List and Detail views are samples only.
They are not actual patient appointment records.

Here are examples of our MVC app details created with the previously described approach.

https://azure.microsoft.com/services/documentdb

Log management portal

Sample log detail viewSample log detail view

API app details
Logic Apps exception management APILogic Apps exception management API

TIP

To view the logs, we also created an MVC web app. Here are examples of our MVC app details created with the
previously described approach.

Our open-source Azure Logic Apps exception management API app provides functionality as described here - there
are two controllers:

ErrorController inserts an error record (document) in a DocumentDB collection.
LogController Inserts a log record (document) in a DocumentDB collection.

Both controllers use async Task<dynamic> operations, allowing operations to resolve at runtime, so we can create the
DocumentDB schema in the body of the operation.

Every document in DocumentDB must have a unique ID. We are using PatientId and adding a timestamp that is
converted to a Unix timestamp value (double). We truncate the value to remove the fractional value.

 "actions": {
 "CreateErrorRecord": {
 "metadata": {
 "apiDefinitionUrl": "https://.../swagger/docs/v1",
 "swaggerSource": "website"
 },
 "type": "Http",
 "inputs": {
 "body": {
 "action": "New_Patient",
 "isError": true,
 "crmId": "@{triggerBody()['CRMid']}",
 "prescriberId": "@{triggerBody()['CRMid']}",
 "message": "@{body('Create_NewPatientRecord')['message']}",
 "salesforceId": "@{triggerBody()['salesforceID']}",
 "severity": 4,
 "source": "@{actions('Create_NewPatientRecord')['inputs']['body']}",
 "statusCode": "@{int(outputs('Create_NewPatientRecord')['statusCode'])}",
 "update": false
 },
 "method": "post",
 "uri": "https://.../api/CrMtoSfError"
 },
 "runAfter": {
 "Create_NewPatientRecord": ["Failed"]
 }
 }
 }

Summary

Source code

Next steps

You can view the source code of our error controller API from GitHub.

We call the API from a logic app by using the following syntax:

The expression in the preceding code sample checks for the Create_NewPatientRecord status of Failed.

You can easily implement logging and error handling in a logic app.
You can use DocumentDB as the repository for log and error records (documents).
You can use MVC to create a portal to display log and error records.

The source code for the Logic Apps exception management API application is available in this GitHub repository.

View more logic app examples and scenarios
Learn about monitoring logic apps
Create automated deployment templates for logic apps

https://github.com/HEDIDIN/LogicAppsExceptionManagementApi/blob/master/Logic App Exception Management API/Controllers/ErrorController.cs
https://github.com/HEDIDIN/LogicAppsExceptionManagementApi
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-examples-and-scenarios
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-monitor-your-logic-apps
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-create-deploy-template

Azure Functions Cosmos DB bindings
5/10/2017 • 5 min to read • Edit Online

DocumentDB API input binding

Using a DocumentDB API input binding

Input sample for single document

This article explains how to configure and code Azure Cosmos DB bindings in Azure Functions. Azure Functions
supports input and output bindings for Cosmos DB.

This is reference information for Azure Functions developers. If you're new to Azure Functions, start with the
following resources:

Create your first function
Azure Functions developer reference
C#, F#, or Node developer reference
Azure Functions triggers and bindings concepts

For more information on Cosmos DB, see Introduction to Cosmos DB and Build a Cosmos DB console application.

The DocumentDB API input binding retrieves a Cosmos DB document and passes it to the named input parameter
of the function. The document ID can be determined based on the trigger that invokes the function.

The DocumentDB API input binding has the following properties in function.json:

name : Identifier name used in function code for the document
type : must be set to "documentdb"
databaseName : The database containing the document
collectionName : The collection containing the document
id : The Id of the document to retrieve. This property supports bindings parameters; see Bind to custom input

properties in a binding expression in the article Azure Functions triggers and bindings concepts.
sqlQuery : A Cosmos DB SQL query used for retrieving multiple documents. The query supports runtime

bindings. For example: SELECT * FROM c where c.departmentId = {departmentId}

connection : The name of the app setting containing your Cosmos DB connection string
direction : must be set to "in" .

The properties id and sqlQuery cannot both be specified. If neither id nor sqlQuery is set, the entire collection is
retrieved.

In C# and F# functions, when the function exits successfully, any changes made to the input document via
named input parameters are automatically persisted.
In JavaScript functions, updates are not made automatically upon function exit. Instead, use
context.bindings.<documentName>In and context.bindings.<documentName>Out to make updates. See the JavaScript

sample.

Suppose you have the following DocumentDB API input binding in the bindings array of function.json:

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-functions/functions-bindings-documentdb.md
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-csharp
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-fsharp
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-node
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/documentdb/documentdb-introduction
https://docs.microsoft.com/en-us/azure/documentdb/documentdb-get-started
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings

{
 "name": "inputDocument",
 "type": "documentDB",
 "databaseName": "MyDatabase",
 "collectionName": "MyCollection",
 "id" : "{queueTrigger}",
 "connection": "MyAccount_COSMOSDB",
 "direction": "in"
}

Input sample in C#

// Change input document contents using DocumentDB API input binding
public static void Run(string myQueueItem, dynamic inputDocument)
{
 inputDocument.text = "This has changed.";
}

Input sample in F#

(* Change input document contents using DocumentDB API input binding *)
open FSharp.Interop.Dynamic
let Run(myQueueItem: string, inputDocument: obj) =
 inputDocument?text <- "This has changed."

{
 "frameworks": {
 "net46": {
 "dependencies": {
 "Dynamitey": "1.0.2",
 "FSharp.Interop.Dynamic": "3.0.0"
 }
 }
 }
}

Input sample in JavaScript

// Change input document contents using DocumentDB API input binding, using context.bindings.inputDocumentOut
module.exports = function (context) {
 context.bindings.inputDocumentOut = context.bindings.inputDocumentIn;
 context.bindings.inputDocumentOut.text = "This was updated!";
 context.done();
};

Input sample with multiple documents

See the language-specific sample that uses this input binding to update the document's text value.

C#
F#
JavaScript

This sample requires a project.json file that specifies the FSharp.Interop.Dynamic and Dynamitey NuGet dependencies:

To add a project.json file, see F# package management.

Suppose that you wish to retrieve multiple documents specified by a SQL query, using a queue trigger to

https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-fsharp

{
 "name": "documents",
 "type": "documentdb",
 "direction": "in",
 "databaseName": "MyDb",
 "collectionName": "MyCollection",
 "sqlQuery": "SELECT * from c where c.departmentId = {departmentId}"
 "connection": "CosmosDBConnection"
}

Input sample with multiple documents in C#

public static void Run(QueuePayload myQueueItem, IEnumerable<dynamic> documents)
{
 foreach (var doc in documents)
 {
 // operate on each document
 }
}

public class QueuePayload
{
 public string departmentId { get; set; }
}

Input sample with multiple documents in JavaScript

module.exports = function (context, input) {
 var documents = context.bindings.documents;
 for (var i = 0; i < documents.length; i++) {
 var document = documents[i];
 // operate on each document
 }
 context.done();
};

DocumentDB API output binding

customize the query parameters.

In this example, the queue trigger provides a parameter departmentId .A queue message of { "departmentId" : "Finance" }

would return all records for the finance department. Use the following in function.json:

The DocumentDB API output binding lets you write a new document to an Azure Cosmos DB database. It has the
following properties in function.json:

name : Identifier used in function code for the new document
type : must be set to "documentdb"

databaseName : The database containing the collection where the new document will be created.
collectionName : The collection where the new document will be created.
createIfNotExists : A boolean value to indicate whether the collection will be created if it does not exist. The default

is false. The reason for this is new collections are created with reserved throughput, which has pricing
implications. For more details, please visit the pricing page.
connection : The name of the app setting containing your Cosmos DB connection string
direction : must be set to "out"

https://azure.microsoft.com/pricing/details/documentdb/

Using a DocumentDB API output binding

NOTE

DocumentDB API output binding sample

{
 "name": "employeeDocument",
 "type": "documentDB",
 "databaseName": "MyDatabase",
 "collectionName": "MyCollection",
 "createIfNotExists": true,
 "connection": "MyAccount_COSMOSDB",
 "direction": "out"
}

{
 "name": "John Henry",
 "employeeId": "123456",
 "address": "A town nearby"
}

{
 "id": "John Henry-123456",
 "name": "John Henry",
 "employeeId": "123456",
 "address": "A town nearby"
}

Output sample in C#

This section shows you how to use your DocumentDB API output binding in your function code.

When you write to the output parameter in your function, by default a new document is generated in your
database, with an automatically generated GUID as the document ID. You can specify the document ID of output
document by specifying the id JSON property in the output parameter.

When you specify the ID of an existing document, it gets overwritten by the new output document.

To output multiple documents, you can also bind to ICollector<T> or IAsyncCollector<T> where T is one of the
supported types.

Suppose you have the following DocumentDB API output binding in the bindings array of function.json:

And you have a queue input binding for a queue that receives JSON in the following format:

And you want to create Cosmos DB documents in the following format for each record:

See the language-specific sample that uses this output binding to add documents to your database.

C#
F#
JavaScript

#r "Newtonsoft.Json"

using System;
using Newtonsoft.Json;
using Newtonsoft.Json.Linq;

public static void Run(string myQueueItem, out object employeeDocument, TraceWriter log)
{
 log.Info($"C# Queue trigger function processed: {myQueueItem}");

 dynamic employee = JObject.Parse(myQueueItem);

 employeeDocument = new {
 id = employee.name + "-" + employee.employeeId,
 name = employee.name,
 employeeId = employee.employeeId,
 address = employee.address
 };
}

Output sample in F#

open FSharp.Interop.Dynamic
open Newtonsoft.Json

type Employee = {
 id: string
 name: string
 employeeId: string
 address: string
}

let Run(myQueueItem: string, employeeDocument: byref<obj>, log: TraceWriter) =
 log.Info(sprintf "F# Queue trigger function processed: %s" myQueueItem)
 let employee = JObject.Parse(myQueueItem)
 employeeDocument <-
 { id = sprintf "%s-%s" employee?name employee?employeeId
 name = employee?name
 employeeId = employee?employeeId
 address = employee?address }

{
 "frameworks": {
 "net46": {
 "dependencies": {
 "Dynamitey": "1.0.2",
 "FSharp.Interop.Dynamic": "3.0.0"
 }
 }
 }
}

Output sample in JavaScript

This sample requires a project.json file that specifies the FSharp.Interop.Dynamic and Dynamitey NuGet dependencies:

To add a project.json file, see F# package management.

https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-fsharp

module.exports = function (context) {

 context.bindings.employeeDocument = JSON.stringify({
 id: context.bindings.myQueueItem.name + "-" + context.bindings.myQueueItem.employeeId,
 name: context.bindings.myQueueItem.name,
 employeeId: context.bindings.myQueueItem.employeeId,
 address: context.bindings.myQueueItem.address
 });

 context.done();
};

Run an Apache Hive, Pig, or Hadoop job using Azure
Cosmos DB and HDInsight
6/9/2017 • 15 min to read • Edit Online

TIP

Newest Version
HADOOP CONNECTOR VERSION 1.2.0

SCRIPT URI https://portalcontent.blob.core.windows.net/scriptaction/docu
mentdb-hadoop-installer-v04.ps1

DATE MODIFIED 04/26/2016

SUPPORTED HDINSIGHT VERSIONS 3.1, 3.2

This tutorial shows you how to run Apache Hive, Apache Pig, and Apache Hadoop MapReduce jobs on Azure
HDInsight with Cosmos DB's Hadoop connector. Cosmos DB's Hadoop connector allows Cosmos DB to act as both
a source and sink for Hive, Pig, and MapReduce jobs. This tutorial will use Cosmos DB as both the data source and
destination for Hadoop jobs.

After completing this tutorial, you'll be able to answer the following questions:

How do I load data from Cosmos DB using a Hive, Pig, or MapReduce job?
How do I store data in Cosmos DB using a Hive, Pig, or MapReduce job?

We recommend getting started by watching the following video, where we run through a Hive job using Cosmos
DB and HDInsight.

Then, return to this article, where you'll receive the full details on how you can run analytics jobs on your Cosmos
DB data.

This tutorial assumes that you have prior experience using Apache Hadoop, Hive, and/or Pig. If you are new to Apache
Hadoop, Hive, and Pig, we recommend visiting the Apache Hadoop documentation. This tutorial also assumes that you have
prior experience with Cosmos DB and have a Cosmos DB account. If you are new to Cosmos DB or you do not have a
Cosmos DB account, please check out our Getting Started page.

Don't have time to complete the tutorial and just want to get the full sample PowerShell scripts for Hive, Pig, and
MapReduce? Not a problem, get them here. The download also contains the hql, pig, and java files for these
samples.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/run-hadoop-with-hdinsight.md
http://hive.apache.org/
http://pig.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/docs/current/
http://portalcontent.blob.core.windows.net/samples/documentdb-hdinsight-samples.zip
https://portalcontent.blob.core.windows.net/scriptaction/documentdb-hadoop-installer-v04.ps1

CHANGE LOG Updated DocumentDB Java SDK to 1.6.0
Added support for partitioned collections as both a source
and sink

Prerequisites

WARNING

Step 1: Create a new HDInsight cluster

Before following the instructions in this tutorial, ensure that you have the following:

A Cosmos DB account, a database, and a collection with documents inside. For more information, see Getting
Started with Cosmos DB. Import sample data into your Cosmos DB account with the Cosmos DB import tool.
Throughput. Reads and writes from HDInsight will be counted towards your allotted request units for your
collections.
Capacity for an additional stored procedure within each output collection. The stored procedures are used for
transferring resulting documents.
Capacity for the resulting documents from the Hive, Pig, or MapReduce jobs.
[Optional] Capacity for an additional collection.

In order to avoid the creation of a new collection during any of the jobs, you can either print the results to stdout, save the
output to your WASB container, or specify an already existing collection. In the case of specifying an existing collection, new
documents will be created inside the collection and already existing documents will only be affected if there is a conflict in ids.
The connector will automatically overwrite existing documents with id conflicts. You can turn off this feature by
setting the upsert option to false. If upsert is false and a conflict occurs, the Hadoop job will fail; reporting an id conflict error.

This tutorial uses Script Action from the Azure Portal to customize your HDInsight cluster. In this tutorial, we will
use the Azure Portal to create your HDInsight cluster. For instructions on how to use PowerShell cmdlets or the
HDInsight .NET SDK, check out the Customize HDInsight clusters using Script Action article.

1. Sign in to the Azure Portal.
2. Click + New on the top of the left navigation, search for HDInsight in the top search bar on the New blade.
3. HDInsight published by Microsoft will appear at the top of the Results. Click on it and then click Create.

Cluster name Name the cluster.
DNS name must start and end with an alpha numeric
character, and may contain dashes.
The field must be a string between 3 and 63 characters.

Subscription Name If you have more than one Azure Subscription, select the
subscription that will host your HDInsight cluster.

Cluster type Hadoop

Cluster tier Standard

Operating System Windows

4. On the New HDInsight Cluster create blade, enter your Cluster Name and select the Subscription you
want to provision this resource under.

5. Click Select Cluster Type and set the following properties to the specified values.

https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-provision-clusters
https://portal.azure.com/

Version latest version

7. Click on Data Source to set your primary location for data access. Choose the Selection Method and specify
an already existing storage account or create a new one.

NOTE

9. Click on Pricing to select the number and type of nodes. You can keep the default configuration and scale the
number of Worker nodes later on.

Now, click SELECT.

6. Click on Credentials to set your login and remote access credentials. Choose your Cluster Login
Username and Cluster Login Password.

If you want to remote into your cluster, select yes at the bottom of the blade and provide a username and
password.

8. On the same blade, specify a Default Container and a Location. And, click SELECT.

Select a location close to your Cosmos DB account region for better performance

10. Click Optional Configuration, then Script Actions in the Optional Configuration Blade.

In Script Actions, enter the following information to customize your HDInsight cluster.

 Step 2: Install and configure Azure PowerShell

PROPERTY VALUE

Name Specify a name for the script action.

Script URI Specify the URI to the script that is invoked to customize
the cluster.
Please enter:
https://portalcontent.blob.core.windows.net/scriptac
tion/documentdb-hadoop-installer-v04.ps1.

Head Click the checkbox to run the PowerShell script onto the
Head node.
Check this checkbox.

Worker Click the checkbox to run the PowerShell script onto the
Worker node.
Check this checkbox.

Zookeeper Click the checkbox to run the PowerShell script onto the
Zookeeper.
Not needed.

Parameters Specify the parameters, if required by the script.
No Parameters needed.

11. Create either a new Resource Group or use an existing Resource Group under your Azure Subscription.
12. Now, check Pin to dashboard to track its deployment and click Create!

NOTE

1. Install Azure PowerShell. Instructions can be found here.

Alternatively, just for Hive queries, you can use HDInsight's online Hive Editor. To do so, sign in to the Azure Portal,
click HDInsight on the left pane to view a list of your HDInsight clusters. Click the cluster you want to run Hive
queries on, and then click Query Console.

2. Open the Azure PowerShell Integrated Scripting Environment:

On a computer running Windows 8 or Windows Server 2012 or higher, you can use the built-in Search.
From the Start screen, type powershell ise and click Enter.
On a computer running a version earlier than Windows 8 or Windows Server 2012, use the Start menu.
From the Start menu, type Command Prompt in the search box, then in the list of results, click
Command Prompt. In the Command Prompt, type powershell_ise and click Enter.

3. Add your Azure Account.

a. In the Console Pane, type Add-AzureAccount and click Enter.
b. Type in the email address associated with your Azure subscription and click Continue.
c. Type in the password for your Azure subscription.
d. Click Sign in.

4. The following diagram identifies the important parts of your Azure PowerShell Scripting Environment.

https://portalcontent.blob.core.windows.net/scriptaction/documentdb-hadoop-installer-v04.ps1
https://docs.microsoft.com/powershell/azure/install-azurerm-ps?view=azurermps-4.0.0
https://portal.azure.com/

 Step 3: Run a Hive job using Cosmos DB and HDInsight

IMPORTANT

All variables indicated by < > must be filled in using your configuration settings.

 # Provide Azure subscription name, the Azure Storage account and container that is used for the default HDInsight file system.
 $subscriptionName = "<SubscriptionName>"
 $storageAccountName = "<AzureStorageAccountName>"
 $containerName = "<AzureStorageContainerName>"

 # Provide the HDInsight cluster name where you want to run the Hive job.
 $clusterName = "<HDInsightClusterName>"

NOTE

1. Set the following variables in your PowerShell Script pane.

2. Let's begin constructing your query string. We'll write a Hive query that takes all documents' system
generated timestamps (_ts) and unique ids (_rid) from a DocumentDB collection, tallies all documents by the
minute, and then stores the results back into a new DocumentDB collection.

First, let's create a Hive table from our DocumentDB collection. Add the following code snippet to the
PowerShell Script pane after the code snippet from #1. Make sure you include the optional
DocumentDB.query parameter t trim our documents to just _ts and _rid.

Naming DocumentDB.inputCollections was not a mistake. Yes, we allow adding multiple collections as an input:

 '*DocumentDB.inputCollections*' = '*\<DocumentDB Input Collection Name 1\>*,*\<DocumentDB Input Collection Name 2\>*'
A1A</br> The collection names are separated without spaces, using only a single comma.

 # Create a Hive table using data from DocumentDB. Pass DocumentDB the query to filter transferred data to _rid and _ts.
 $queryStringPart1 = "drop table DocumentDB_timestamps; " +
 "create external table DocumentDB_timestamps(id string, ts BIGINT) " +
 "stored by 'com.microsoft.azure.documentdb.hive.DocumentDBStorageHandler' " +
 "tblproperties (" +
 "'DocumentDB.endpoint' = '<DocumentDB Endpoint>', " +
 "'DocumentDB.key' = '<DocumentDB Primary Key>', " +
 "'DocumentDB.db' = '<DocumentDB Database Name>', " +
 "'DocumentDB.inputCollections' = '<DocumentDB Input Collection Name>', " +
 "'DocumentDB.query' = 'SELECT r._rid AS id, r._ts AS ts FROM root r'); "

NOTE

Create a Hive table for the output data to DocumentDB.
$queryStringPart2 = "drop table DocumentDB_analytics; " +
 "create external table DocumentDB_analytics(Month INT, Day INT, Hour INT, Minute INT, Total INT) " +
 "stored by 'com.microsoft.azure.documentdb.hive.DocumentDBStorageHandler' " +
 "tblproperties (" +
 "'DocumentDB.endpoint' = '<DocumentDB Endpoint>', " +
 "'DocumentDB.key' = '<DocumentDB Primary Key>', " +
 "'DocumentDB.db' = '<DocumentDB Database Name>', " +
 "'DocumentDB.outputCollections' = '<DocumentDB Output Collection Name>'); "

 # GROUP BY minute, COUNT entries for each, INSERT INTO output Hive table.
 $queryStringPart3 = "INSERT INTO table DocumentDB_analytics " +
 "SELECT month(from_unixtime(ts)) as Month, day(from_unixtime(ts)) as Day, " +
 "hour(from_unixtime(ts)) as Hour, minute(from_unixtime(ts)) as Minute, " +
 "COUNT(*) AS Total " +
 "FROM DocumentDB_timestamps " +
 "GROUP BY month(from_unixtime(ts)), day(from_unixtime(ts)), " +
 "hour(from_unixtime(ts)) , minute(from_unixtime(ts)); "

 # Create a Hive job definition.
 $queryString = $queryStringPart1 + $queryStringPart2 + $queryStringPart3
 $hiveJobDefinition = New-AzureHDInsightHiveJobDefinition -Query $queryString

3. Next, let's create a Hive table for the output collection. The output document properties will be the month,
day, hour, minute, and the total number of occurrences.

Yet again, naming DocumentDB.outputCollections was not a mistake. Yes, we allow adding multiple collections
as an output:
'DocumentDB.outputCollections' = '<DocumentDB Output Collection Name 1>,<DocumentDB Output Collection
Name 2>'
The collection names are separated without spaces, using only a single comma.
Documents will be distributed round-robin across multiple collections. A batch of documents will be stored in one
collection, then a second batch of documents will be stored in the next collection, and so forth.

4. Finally, let's tally the documents by month, day, hour, and minute and insert the results back into the output
Hive table.

5. Add the following script snippet to create a Hive job definition from the previous query.

You can also use the -File switch to specify a HiveQL script file on HDFS.

 Step 4: Run a Pig job using Cosmos DB and HDInsight

IMPORTANT

 # Save the start time and submit the job to the cluster.
 $startTime = Get-Date
 Select-AzureSubscription $subscriptionName
 $hiveJob = Start-AzureHDInsightJob -Cluster $clusterName -JobDefinition $hiveJobDefinition

 # Wait for the Hive job to complete.
 Wait-AzureHDInsightJob -Job $hiveJob -WaitTimeoutInSeconds 3600

 # Print the standard error, the standard output of the Hive job, and the start and end time.
 $endTime = Get-Date
 Get-AzureHDInsightJobOutput -Cluster $clusterName -JobId $hiveJob.JobId -StandardOutput
 Write-Host "Start: " $startTime ", End: " $endTime -ForegroundColor Green

9. Run your new script! Click the green execute button.

6. Add the following snippet to save the start time and submit the Hive job.

7. Add the following to wait for the Hive job to complete.

8. Add the following to print the standard output and the start and end times.

10. Check the results. Sign into the Azure Portal.

a. Click Browse on the left-side panel.
b. Click everything at the top-right of the browse panel.
c. Find and click DocumentDB Accounts.
d. Next, find your DocumentDB Account, then DocumentDB Database and your DocumentDB

Collection associated with the output collection specified in your Hive query.
e. Finally, click Document Explorer underneath Developer Tools.

You will see the results of your Hive query.

All variables indicated by < > must be filled in using your configuration settings.

1. Set the following variables in your PowerShell Script pane.

https://portal.azure.com/

 # Provide Azure subscription name.
 $subscriptionName = "Azure Subscription Name"

 # Provide HDInsight cluster name where you want to run the Pig job.
 $clusterName = "Azure HDInsight Cluster Name"

NOTE

 # Load data from Cosmos DB. Pass DocumentDB query to filter transferred data to _rid and _ts.
 $queryStringPart1 = "DocumentDB_timestamps = LOAD '<DocumentDB Endpoint>' USING
com.microsoft.azure.documentdb.pig.DocumentDBLoader(" +
 "'<DocumentDB Primary Key>', " +
 "'<DocumentDB Database Name>', " +
 "'<DocumentDB Input Collection Name>', " +
 "'SELECT r._rid AS id, r._ts AS ts FROM root r'); "

GROUP BY minute and COUNT entries for each.
$queryStringPart2 = "timestamp_record = FOREACH DocumentDB_timestamps GENERATE `$0#'id' as id:int, ToDate((long)(`$0#'ts') *
1000) as timestamp:datetime; " +
 "by_minute = GROUP timestamp_record BY (GetYear(timestamp), GetMonth(timestamp), GetDay(timestamp),
GetHour(timestamp), GetMinute(timestamp)); " +
 "by_minute_count = FOREACH by_minute GENERATE FLATTEN(group) as (Year:int, Month:int, Day:int, Hour:int,
Minute:int), COUNT(timestamp_record) as Total:int; "

NOTE

2. Let's begin constructing your query string. We'll write a Pig query that takes all documents' system
generated timestamps (_ts) and unique ids (_rid) from a DocumentDB collection, tallies all documents by the
minute, and then stores the results back into a new DocumentDB collection.

First, load documents from Cosmos DB into HDInsight. Add the following code snippet to the PowerShell
Script pane after the code snippet from #1. Make sure to add a DocumentDB query to the optional
DocumentDB query parameter to trim our documents to just _ts and _rid.

Yes, we allow adding multiple collections as an input:
'<DocumentDB Input Collection Name 1>,<DocumentDB Input Collection Name 2>'
The collection names are separated without spaces, using only a single comma.

Documents will be distributed round-robin across multiple collections. A batch of documents will be stored
in one collection, then a second batch of documents will be stored in the next collection, and so forth.

3. Next, let's tally the documents by the month, day, hour, minute, and the total number of occurrences.

4. Finally, let's store the results into our new output collection.

Yes, we allow adding multiple collections as an output:
'<DocumentDB Output Collection Name 1>,<DocumentDB Output Collection Name 2>'
The collection names are separated without spaces, using only a single comma.
Documents will be distributed round-robin across the multiple collections. A batch of documents will be stored in one
collection, then a second batch of documents will be stored in the next collection, and so forth.

 # Store output data to Cosmos DB.
 $queryStringPart3 = "STORE by_minute_count INTO '<DocumentDB Endpoint>' " +
 "USING com.microsoft.azure.documentdb.pig.DocumentDBStorage(" +
 "'<DocumentDB Primary Key>', " +
 "'<DocumentDB Database Name>', " +
 "'<DocumentDB Output Collection Name>'); "

 # Create a Pig job definition.
 $queryString = $queryStringPart1 + $queryStringPart2 + $queryStringPart3
 $pigJobDefinition = New-AzureHDInsightPigJobDefinition -Query $queryString -StatusFolder $statusFolder

 # Save the start time and submit the job to the cluster.
 $startTime = Get-Date
 Select-AzureSubscription $subscriptionName
 $pigJob = Start-AzureHDInsightJob -Cluster $clusterName -JobDefinition $pigJobDefinition

 # Wait for the Pig job to complete.
 Wait-AzureHDInsightJob -Job $pigJob -WaitTimeoutInSeconds 3600

 # Print the standard error, the standard output of the Hive job, and the start and end time.
 $endTime = Get-Date
 Get-AzureHDInsightJobOutput -Cluster $clusterName -JobId $pigJob.JobId -StandardOutput
 Write-Host "Start: " $startTime ", End: " $endTime -ForegroundColor Green

9. Run your new script! Click the green execute button.

5. Add the following script snippet to create a Pig job definition from the previous query.

You can also use the -File switch to specify a Pig script file on HDFS.

6. Add the following snippet to save the start time and submit the Pig job.

7. Add the following to wait for the Pig job to complete.

8. Add the following to print the standard output and the start and end times.

10. Check the results. Sign into the Azure Portal.

a. Click Browse on the left-side panel.
b. Click everything at the top-right of the browse panel.
c. Find and click DocumentDB Accounts.
d. Next, find your DocumentDB Account, then DocumentDB Database and your DocumentDB

Collection associated with the output collection specified in your Pig query.
e. Finally, click Document Explorer underneath Developer Tools.

You will see the results of your Pig query.

https://portal.azure.com/

 Step 5: Run a MapReduce job using DocumentDB and HDInsight

 $subscriptionName = "<SubscriptionName>" # Azure subscription name
 $clusterName = "<ClusterName>" # HDInsight cluster name

 # Define the MapReduce job.
 $TallyPropertiesJobDefinition = New-AzureHDInsightMapReduceJobDefinition -JarFile "wasb:///example/jars/TallyProperties-v01.jar" -
ClassName "TallyProperties" -Arguments "<DocumentDB Endpoint>","<DocumentDB Primary Key>", "<DocumentDB Database
Name>","<DocumentDB Input Collection Name>","<DocumentDB Output Collection Name>","<[Optional] DocumentDB Query>"

NOTE

 # Save the start time and submit the job.
 $startTime = Get-Date
 Select-AzureSubscription $subscriptionName
 $TallyPropertiesJob = Start-AzureHDInsightJob -Cluster $clusterName -JobDefinition $TallyPropertiesJobDefinition | Wait-
AzureHDInsightJob -WaitTimeoutInSeconds 3600

 # Get the job output and print the start and end time.
 $endTime = Get-Date
 Get-AzureHDInsightJobOutput -Cluster $clusterName -JobId $TallyPropertiesJob.JobId -StandardError
 Write-Host "Start: " $startTime ", End: " $endTime -ForegroundColor Green

5. Run your new script! Click the green execute button.

1. Set the following variables in your PowerShell Script pane.

2. We'll execute a MapReduce job that tallies the number of occurrences for each Document property from
your DocumentDB collection. Add this script snippet after the snippet above.

TallyProperties-v01.jar comes with the custom installation of the Cosmos DB Hadoop Connector.

3. Add the following command to submit the MapReduce job.

In addition to the MapReduce job definition, you also provide the HDInsight cluster name where you want
to run the MapReduce job, and the credentials. The Start-AzureHDInsightJob is an asynchronized call. To
check the completion of the job, use the Wait-AzureHDInsightJob cmdlet.

4. Add the following command to check any errors with running the MapReduce job.

6. Check the results. Sign into the Azure Portal.

https://portal.azure.com/

 Next Steps

a. Click Browse on the left-side panel.
b. Click everything at the top-right of the browse panel.
c. Find and click Cosmos DB Accounts.
d. Next, find your Cosmos DB Account, then Cosmos DB Database and your DocumentDB Collection

associated with the output collection specified in your MapReduce job.
e. Finally, click Document Explorer underneath Developer Tools.

You will see the results of your MapReduce job.

Congratulations! You just ran your first Hive, Pig, and MapReduce jobs using Azure Cosmos DB and HDInsight.

We have open sourced our Hadoop Connector. If you're interested, you can contribute on GitHub.

To learn more, see the following articles:

Develop a Java application with Documentdb
Develop Java MapReduce programs for Hadoop in HDInsight
Get started using Hadoop with Hive in HDInsight to analyze mobile handset use
Use MapReduce with HDInsight
Use Hive with HDInsight
Use Pig with HDInsight
Customize HDInsight clusters using Script Action

https://github.com/Azure/azure-documentdb-hadoop
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-develop-deploy-java-mapreduce-linux
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-tutorial-get-started-windows
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-use-mapreduce
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-use-hive
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-use-pig
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-customize-cluster

Connecting Cosmos DB with Azure Search using
indexers
5/10/2017 • 6 min to read • Edit Online

NOTE

TIP

Azure Search indexer concepts

Step 1: Create a data source

If you want to implement a great search experience over your Cosmos DB data, you can use an Azure Search
indexer to pull data into an Azure Search index. In this article, we show you how to integrate Azure Cosmos DB with
Azure Search without having to write any code to maintain indexing infrastructure.

To set up a Cosmos DB indexer, you must have an Azure Search service, and create an index, datasource, and finally
the indexer. You can create these objects using the portal, .NET SDK, or REST API for all non-.NET languages.

If you opt for the portal, the Import data wizard guides you through the creation of all these resources.

Cosmos DB is the next generation of DocumentDB. Although the product name is changed, syntax is the same as before.
Please continue to specify documentdb as directed in this indexer article.

You can launch the Import data wizard from the Cosmos DB dashboard to simplify indexing for that data source. In left-
navigation, go to Collections > Add Azure Search to get started.

Azure Search supports the creation and management of data sources (including Cosmos DB) and indexers that
operate against those data sources.

A data source specifies the data to index, credentials, and policies for identifying changes in the data (such as
modified or deleted documents inside your collection). The data source is defined as an independent resource so
that it can be used by multiple indexers.

An indexer describes how the data flows from your data source into a target search index. An indexer can be used
to:

Perform a one-time copy of the data to populate an index.
Sync an index with changes in the data source on a schedule. The schedule is part of the indexer definition.
Invoke on-demand updates to an index as needed.

To create a data source, do a POST:

https://github.com/Microsoft/azure-docs/blob/master/articles/search/search-howto-index-documentdb.md
https://docs.microsoft.com/en-us/azure/search/search-create-service-portal
https://docs.microsoft.com/en-us/azure/search/search-import-data-portal
https://docs.microsoft.com/dotnet/api/microsoft.azure.search
https://docs.microsoft.com/rest/api/searchservice/
https://docs.microsoft.com/en-us/azure/search/search-import-data-portal

POST https://[service name].search.windows.net/datasources?api-version=2016-09-01
Content-Type: application/json
api-key: [Search service admin key]

{
 "name": "mydocdbdatasource",
 "type": "documentdb",
 "credentials": {
 "connectionString":
"AccountEndpoint=https://myDocDbEndpoint.documents.azure.com;AccountKey=myDocDbAuthKey;Database=myDocDbDatabaseId"
 },
 "container": { "name": "myDocDbCollectionId", "query": null },
 "dataChangeDetectionPolicy": {
 "@odata.type": "#Microsoft.Azure.Search.HighWaterMarkChangeDetectionPolicy",
 "highWaterMarkColumnName": "_ts"
 }
}

Using queries to shape indexed data

{
 "userId": 10001,
 "contact": {
 "firstName": "andy",
 "lastName": "hoh"
 },
 "company": "microsoft",
 "tags": ["azure", "documentdb", "search"]
}

SELECT * FROM c WHERE c.company = "microsoft" and c._ts >= @HighWaterMark

The body of the request contains the data source definition, which should include the following fields:

name: Choose any name to represent your Cosmos DB database.
type: Must be documentdb .

dataChangeDetectionPolicy: Recommended. See Indexing Changed Documents section.
dataDeletionDetectionPolicy: Optional. See Indexing Deleted Documents section.

credentials:

connectionString: Required. Specify the connection info to your Azure Cosmos DB database in the
following format:
AccountEndpoint=<Cosmos DB endpoint url>;AccountKey=<Cosmos DB auth key>;Database=<Cosmos DB database id>

container:

name: Required. Specify the id of the Cosmos DB collection to be indexed.
query: Optional. You can specify a query to flatten an arbitrary JSON document into a flat schema that
Azure Search can index.

You can specify a Cosmos DB query to flatten nested properties or arrays, project JSON properties, and filter the
data to be indexed.

Example document:

Filter query:

Flattening query:

SELECT c.id, c.userId, c.contact.firstName, c.contact.lastName, c.company, c._ts FROM c WHERE c._ts >= @HighWaterMark

SELECT VALUE { "id":c.id, "Name":c.contact.firstName, "Company":c.company, "_ts":c._ts } FROM c WHERE c._ts >= @HighWaterMark

SELECT c.id, c.userId, tag, c._ts FROM c JOIN tag IN c.tags WHERE c._ts >= @HighWaterMark

Step 2: Create an index

POST https://[service name].search.windows.net/indexes?api-version=2016-09-01
Content-Type: application/json
api-key: [Search service admin key]

{
 "name": "mysearchindex",
 "fields": [{
 "name": "id",
 "type": "Edm.String",
 "key": true,
 "searchable": false
 }, {
 "name": "description",
 "type": "Edm.String",
 "filterable": false,
 "sortable": false,
 "facetable": false,
 "suggestions": true
 }]
 }

NOTE

Mapping between JSON Data Types and Azure Search Data Types

JSON DATA TYPE COMPATIBLE TARGET INDEX FIELD TYPES

Bool Edm.Boolean, Edm.String

Numbers that look like integers Edm.Int32, Edm.Int64, Edm.String

Projection query:

Array flattening query:

Create a target Azure Search index if you don’t have one already. You can create an index using the Azure portal UI,
the Create Index REST API or Index class.

The following example creates an index with an id and description field:

Ensure that the schema of your target index is compatible with the schema of the source JSON documents or the
output of your custom query projection.

For partitioned collections, the default document key is Cosmos DB's _rid property, which gets renamed to rid in Azure
Search. Also, Cosmos DB's _rid values contain characters that are invalid in Azure Search keys. For this reason, the _rid

values are Base64 encoded.

https://docs.microsoft.com/en-us/azure/search/search-create-index-portal
https://docs.microsoft.com/rest/api/searchservice/create-index
https://docs.microsoft.com/dotnet/api/microsoft.azure.search.models.index

Numbers that look like floating-points Edm.Double, Edm.String

String Edm.String

Arrays of primitive types, for example ["a", "b", "c"] Collection(Edm.String)

Strings that look like dates Edm.DateTimeOffset, Edm.String

GeoJSON objects, for example { "type": "Point", "coordinates":
[long, lat] }

Edm.GeographyPoint

Other JSON objects N/A

JSON DATA TYPE COMPATIBLE TARGET INDEX FIELD TYPES

Step 3: Create an indexer

POST https://[service name].search.windows.net/indexers?api-version=2016-09-01
Content-Type: application/json
api-key: [admin key]

{
 "name" : "mydocdbindexer",
 "dataSourceName" : "mydocdbdatasource",
 "targetIndexName" : "mysearchindex",
 "schedule" : { "interval" : "PT2H" }
}

Running indexer on-demand

POST https://[service name].search.windows.net/indexers/[indexer name]/run?api-version=2016-09-01
api-key: [Search service admin key]

NOTE

Getting indexer status

Once the index and data source have been created, you're ready to create the indexer:

This indexer runs every two hours (schedule interval is set to "PT2H"). To run an indexer every 30 minutes, set the
interval to "PT30M". The shortest supported interval is 5 minutes. The schedule is optional - if omitted, an indexer
runs only once when it's created. However, you can run an indexer on-demand at any time.

For more details on the Create Indexer API, check out Create Indexer.

In addition to running periodically on a schedule, an indexer can also be invoked on demand:

When Run API returns successfully, the indexer invocation has been scheduled, but the actual processing happens
asynchronously.

You can monitor the indexer status in the portal or using the Get Indexer Status API, which we describe next.

You can retrieve the status and execution history of an indexer:

https://docs.microsoft.com/rest/api/searchservice/create-indexer

GET https://[service name].search.windows.net/indexers/[indexer name]/status?api-version=2016-09-01
api-key: [Search service admin key]

{
 "status":"running",
 "lastResult": {
 "status":"success",
 "errorMessage":null,
 "startTime":"2014-11-26T03:37:18.853Z",
 "endTime":"2014-11-26T03:37:19.012Z",
 "errors":[],
 "itemsProcessed":11,
 "itemsFailed":0,
 "initialTrackingState":null,
 "finalTrackingState":null
 },
 "executionHistory":[{
 "status":"success",
 "errorMessage":null,
 "startTime":"2014-11-26T03:37:18.853Z",
 "endTime":"2014-11-26T03:37:19.012Z",
 "errors":[],
 "itemsProcessed":11,
 "itemsFailed":0,
 "initialTrackingState":null,
 "finalTrackingState":null
 }]
}

Indexing changed documents

{
 "@odata.type" : "#Microsoft.Azure.Search.HighWaterMarkChangeDetectionPolicy",
 "highWaterMarkColumnName" : "_ts"
}

Indexing deleted documents

The response contains overall indexer status, the last (or in-progress) indexer invocation, and the history of recent
indexer invocations.

Execution history contains up to the 50 most recent completed executions, which are sorted in reverse
chronological order (so the latest execution comes first in the response).

The purpose of a data change detection policy is to efficiently identify changed data items. Currently, the only
supported policy is the High Water Mark policy using the _ts (timestamp) property provided by Cosmos DB, which
is specified as follows:

Using this policy is highly recommended to ensure good indexer performance.

If you are using a custom query, make sure that the _ts property is projected by the query.

When rows are deleted from the collection, you normally want to delete those rows from the search index as well.
The purpose of a data deletion detection policy is to efficiently identify deleted data items. Currently, the only
supported policy is the Soft Delete policy (deletion is marked with a flag of some sort), which is specified as follows:

{
 "@odata.type" : "#Microsoft.Azure.Search.SoftDeleteColumnDeletionDetectionPolicy",
 "softDeleteColumnName" : "the property that specifies whether a document was deleted",
 "softDeleteMarkerValue" : "the value that identifies a document as deleted"
}

POST https://[Search service name].search.windows.net/datasources?api-version=2016-09-01
Content-Type: application/json
api-key: [Search service admin key]

{
 "name": "mydocdbdatasource",
 "type": "documentdb",
 "credentials": {
 "connectionString":
"AccountEndpoint=https://myDocDbEndpoint.documents.azure.com;AccountKey=myDocDbAuthKey;Database=myDocDbDatabaseId"
 },
 "container": { "name": "myDocDbCollectionId" },
 "dataChangeDetectionPolicy": {
 "@odata.type": "#Microsoft.Azure.Search.HighWaterMarkChangeDetectionPolicy",
 "highWaterMarkColumnName": "_ts"
 },
 "dataDeletionDetectionPolicy": {
 "@odata.type": "#Microsoft.Azure.Search.SoftDeleteColumnDeletionDetectionPolicy",
 "softDeleteColumnName": "isDeleted",
 "softDeleteMarkerValue": "true"
 }
}

Next steps

If you are using a custom query, make sure that the property referenced by softDeleteColumnName is projected by the
query.

The following example creates a data source with a soft-deletion policy:

Congratulations! You have learned how to integrate Azure Cosmos DB with Azure Search using the indexer for
Cosmos DB.

To learn how more about Azure Cosmos DB, see the Cosmos DB service page.
To learn how more about Azure Search, see the Search service page.

https://azure.microsoft.com/services/documentdb/
https://azure.microsoft.com/services/search/

Move data to and from Azure Cosmos DB using
Azure Data Factory
5/11/2017 • 11 min to read • Edit Online

IMPORTANT

Getting started

Linked service properties

This article explains how to use the Copy Activity in Azure Data Factory to move data to/from Azure Cosmos DB
(DocumentDB API). It builds on the Data Movement Activities article, which presents a general overview of data
movement with the copy activity.

You can copy data from any supported source data store to Azure Cosmos DB or from Azure Cosmos DB to any
supported sink data store. For a list of data stores supported as sources or sinks by the copy activity, see the
Supported data stores table.

Azure Cosmos DB connector only support DocumentDB API.

To copy data as-is to/from JSON files or another Cosmos DB collection, see Import/Export JSON documents.

You can create a pipeline with a copy activity that moves data to/from Azure Cosmos DB by using different
tools/APIs.

The easiest way to create a pipeline is to use the Copy Wizard. See Tutorial: Create a pipeline using Copy Wizard
for a quick walkthrough on creating a pipeline using the Copy data wizard.

You can also use the following tools to create a pipeline: Azure portal, Visual Studio, Azure PowerShell, Azure
Resource Manager template, .NET API, and REST API. See Copy activity tutorial for step-by-step instructions to
create a pipeline with a copy activity.

Whether you use the tools or APIs, you perform the following steps to create a pipeline that moves data from a
source data store to a sink data store:

1. Create linked services to link input and output data stores to your data factory.
2. Create datasets to represent input and output data for the copy operation.
3. Create a pipeline with a copy activity that takes a dataset as an input and a dataset as an output.

When you use the wizard, JSON definitions for these Data Factory entities (linked services, datasets, and the
pipeline) are automatically created for you. When you use tools/APIs (except .NET API), you define these Data
Factory entities by using the JSON format. For samples with JSON definitions for Data Factory entities that are used
to copy data to/from Cosmos DB, see JSON examples section of this article.

The following sections provide details about JSON properties that are used to define Data Factory entities specific
to Cosmos DB:

The following table provides description for JSON elements specific to Azure Cosmos DB linked service.

https://github.com/Microsoft/azure-docs/blob/master/articles/data-factory/data-factory-azure-documentdb-connector.md
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-data-movement-activities
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-data-movement-activities
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-copy-data-wizard-tutorial
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-copy-data-from-azure-blob-storage-to-sql-database

PROPERTY DESCRIPTION REQUIRED

type The type property must be set to:
DocumentDb

Yes

connectionString Specify information needed to connect
to Azure Cosmos DB database.

Yes

Dataset properties

PROPERTY DESCRIPTION REQUIRED

collectionName Name of the Cosmos DB document
collection.

Yes

{
 "name": "PersonCosmosDbTable",
 "properties": {
 "type": "DocumentDbCollection",
 "linkedServiceName": "CosmosDbLinkedService",
 "typeProperties": {
 "collectionName": "Person"
 },
 "external": true,
 "availability": {
 "frequency": "Day",
 "interval": 1
 }
 }
}

Schema by Data Factory

Copy activity properties

For a full list of sections & properties available for defining datasets please refer to the Creating datasets article.
Sections like structure, availability, and policy of a dataset JSON are similar for all dataset types (Azure SQL, Azure
blob, Azure table, etc.).

The typeProperties section is different for each type of dataset and provides information about the location of the
data in the data store. The typeProperties section for the dataset of type DocumentDbCollection has the
following properties.

Example:

For schema-free data stores such as Azure Cosmos DB, the Data Factory service infers the schema in one of the
following ways:

1. If you specify the structure of data by using the structure property in the dataset definition, the Data Factory
service honors this structure as the schema. In this case, if a row does not contain a value for a column, a null
value will be provided for it.

2. If you do not specify the structure of data by using the structure property in the dataset definition, the Data
Factory service infers the schema by using the first row in the data. In this case, if the first row does not contain
the full schema, some columns will be missing in the result of copy operation.

Therefore, for schema-free data sources, the best practice is to specify the structure of data using the structure
property.

https://docs.microsoft.com/en-us/azure/data-factory/data-factory-create-datasets

NOTE

PROPERTY DESCRIPTION ALLOWED VALUES REQUIRED

query Specify the query to read
data.

Query string supported by
Azure Cosmos DB.

Example:
SELECT
c.BusinessEntityID,
c.PersonType,
c.NameStyle, c.Title,
c.Name.First AS
FirstName, c.Name.Last
AS LastName, c.Suffix,
c.EmailPromotion FROM c
WHERE c.ModifiedDate >
\"2009-01-01T00:00:00\"

No

If not specified, the SQL
statement that is executed:
select <columns defined
in structure> from
mycollection

nestingSeparator Special character to indicate
that the document is nested

Any character.

Azure Cosmos DB is a
NoSQL store for JSON
documents, where nested
structures are allowed. Azure
Data Factory enables user to
denote hierarchy via
nestingSeparator, which is “.”
in the above examples. With
the separator, the copy
activity will generate the
“Name” object with three
children elements First,
Middle and Last, according
to “Name.First”,
“Name.Middle” and
“Name.Last” in the table
definition.

No

PROPERTY DESCRIPTION ALLOWED VALUES REQUIRED

For a full list of sections & properties available for defining activities please refer to the Creating Pipelines article.
Properties such as name, description, input and output tables, and policy are available for all types of activities.

The Copy Activity takes only one input and produces only one output.

Properties available in the typeProperties section of the activity on the other hand vary with each activity type and
in case of Copy activity they vary depending on the types of sources and sinks.

In case of Copy activity when source is of type DocumentDbCollectionSource the following properties are
available in typeProperties section:

DocumentDbCollectionSink supports the following properties:

https://docs.microsoft.com/en-us/azure/data-factory/data-factory-create-pipelines

nestingSeparator A special character in the
source column name to
indicate that nested
document is needed.

For example above:
Name.First in the output

table produces the following
JSON structure in the
Cosmos DB document:

"Name": {
"First": "John"
},

Character that is used to
separate nesting levels.

Default value is . (dot).

Character that is used to
separate nesting levels.

Default value is . (dot).

writeBatchSize Number of parallel requests
to Azure Cosmos DB service
to create documents.

You can fine-tune the
performance when copying
data to/from Cosmos DB by
using this property. You can
expect a better performance
when you increase
writeBatchSize because more
parallel requests to Cosmos
DB are sent. However you’ll
need to avoid throttling that
can throw the error
message: "Request rate is
large".

Throttling is decided by a
number of factors, including
size of documents, number
of terms in documents,
indexing policy of target
collection, etc. For copy
operations, you can use a
better collection (e.g. S3) to
have the most throughput
available (2,500 request
units/second).

Integer No (default: 5)

writeBatchTimeout Wait time for the operation
to complete before it times
out.

timespan

Example: “00:30:00” (30
minutes).

No

PROPERTY DESCRIPTION ALLOWED VALUES REQUIRED

Import/Export JSON documents
Using this Cosmos DB connector, you can easily

Import JSON documents from various sources into Cosmos DB, including Azure Blob, Azure Data Lake, on-
premises File System or other file-based stores supported by Azure Data Factory.
Export JSON documents from Cosmos DB collecton into various file-based stores.
Migrate data between two Cosmos DB collections as-is.

 JSON examples

Example: Copy data from Azure Cosmos DB to Azure Blob

{
 "name": "CosmosDbLinkedService",
 "properties": {
 "type": "DocumentDb",
 "typeProperties": {
 "connectionString": "AccountEndpoint=<EndpointUrl>;AccountKey=<AccessKey>;Database=<Database>"
 }
 }
}

{
 "name": "StorageLinkedService",
 "properties": {
 "type": "AzureStorage",
 "typeProperties": {
 "connectionString": "DefaultEndpointsProtocol=https;AccountName=<accountname>;AccountKey=<accountkey>"
 }
 }
}

To achieve such schema-agnostic copy,

When using copy wizard, check the "Export as-is to JSON files or Cosmos DB collection" option.
When using JSON editing, do not specify the "structure" section in Cosmos DB dataset(s) nor "nestingSeparator"
property on Cosmos DB source/sink in copy activity. To import from/export to JSON files, in the file store
dataset specify format type as "JsonFormat", config "filePattern" and skip the rest format settings, see JSON
format section on details.

The following examples provide sample JSON definitions that you can use to create a pipeline by using Azure
portal or Visual Studio or Azure PowerShell. They show how to copy data to and from Azure Cosmos DB and Azure
Blob Storage. However, data can be copied directly from any of the sources to any of the sinks stated here using
the Copy Activity in Azure Data Factory.

The sample below shows:

1. A linked service of type DocumentDb.
2. A linked service of type AzureStorage.
3. An input dataset of type DocumentDbCollection.
4. An output dataset of type AzureBlob.
5. A pipeline with Copy Activity that uses DocumentDbCollectionSource and BlobSink.

The sample copies data in Azure Cosmos DB to Azure Blob. The JSON properties used in these samples are
described in sections following the samples.

Azure Cosmos DB linked service:

Azure Blob storage linked service:

Azure Document DB input dataset:

The sample assumes you have a collection named Person in an Azure Cosmos DB database.

Setting “external”: ”true” and specifying externalData policy information the Azure Data Factory service that the

https://docs.microsoft.com/en-us/azure/data-factory/data-factory-supported-file-and-compression-formats
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-copy-activity-tutorial-using-azure-portal
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-copy-activity-tutorial-using-visual-studio
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-copy-activity-tutorial-using-powershell
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-data-movement-activities
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-azure-blob-connector
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-create-datasets
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-create-datasets
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-azure-blob-connector
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-create-pipelines
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-azure-blob-connector

{
 "name": "PersonCosmosDbTable",
 "properties": {
 "type": "DocumentDbCollection",
 "linkedServiceName": "CosmosDbLinkedService",
 "typeProperties": {
 "collectionName": "Person"
 },
 "external": true,
 "availability": {
 "frequency": "Day",
 "interval": 1
 }
 }
}

{
 "name": "PersonBlobTableOut",
 "properties": {
 "type": "AzureBlob",
 "linkedServiceName": "StorageLinkedService",
 "typeProperties": {
 "folderPath": "docdb",
 "format": {
 "type": "TextFormat",
 "columnDelimiter": ",",
 "nullValue": "NULL"
 }
 },
 "availability": {
 "frequency": "Day",
 "interval": 1
 }
 }
}

{
 "PersonId": 2,
 "Name": {
 "First": "Jane",
 "Middle": "",
 "Last": "Doe"
 }
}

SELECT Person.PersonId, Person.Name.First AS FirstName, Person.Name.Middle as MiddleName, Person.Name.Last AS LastName FROM Person

table is external to the data factory and not produced by an activity in the data factory.

Azure Blob output dataset:

Data is copied to a new blob every hour with the path for the blob reflecting the specific datetime with hour
granularity.

Sample JSON document in the Person collection in a Cosmos DB database:

Cosmos DB supports querying documents using a SQL like syntax over hierarchical JSON documents.

Example:

The following pipeline copies data from the Person collection in the Azure Cosmos DB database to an Azure blob.

{
 "name": "DocDbToBlobPipeline",
 "properties": {
 "activities": [
 {
 "type": "Copy",
 "typeProperties": {
 "source": {
 "type": "DocumentDbCollectionSource",
 "query": "SELECT Person.Id, Person.Name.First AS FirstName, Person.Name.Middle as MiddleName, Person.Name.Last AS LastName
FROM Person",
 "nestingSeparator": "."
 },
 "sink": {
 "type": "BlobSink",
 "blobWriterAddHeader": true,
 "writeBatchSize": 1000,
 "writeBatchTimeout": "00:00:59"
 }
 },
 "inputs": [
 {
 "name": "PersonCosmosDbTable"
 }
],
 "outputs": [
 {
 "name": "PersonBlobTableOut"
 }
],
 "policy": {
 "concurrency": 1
 },
 "name": "CopyFromDocDbToBlob"
 }
],
 "start": "2015-04-01T00:00:00Z",
 "end": "2015-04-02T00:00:00Z"
 }
}

Example: Copy data from Azure Blob to Azure Cosmos DB

As part of the copy activity the input and output datasets have been specified.

The sample below shows:

1. A linked service of type DocumentDb.
2. A linked service of type AzureStorage.
3. An input dataset of type AzureBlob.
4. An output dataset of type DocumentDbCollection.
5. A pipeline with Copy Activity that uses BlobSource and DocumentDbCollectionSink.

The sample copies data from Azure blob to Azure Cosmos DB. The JSON properties used in these samples are
described in sections following the samples.

Azure Blob storage linked service:

https://docs.microsoft.com/en-us/azure/data-factory/data-factory-azure-blob-connector
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-create-datasets
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-azure-blob-connector
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-create-datasets
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-create-pipelines
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-azure-blob-connector

{
 "name": "StorageLinkedService",
 "properties": {
 "type": "AzureStorage",
 "typeProperties": {
 "connectionString": "DefaultEndpointsProtocol=https;AccountName=<accountname>;AccountKey=<accountkey>"
 }
 }
}

{
 "name": "CosmosDbLinkedService",
 "properties": {
 "type": "DocumentDb",
 "typeProperties": {
 "connectionString": "AccountEndpoint=<EndpointUrl>;AccountKey=<AccessKey>;Database=<Database>"
 }
 }
}

{
 "name": "PersonBlobTableIn",
 "properties": {
 "structure": [
 {
 "name": "Id",
 "type": "Int"
 },
 {
 "name": "FirstName",
 "type": "String"
 },
 {
 "name": "MiddleName",
 "type": "String"
 },
 {
 "name": "LastName",
 "type": "String"
 }
],
 "type": "AzureBlob",
 "linkedServiceName": "StorageLinkedService",
 "typeProperties": {
 "fileName": "input.csv",
 "folderPath": "docdb",
 "format": {
 "type": "TextFormat",
 "columnDelimiter": ",",
 "nullValue": "NULL"
 }
 },
 "external": true,
 "availability": {
 "frequency": "Day",
 "interval": 1
 }
 }
}

Azure Cosmos DB linked service:

Azure Blob input dataset:

{
 "name": "PersonCosmosDbTableOut",
 "properties": {
 "structure": [
 {
 "name": "Id",
 "type": "Int"
 },
 {
 "name": "Name.First",
 "type": "String"
 },
 {
 "name": "Name.Middle",
 "type": "String"
 },
 {
 "name": "Name.Last",
 "type": "String"
 }
],
 "type": "DocumentDbCollection",
 "linkedServiceName": "CosmosDbLinkedService",
 "typeProperties": {
 "collectionName": "Person"
 },
 "availability": {
 "frequency": "Day",
 "interval": 1
 }
 }
}

Azure Cosmos DB output dataset:

The sample copies data to a collection named “Person”.

The following pipeline copies data from Azure Blob to the Person collection in the Cosmos DB. As part of the copy
activity the input and output datasets have been specified.

{
 "name": "BlobToDocDbPipeline",
 "properties": {
 "activities": [
 {
 "type": "Copy",
 "typeProperties": {
 "source": {
 "type": "BlobSource"
 },
 "sink": {
 "type": "DocumentDbCollectionSink",
 "nestingSeparator": ".",
 "writeBatchSize": 2,
 "writeBatchTimeout": "00:00:00"
 }
 "translator": {
 "type": "TabularTranslator",
 "ColumnMappings": "FirstName: Name.First, MiddleName: Name.Middle, LastName: Name.Last, BusinessEntityID: BusinessEntityID,
PersonType: PersonType, NameStyle: NameStyle, Title: Title, Suffix: Suffix, EmailPromotion: EmailPromotion, rowguid: rowguid, ModifiedDate:
ModifiedDate"
 }
 },
 "inputs": [
 {
 "name": "PersonBlobTableIn"
 }
],
 "outputs": [
 {
 "name": "PersonCosmosDbTableOut"
 }
],
 "policy": {
 "concurrency": 1
 },
 "name": "CopyFromBlobToDocDb"
 }
],
 "start": "2015-04-14T00:00:00Z",
 "end": "2015-04-15T00:00:00Z"
 }
}

1,John,,Doe

{
 "Id": 1,
 "Name": {
 "First": "John",
 "Middle": null,
 "Last": "Doe"
 },
 "id": "a5e8595c-62ec-4554-a118-3940f4ff70b6"
}

If the sample blob input is as

Then the output JSON in Cosmos DB will be as:

Azure Cosmos DB is a NoSQL store for JSON documents, where nested structures are allowed. Azure Data Factory
enables user to denote hierarchy via nestingSeparator, which is “.” in this example. With the separator, the copy

Appendix

Performance and Tuning

activity will generate the “Name” object with three children elements First, Middle and Last, according to
“Name.First”, “Name.Middle” and “Name.Last” in the table definition.

1. Question: Does the Copy Activity support update of existing records?

Answer: No.

2. Question: How does a retry of a copy to Azure Cosmos DB deal with already copied records?

Answer: If records have an "ID" field and the copy operation tries to insert a record with the same ID, the
copy operation throws an error.

3. Question: Does Data Factory support range or hash-based data partitioning?

Answer: No.

4. Question: Can I specify more than one Azure Cosmos DB collection for a table?

Answer: No. Only one collection can be specified at this time.

See Copy Activity Performance & Tuning Guide to learn about key factors that impact performance of data
movement (Copy Activity) in Azure Data Factory and various ways to optimize it.

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-partition-data
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-copy-activity-performance

Stream Analytics outputs: Options for storage,
analysis
5/10/2017 • 16 min to read • Edit Online

Azure Data Lake Store

Authorize an Azure Data Lake Store

When authoring a Stream Analytics job, consider how the resulting data will be consumed. How will you view the
results of the Stream Analytics job and where will you store it?

In order to enable a variety of application patterns, Azure Stream Analytics has different options for storing output
and viewing analysis results. This makes it easy to view job output and gives you flexibility in the consumption and
storage of the job output for data warehousing and other purposes. Any output configured in the job must exist
before the job is started and events start flowing. For example, if you use Blob storage as an output, the job will not
create a storage account automatically. It needs to be created by the user before the ASA job is started.

Stream Analytics supports Azure Data Lake Store. This storage enables you to store data of any size, type and
ingestion speed for operational and exploratory analytics. Further, Stream Analytics needs to be authorized to
access the Data Lake Store. Details on authorization and how to sign up for the Data Lake Store (if needed) are
discussed in the Data Lake output article.

When Data Lake Storage is selected as an output in the Azure Management portal, you will be prompted to
authorize a connection to an existing Data Lake Store.

https://github.com/Microsoft/azure-docs/blob/master/articles/stream-analytics/stream-analytics-define-outputs.md
https://azure.microsoft.com/services/data-lake-store/
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-data-lake-output

Then fill out the properties for the Data Lake Store output as seen below:

PROPERTY NAME DESCRIPTION

Output Alias This is a friendly name used in queries to direct the query
output to this Data Lake Store.

Account Name The name of the Data Lake Storage account where you are
sending your output. You will be presented with a drop down
list of Data Lake Store accounts to which the user logged in to
the portal has access to.

The table below lists the property names and their description needed for creating a Data Lake Store output.

Path Prefix Pattern [optional] The file path used to write your files within the specified Data
Lake Store Account.
{date}, {time}
Example 1: folder1/logs/{date}/{time}
Example 2: folder1/logs/{date}

Date Format [optional] If the date token is used in the prefix path, you can select the
date format in which your files are organized. Example:
YYYY/MM/DD

Time Format [optional] If the time token is used in the prefix path, specify the time
format in which your files are organized. Currently the only
supported value is HH.

Event Serialization Format Serialization format for output data. JSON, CSV, and Avro are
supported.

Encoding If CSV or JSON format, an encoding must be specified. UTF-8
is the only supported encoding format at this time.

Delimiter Only applicable for CSV serialization. Stream Analytics supports
a number of common delimiters for serializing CSV data.
Supported values are comma, semicolon, space, tab and
vertical bar.

Format Only applicable for JSON serialization. Line separated specifies
that the output will be formatted by having each JSON object
separated by a new line. Array specifies that the output will be
formatted as an array of JSON objects.

Renew Data Lake Store Authorization

You will need to re-authenticate your Data Lake Store account if its password has changed since your job was
created or last authenticated.

SQL Database

PROPERTY NAME DESCRIPTION

Output Alias This is a friendly name used in queries to direct the query
output to this database.

Database The name of the database where you are sending your output

Azure SQL Database can be used as an output for data that is relational in nature or for applications that depend on
content being hosted in a relational database. Stream Analytics jobs will write to an existing table in an Azure SQL
Database. Note that the table schema must exactly match the fields and their types being output from your job. An
Azure SQL Data Warehouse can also be specified as an output via the SQL Database output option as well (this is a
preview feature). The table below lists the property names and their description for creating a SQL Database output.

https://azure.microsoft.com/services/sql-database/
https://azure.microsoft.com/documentation/services/sql-data-warehouse/

Server Name The SQL Database server name

Username The Username which has access to write to the database

Password The password to connect to the database

Table The table name where the output will be written. The table
name is case sensitive and the schema of this table should
match exactly to the number of fields and their types being
generated by your job output.

PROPERTY NAME DESCRIPTION

NOTE

Blob storage

PROPERTY NAME DESCRIPTION

Output Alias This is a friendly name used in queries to direct the query
output to this blob storage.

Storage Account The name of the storage account where you are sending your
output.

Storage Account Key The secret key associated with the storage account.

Storage Container Containers provide a logical grouping for blobs stored in the
Microsoft Azure Blob service. When you upload a blob to the
Blob service, you must specify a container for that blob.

Path Prefix Pattern [optional] The file path used to write your blobs within the specified
container.
Within the path, you may choose to use one or more
instances of the following 2 variables to specify the frequency
that blobs are written:
{date}, {time}
Example 1: cluster1/logs/{date}/{time}
Example 2: cluster1/logs/{date}

Date Format [optional] If the date token is used in the prefix path, you can select the
date format in which your files are organized. Example:
YYYY/MM/DD

Time Format [optional] If the time token is used in the prefix path, specify the time
format in which your files are organized. Currently the only
supported value is HH.

Currently the Azure SQL Database offering is supported for a job output in Stream Analytics. However, an Azure Virtual
Machine running SQL Server with a database attached is not supported. This is subject to change in future releases.

Blob storage offers a cost-effective and scalable solution for storing large amounts of unstructured data in the
cloud. For an introduction on Azure Blob storage and its usage, see the documentation at How to use Blobs.

The table below lists the property names and their description for creating a blob output.

https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-blobs

Event Serialization Format Serialization format for output data. JSON, CSV, and Avro are
supported.

Encoding If CSV or JSON format, an encoding must be specified. UTF-8
is the only supported encoding format at this time.

Delimiter Only applicable for CSV serialization. Stream Analytics supports
a number of common delimiters for serializing CSV data.
Supported values are comma, semicolon, space, tab and
vertical bar.

Format Only applicable for JSON serialization. Line separated specifies
that the output will be formatted by having each JSON object
separated by a new line. Array specifies that the output will be
formatted as an array of JSON objects.

Event Hub

PROPERTY NAME DESCRIPTION

Output Alias This is a friendly name used in queries to direct the query
output to this Event Hub.

Service Bus Namespace A Service Bus namespace is a container for a set of messaging
entities. When you created a new Event Hub, you also created
a Service Bus namespace

Event Hub The name of your Event Hub output

Event Hub Policy Name The shared access policy, which can be created on the Event
Hub Configure tab. Each shared access policy will have a name,
permissions that you set, and access keys

Event Hub Policy Key The Shared Access key used to authenticate access to the
Service Bus namespace

Partition Key Column [optional] This column contains the partition key for Event Hub output.

Event Serialization Format Serialization format for output data. JSON, CSV, and Avro are
supported.

Encoding For CSV and JSON, UTF-8 is the only supported encoding
format at this time

Delimiter Only applicable for CSV serialization. Stream Analytics supports
a number of common delimiters for serializing data in CSV
format. Supported values are comma, semicolon, space, tab
and vertical bar.

Event Hubs is a highly scalable publish-subscribe event ingestor. It can collect millions of events per second. One
use of an Event Hub as output is when the output of a Stream Analytics job will be the input of another streaming
job.

There are a few parameters that are needed to configure Event Hub data streams as an output.

https://azure.microsoft.com/services/event-hubs/

Format Only applicable for JSON type. Line separated specifies that
the output will be formatted by having each JSON object
separated by a new line. Array specifies that the output will be
formatted as an array of JSON objects.

PROPERTY NAME DESCRIPTION

Power BI

Authorize a Power BI account

Power BI can be used as an output for a Stream Analytics job to provide for a rich visualization experience of
analysis results. This capability can be used for operational dashboards, report generation and metric driven
reporting.

1. When Power BI is selected as an output in the Azure Management portal, you will be prompted to authorize
an existing Power BI User or to create a new Power BI account.

2. Create a new account if you don’t yet have one, then click Authorize Now. A screen like the following is
presented.

https://powerbi.microsoft.com/

Configure the Power BI output properties

PROPERTY NAME DESCRIPTION

Output Alias This is a friendly name used in queries to direct the query
output to this PowerBI output.

Group Workspace To enable sharing data with other Power BI users you can
select groups inside your Power BI account or choose “My
Workspace” if you do not want to write to a group. Updating
an existing group requires renewing the Power BI
authentication.

Dataset Name Provide a dataset name that it is desired for the Power BI
output to use

Table Name Provide a table name under the dataset of the Power BI
output. Currently, Power BI output from Stream Analytics jobs
can only have one table in a dataset

NOTE

Schema Creation

3. In this step, provide the work or school account for authorizing the Power BI output. If you are not already
signed up for Power BI, choose Sign up now. The work or school account you use for Power BI could be different
from the Azure subscription account which you are currently logged in with.

Once you have the Power BI account authenticated, you can configure the properties for your Power BI output. The
table below is the list of property names and their description to configure your Power BI output.

For a walk-through of configuring a Power BI output and dashboard, please see the Azure Stream Analytics &
Power BI article.

Do not explicitly create the dataset and table in the Power BI dashboard. The dataset and table will be automatically
populated when the job is started and the job starts pumping output into Power BI. Note that if the job query doesn’t
generate any results, the dataset and table will not be created. Also be aware that if Power BI already had a dataset and table
with the same name as the one provided in this Stream Analytics job, the existing data will be overwritten.

Azure Stream Analytics creates a Power BI dataset and table on behalf of the user if one does not already exist. In all

https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-power-bi-dashboard

Data type conversion from ASA to Power BI

FROM STREAM ANALYTICS TO POWER BI

bigint Int64

nvarchar(max) String

datetime Datetime

float Double

Record array String type, Constant value “IRecord” or “IArray”

Schema Update

PREVIOUS/CURRENT INT64 STRING DATETIME DOUBLE

Int64 Int64 String String Double

Double Double String String Double

String String String String

Datetime String String Datetime String

Renew Power BI Authorization

other cases, the table is updated with new values.Currently, there is a the limitation that only one table can exist
within a dataset.

Azure Stream Analytics updates the data model dynamically at runtime if the output schema changes. Column
name changes, column type changes, and the addition or removal of columns are all tracked.

This table covers the data type conversions from Stream Analytics data types to Power BIs Entity Data Model (EDM)
types if a POWER BI dataset and table do not exist.

Stream Analytics infers the data model schema based on the first set of events in the output. Later, if necessary, the
data model schema is updated to accommodate incoming events that may not fit into the original schema.

The SELECT * query should be avoided to prevent dynamic schema update across rows. In addition to potential
performance implications, it could also result in indeterminacy of the time taken for the results. The exact fields that
need to be shown on Power BI dashboard should be selected. Additionally, the data values should be compliant
with the chosen data type.

You will need to re-authenticate your Power BI account if its password has changed since your job was created or
last authenticated. If Multi-Factor Authentication (MFA) is configured on your Azure Active Directory (AAD) tenant
you will also need to renew Power BI authorization every 2 weeks. A symptom of this issue is no job output and an
"Authenticate user error" in the Operation Logs:

https://msdn.microsoft.com/library/azure/dn835065.aspx
https://powerbi.microsoft.com/documentation/powerbi-developer-walkthrough-push-data/

Table Storage

PROPERTY NAME DESCRIPTION

Output Alias This is a friendly name used in queries to direct the query
output to this table storage.

To resolve this issue, stop your running job and go to your Power BI output. Click the “Renew authorization” link,
and restart your job from the Last Stopped Time to avoid data loss.

Azure Table storage offers highly available, massively scalable storage, so that an application can automatically
scale to meet user demand. Table storage is Microsoft’s NoSQL key/attribute store which one can leverage for
structured data with less constraints on the schema. Azure Table storage can be used to store data for persistence
and efficient retrieval.

The table below lists the property names and their description for creating a table output.

https://docs.microsoft.com/en-us/azure/storage/storage-introduction

Storage Account The name of the storage account where you are sending your
output.

Storage Account Key The access key associated with the storage account.

Table Name The name of the table. The table will get created if it does not
exist.

Partition Key The name of the output column containing the partition key.
The partition key is a unique identifier for the partition within a
given table that forms the first part of an entity's primary key.
It is a string value that may be up to 1 KB in size.

Row Key The name of the output column containing the row key. The
row key is a unique identifier for an entity within a given
partition. It forms the second part of an entity’s primary key.
The row key is a string value that may be up to 1 KB in size.

Batch Size The number of records for a batch operation. Typically the
default is sufficient for most jobs, refer to the Table Batch
Operation spec for more details on modifying this setting.

PROPERTY NAME DESCRIPTION

Service Bus Queues

PROPERTY NAME DESCRIPTION

Output Alias This is a friendly name used in queries to direct the query
output to this Service Bus Queue.

Service Bus Namespace A Service Bus namespace is a container for a set of messaging
entities.

Queue Name The name of the Service Bus Queue.

Queue Policy Name When you create a Queue, you can also create shared access
policies on the Queue Configure tab. Each shared access policy
will have a name, permissions that you set, and access keys.

Queue Policy Key The Shared Access key used to authenticate access to the
Service Bus namespace

Event Serialization Format Serialization format for output data. JSON, CSV, and Avro are
supported.

Encoding For CSV and JSON, UTF-8 is the only supported encoding
format at this time

Service Bus Queues offer a First In, First Out (FIFO) message delivery to one or more competing consumers.
Typically, messages are expected to be received and processed by the receivers in the temporal order in which they
were added to the queue, and each message is received and processed by only one message consumer.

The table below lists the property names and their description for creating a Queue output.

https://msdn.microsoft.com/library/microsoft.windowsazure.storage.table.tablebatchoperation.aspx
https://msdn.microsoft.com/library/azure/hh367516.aspx

Delimiter Only applicable for CSV serialization. Stream Analytics supports
a number of common delimiters for serializing data in CSV
format. Supported values are comma, semicolon, space, tab
and vertical bar.

Format Only applicable for JSON type. Line separated specifies that
the output will be formatted by having each JSON object
separated by a new line. Array specifies that the output will be
formatted as an array of JSON objects.

PROPERTY NAME DESCRIPTION

Service Bus Topics

PROPERTY NAME DESCRIPTION

Output Alias This is a friendly name used in queries to direct the query
output to this Service Bus Topic.

Service Bus Namespace A Service Bus namespace is a container for a set of messaging
entities. When you created a new Event Hub, you also created
a Service Bus namespace

Topic Name Topics are messaging entities, similar to event hubs and
queues. They're designed to collect event streams from a
number of different devices and services. When a topic is
created, it is also given a specific name. The messages sent to a
Topic will not be available unless a subscription is created, so
ensure there are one or more subscriptions under the topic

Topic Policy Name When you create a Topic, you can also create shared access
policies on the Topic Configure tab. Each shared access policy
will have a name, permissions that you set, and access keys

Topic Policy Key The Shared Access key used to authenticate access to the
Service Bus namespace

Event Serialization Format Serialization format for output data. JSON, CSV, and Avro are
supported.

Encoding If CSV or JSON format, an encoding must be specified. UTF-8
is the only supported encoding format at this time

Delimiter Only applicable for CSV serialization. Stream Analytics supports
a number of common delimiters for serializing data in CSV
format. Supported values are comma, semicolon, space, tab
and vertical bar.

Azure Cosmos DB

While Service Bus Queues provide a one to one communication method from sender to receiver, Service Bus Topics
provide a one-to-many form of communication.

The table below lists the property names and their description for creating a table output.

Azure Cosmos DB is a fully-managed NoSQL document database service that offers query and transactions over

https://msdn.microsoft.com/library/azure/hh367516.aspx
https://azure.microsoft.com/services/documentdb/

Get help

Next steps

schema-free data, predictable and reliable performance, and rapid development.

The below list details the property names and their description for creating an Azure Cosmos DB output.

Output Alias – An alias to refer this output in your ASA query
Account Name – The name or endpoint URI of the Cosmos DB account.
Account Key – The shared access key for the Cosmos DB account.
Database – The Cosmos DB database name.
Collection Name Pattern – The collection name or their pattern for the collections to be used. The collection
name format can be constructed using the optional {partition} token, where partitions start from 0. Following are
sample valid inputs:
1) MyCollection – One collection named “MyCollection” must exist.
2) MyCollection{partition} – Such collections must exist– "MyCollection0”, “MyCollection1”, “MyCollection2” and
so on.
Partition Key – Optional. This is only needed if you are using a {parition} token in your collection name pattern.
The name of the field in output events used to specify the key for partitioning output across collections. For
single collection output, any arbitrary output column can be used e.g. PartitionId.
Document ID – Optional. The name of the field in output events used to specify the primary key on which insert
or update operations are based.

For further assistance, try our Azure Stream Analytics forum

You've been introduced to Stream Analytics, a managed service for streaming analytics on data from the Internet of
Things. To learn more about this service, see:

Get started using Azure Stream Analytics
Scale Azure Stream Analytics jobs
Azure Stream Analytics Query Language Reference
Azure Stream Analytics Management REST API Reference

https://social.msdn.microsoft.com/Forums/home?forum=AzureStreamAnalytics
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-get-started
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-scale-jobs
https://msdn.microsoft.com/library/azure/dn834998.aspx
https://msdn.microsoft.com/library/azure/dn835031.aspx

Notifying patients of HL7 FHIR health care record
changes using Logic Apps and Azure Cosmos DB
6/6/2017 • 4 min to read • Edit Online

Project requirements

Solution workflow

Solution architecture

Azure MVP Howard Edidin was recently contacted by a healthcare organization that wanted to add new
functionality to their patient portal. They needed to send notifications to patients when their health record was
updated, and they needed patients to be able to subscribe to these updates.

This article walks through the change feed notification solution created for this healthcare organization using Azure
Cosmos DB, Logic Apps, and Service Bus.

Providers send HL7 Consolidated-Clinical Document Architecture (C-CDA) documents in XML format. C-CDA
documents encompass just about every type of clinical document, including clinical documents such as family
histories and immunization records, as well as administrative, workflow, and financial documents.
C-CDA documents are converted to HL7 FHIR Resources in JSON format.
Modified FHIR resource documents are sent by email in JSON format.

At a high level, the project required the following workflow steps:

1. Convert C-CDA documents to FHIR resources.
2. Perform recurring trigger polling for modified FHIR resources.
3. Call a custom app, FhirNotificationApi, to connect to Azure Cosmos DB and query for new or modified

documents.
4. Save the response to to the Service Bus queue.
5. Poll for new messages in the Service Bus queue.
6. Send email notifications to patients.

This solution requires three Logic Apps to meet the above requirements and complete the solution workflow. The
three logic apps are:

1. HL7-FHIR-Mapping app: Receives the HL7 C-CDA document, transforms it to the FHIR Resource, then saves it
to Azure Cosmos DB.

2. EHR app: Queries the Azure Cosmos DB FHIR repository and saves the response to a Service Bus queue. This
logic app uses an API app to retrieve new and changed documents.

3. Process notification app: Sends an email notification with the FHIR resource documents in the body.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/change-feed-hl7-fhir-logic-apps.md
http://hl7.org/fhir/2017Jan/resourcelist.html

Azure services used in the solution
Azure Cosmos DB DocumentDB APIAzure Cosmos DB DocumentDB API

Logic AppsLogic Apps

Azure Cosmos DB is the repository for the FHIR resources as shown in the following figure.

Logic Apps handle the workflow process. The following screenshots show the Logic apps created for this solution.

1. HL7-FHIR-Mapping app: Receive the HL7 C-CDA document and transform it to an FHIR resource using the
Enterprise Integration Pack for Logic Apps. The Enterprise Integration Pack handles the mapping from the C-
CDA to FHIR resources.

2. EHR app: Query the Azure Cosmos DB FHIR repository and save the response to a Service Bus queue. The
code for the GetNewOrModifiedFHIRDocuments app is below.

3. Process notification app: Send an email notification with the FHIR resource documents in the body.

Service BusService Bus

API appAPI app

G e t N e w O r M o d i f i e d F h i r D o c u m e n t s o p e r a t i o nG e t N e w O r M o d i f i e d F h i r D o c u m e n t s o p e r a t i o n

The following figure shows the patients queue. The Tag property value is used for the email subject.

An API app connects to Azure Cosmos DB and queries for new or modified FHIR documents By resource type. This
app has one controller, FhirNotificationApi with a one operation GetNewOrModifiedFhirDocuments, see
source for API app.

We are using the CreateDocumentChangeFeedQuery class from the Azure Cosmos DB DocumentDB .NET API. For more
information, see the change feed article.

Inputs

DatabaseId
CollectionId
HL7 FHIR Resource Type name
Boolean: Start from Beginning
Int: Number of documents returned

Outputs

Success: Status Code: 200, Response: List of Documents (JSON Array)
Failure: Status Code: 404, Response: "No Documents found for 'resource name' Resource Type"

 Source for the API app

https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.documentclient.createdocumentchangefeedquery.aspx

 using System.Collections.Generic;
 using System.Linq;
 using System.Net;
 using System.Net.Http;
 using System.Threading.Tasks;
 using System.Web.Http;
 using Microsoft.Azure.Documents;
 using Microsoft.Azure.Documents.Client;
 using Swashbuckle.Swagger.Annotations;
 using TRex.Metadata;

 namespace FhirNotificationApi.Controllers
 {
 /// <summary>
 /// FHIR Resource Type Controller
 /// </summary>
 /// <seealso cref="System.Web.Http.ApiController" />
 public class FhirResourceTypeController : ApiController
 {
 /// <summary>
 /// Gets the new or modified FHIR documents from Last Run Date
 /// or create date of the collection
 /// </summary>
 /// <param name="databaseId"></param>
 /// <param name="collectionId"></param>
 /// <param name="resourceType"></param>
 /// <param name="startfromBeginning"></param>
 /// <param name="maximumItemCount">-1 returns all (default)</param>
 /// <returns></returns>
 [Metadata("Get New or Modified FHIR Documents",
 "Query for new or modifed FHIR Documents By Resource Type " +
 "from Last Run Date or Begining of Collection creation"
)]
 [SwaggerResponse(HttpStatusCode.OK, type: typeof(Task<dynamic>))]
 [SwaggerResponse(HttpStatusCode.NotFound, "No New or Modifed Documents found")]
 [SwaggerOperation("GetNewOrModifiedFHIRDocuments")]
 public async Task<dynamic> GetNewOrModifiedFhirDocuments(
 [Metadata("Database Id", "Database Id")] string databaseId,
 [Metadata("Collection Id", "Collection Id")] string collectionId,
 [Metadata("Resource Type", "FHIR resource type name")] string resourceType,
 [Metadata("Start from Beginning ", "Change Feed Option")] bool startfromBeginning,
 [Metadata("Maximum Item Count", "Number of documents returned. '-1 returns all' (default)")] int maximumItemCount = -1
)
 {
 var collectionLink = UriFactory.CreateDocumentCollectionUri(databaseId, collectionId);

 var context = new DocumentDbContext();

 var docs = new List<dynamic>();

 var partitionKeyRanges = new List<PartitionKeyRange>();
 FeedResponse<PartitionKeyRange> pkRangesResponse;

 do
 {
 pkRangesResponse = await context.Client.ReadPartitionKeyRangeFeedAsync(collectionLink);
 partitionKeyRanges.AddRange(pkRangesResponse);
 } while (pkRangesResponse.ResponseContinuation != null);

 foreach (var pkRange in partitionKeyRanges)
 {
 var changeFeedOptions = new ChangeFeedOptions
 {
 StartFromBeginning = startfromBeginning,
 RequestContinuation = null,
 MaxItemCount = maximumItemCount,
 PartitionKeyRangeId = pkRange.Id
 };

 };

 using (var query = context.Client.CreateDocumentChangeFeedQuery(collectionLink, changeFeedOptions))
 {
 do
 {
 if (query != null)
 {
 var results = await query.ExecuteNextAsync<dynamic>().ConfigureAwait(false);
 if (results.Count > 0)
 docs.AddRange(results.Where(doc => doc.resourceType == resourceType));
 }
 else
 {
 throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.NotFound));
 }
 } while (query.HasMoreResults);
 }
 }
 if (docs.Count > 0)
 return docs;
 var msg = new StringContent("No documents found for " + resourceType + " Resource");
 var response = new HttpResponseMessage
 {
 StatusCode = HttpStatusCode.NotFound,
 Content = msg
 };
 return response;
 }
 }
 }

Testing the FhirNotificationApi

The following image demonstrates how swagger was used to to test the FhirNotificationApi.

Azure portal dashboard

Summary

Next steps

The following image shows all of the Azure services for this solution running in the Azure portal.

You have learned that Azure Cosmos DB has native suppport for notifications for new or modifed documents
and how easy it is to use.
By leveraging Logic Apps, you can create workflows without writing any code.
Using Azure Service Bus Queues to handle the distribution for the HL7 FHIR documents.

For more information about Azure Cosmos DB, see the Azure Cosmos DB home page. For more informaiton about
Logic Apps, see Logic Apps.

https://azure.microsoft.com/services/cosmos-db/
https://azure.microsoft.com/services/logic-apps/

Process vehicle sensor data from Azure Event Hubs
using Apache Storm on HDInsight
5/10/2017 • 1 min to read • Edit Online

Overview

Learn how to process vehicle sensor data from Azure Event Hubs using Apache Storm on HDInsight. This example
reads sensor data from Azure Event Hubs, enriches the data by referencing data stored in Azure Cosmos DB. The
data is stored into Azure Storage using the Hadoop File System (HDFS).

Adding sensors to vehicles allows you to predict equipment problems based on historical data trends. It also allows
you to make improvements to future versions based on usage pattern analysis. You must be able to quickly and
efficiently load the data from all vehicles into Hadoop before MapReduce processing can occur. Additionally, you
may wish to do analysis for critical failure paths (engine temperature, brakes, etc.) in real time.

Azure Event Hubs is built to handle the massive volume of data generated by sensors. Apache Storm can be used to
load and process the data before storing it into HDFS.

https://github.com/Microsoft/azure-docs/blob/master/articles/hdinsight/hdinsight-storm-iot-eventhub-documentdb.md

Solution

Implementation

Next Steps

Telemetry data for engine temperature, ambient temperature, and vehicle speed is recorded by sensors. Data is
then sent to Event Hubs along with the car's Vehicle Identification Number (VIN) and a time stamp. From there, a
Storm Topology running on an Apache Storm on HDInsight cluster reads the data, processes it, and stores it into
HDFS.

During processing, the VIN is used to retrieve model information from Cosmos DB. This data is added to the data
stream before it is stored.

The components used in the Storm Topology are:

EventHubSpout - reads data from Azure Event Hubs
TypeConversionBolt - converts the JSON string from Event Hubs into a tuple containing the following sensor
data:

DataReferencBolt - looks up the vehicle model from Cosmos DB using the VIN
WasbStoreBolt - stores the data to HDFS (Azure Storage)

Engine temperature
Ambient temperature
Speed
VIN
Timestamp

The following image is a diagram of this solution:

A complete, automated solution for this scenario is available as part of the HDInsight-Storm-Examples repository
on GitHub. To use this example, follow the steps in the IoTExample README.MD.

For more example Storm topologies, see Example topologies for Storm on HDInsight.

https://github.com/hdinsight/hdinsight-storm-examples
https://github.com/hdinsight/hdinsight-storm-examples/blob/master/IotExample/README.md
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-storm-example-topology

Power BI tutorial for Azure Cosmos DB: Visualize data
using the Power BI connector
5/30/2017 • 9 min to read • Edit Online

Prerequisites

Let's get started

PowerBI.com is an online service where you can create and share dashboards and reports with data that's
important to you and your organization. Power BI Desktop is a dedicated report authoring tool that enables you to
retrieve data from various data sources, merge and transform the data, create powerful reports and visualizations,
and publish the reports to Power BI. With the latest version of Power BI Desktop, you can now connect to your
Cosmos DB account via the Cosmos DB connector for Power BI.

In this Power BI tutorial, we walk through the steps to connect to an Cosmos DB account in Power BI Desktop,
navigate to a collection where we want to extract the data using the Navigator, transform JSON data into tabular
format using Power BI Desktop Query Editor, and build and publish a report to PowerBI.com.

After completing this Power BI tutorial, you'll be able to answer the following questions:

How can I build reports with data from Cosmos DB using Power BI Desktop?
How can I connect to an Cosmos DB account in Power BI Desktop?
How can I retrieve data from a collection in Power BI Desktop?
How can I transform nested JSON data in Power BI Desktop?
How can I publish and share my reports in PowerBI.com?

Before following the instructions in this Power BI tutorial, ensure that you have the following:

The latest version of Power BI Desktop.
Access to our demo account or data in your Cosmos DB account.

The demo account is populated with the volcano data shown in this tutorial. This demo account is not
bound by any SLAs and is meant for demonstration purposes only. We reserve the right to make
modifications to this demo account including but not limited to, terminating the account, changing the
key, restricting access, changing and delete the data, at any time without advance notice or reason.

Or, to create your own account, see Create an Azure Cosmos DB database account using the Azure portal.
Then, to get sample volcano data that's similar to what's used in this tutorial (but does not contain the
GeoJSON blocks), see the NOAA site and then import the data using the Azure Cosmos DB data
migration tool.

URL: https://analytics.documents.azure.com
Read-only key:
MSr6kt7Gn0YRQbjd6RbTnTt7VHc5ohaAFu7osF0HdyQmfR+YhwCH2D2jcczVIR1LNK3nMPNBD31losN7lQ/fkw==

To share your reports in PowerBI.com, you must have an account in PowerBI.com. To learn more about Power BI for
Free and Power BI Pro, please visit https://powerbi.microsoft.com/pricing.

In this tutorial, let's imagine that you are a geologist studying volcanoes around the world. The volcano data is
stored in an Cosmos DB account and the JSON documents look like the one below.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/powerbi-visualize.md
https://powerbi.microsoft.com/
https://powerbi.microsoft.com/desktop
https://analytics.documents.azure.com
https://azure.microsoft.com/documentation/articles/create-account/
https://www.ngdc.noaa.gov/nndc/struts/form?t=102557&s=5&d=5
https://powerbi.microsoft.com/pricing

{
 "Volcano Name": "Rainier",
 "Country": "United States",
 "Region": "US-Washington",
 "Location": {
 "type": "Point",
 "coordinates": [
 -121.758,
 46.87
]
 },
 "Elevation": 4392,
 "Type": "Stratovolcano",
 "Status": "Dendrochronology",
 "Last Known Eruption": "Last known eruption from 1800-1899, inclusive"
}

You want to retrieve the volcano data from the Cosmos DB account and visualize data in an interactive Power BI
report like the one below.

Ready to give it a try? Let's get started.

1. Run Power BI Desktop on your workstation.
2. Once Power BI Desktop is launched, a Welcome screen is displayed.

4. Select the Home ribbon, then click on Get Data. The Get Data window should appear.

3. You can Get Data, see Recent Sources, or Open Other Reports directly from the Welcome screen. Click
the X at the top right corner to close the screen. The Report view of Power BI Desktop is displayed.

5. Click on Azure, select Microsoft Azure Cosmos DB (Beta), and then click Connect. The Microsoft Azure
Cosmos DB Connect window should appear.

6. Specify the Cosmos DB account endpoint URL you would like to retrieve the data from as shown below, and
then click OK. You can retrieve the URL from the URI box in the Keys blade of the Azure portal or you can
use the demo account, in which case the URL is https://analytics.documents.azure.com .

Leave the database name, collection name, and SQL statement blank as these fields are optional. Instead, we
will use the Navigator to select the Database and Collection to identify where the data comes from.

7. If you are connecting to this endpoint for the first time, you will be prompted for the account key. You can
retrieve the key from the Primary Key box in the Read-only Keys blade of the Azure portal, or you can use
the demo account, in which case the key is
MSr6kt7Gn0YRQbjd6RbTnTt7VHc5ohaAFu7osF0HdyQmfR+YhwCH2D2jcczVIR1LNK3nMPNBD31losN7lQ/fkw== . Enter the account

key and click Connect.

We recommend that you use the read-only key when building reports. This will prevent unnecessary
exposure of the master key to potential security risks. The read-only key is available from the Keys blade of
the Azure portal or you can use the demo account information provided above.

Flattening and transforming JSON documents

8. When the account is successfully connected, the Navigator will appear. The Navigator will show a list of
databases under the account.

9. Click and expand on the database where the data for the report will come from, if you're using the demo
account, select volcanodb.

11. Click Edit to launch the Query Editor so we can transform the data.

10. Now, select a collection that you will retrieve the data from. If you're using the demo account, select
volcano1.

The Preview pane shows a list of Record items. A Document is represented as a Record type in Power BI.
Similarly, a nested JSON block inside a document is also a Record.

1. In the Power BI Query Editor, you should see a Document column in the center pane.

2. Click on the expander at the right side of the Document column header. The context menu with a list of
fields will appear. Select the fields you need for your report, for instance, Volcano Name, Country, Region,
Location, Elevation, Type, Status and Last Know Eruption, and then click OK.

3. The center pane will display a preview of the result with the fields selected.

4. In our example, the Location property is a GeoJSON block in a document. As you can see, Location is
represented as a Record type in Power BI Desktop.

5. Click on the expander at the right side of the Location column header. The context menu with type and
coordinates fields will appear. Let's select the coordinates field and click OK.

6. The center pane now shows a coordinates column of List type. As shown at the beginning of the tutorial, the
GeoJSON data in this tutorial is of Point type with Latitude and Longitude values recorded in the coordinates
array.

The coordinates[0] element represents Longitude while coordinates[1] represents Latitude.

7. To flatten the coordinates array, we will create a Custom Column called LatLong. Select the Add Column
ribbon and click on Add Custom Column. The Add Custom Column window should appear.

8. Provide a name for the new column, e.g. LatLong.
9. Next, specify the custom formula for the new column. For our example, we will concatenate the Latitude and

Longitude values separated by a comma as shown below using the following formula:
Text.From([Document.Location.coordinates]{1})&","&Text.From([Document.Location.coordinates]{0}) . Click OK.

For more information on Data Analysis Expressions (DAX) including DAX functions, please visit DAX Basic in
Power BI Desktop.

10. Now, the center pane will show the new LatLong column populated with the Latitude and Longitude values
separated by a comma.

https://support.powerbi.com/knowledgebase/articles/554619-dax-basics-in-power-bi-desktop

If you receive an Error in the new column, make sure that the applied steps under Query Settings match the
following figure:

If your steps are different, delete the extra steps and try adding the custom column again.

11. We have now completed flattening the data into tabular format. You can leverage all of the features available
in the Query Editor to shape and transform data in Cosmos DB. If you're using the sample, change the data
type for Elevation to Whole number by changing the Data Type on the Home ribbon.

12. Click Close and Apply to save the data model.

Build the reports

Power BI Desktop Report view is where you can start creating reports to visualize data. You can create reports by
dragging and dropping fields into the Report canvas.

In the Report view, you should find:

1. The Fields pane, this is where you will see a list of data models with fields you can use for your reports.
2. The Visualizations pane. A report can contain a single or multiple visualizations. Pick the visual types fitting

your needs from the Visualizations pane.
3. The Report canvas, this is where you will build the visuals for your report.
4. The Report page. You can add multiple report pages in Power BI Desktop.

The following shows the basic steps of creating a simple interactive Map view report.

1. For our example, we will create a map view showing the location of each volcano. In the Visualizations pane,
click on the Map visual type as highlighted in the screenshot above. You should see the Map visual type painted
on the Report canvas. The Visualization pane should also display a set of properties related to the Map visual
type.

2. Now, drag and drop the LatLong field from the Fields pane to the Location property in Visualizations pane.
3. Next, drag and drop the Volcano Name field to the Legend property.
4. Then, drag and drop the Elevation field to the Size property.
5. You should now see the Map visual showing a set of bubbles indicating the location of each volcano with the

Publish and share your report

Create a dashboard in PowerBI.com

size of the bubble correlating to the elevation of the volcano.
6. You now have created a basic report. You can further customize the report by adding more visualizations. In

our case, we added a Volcano Type slicer to make the report interactive.

To share your report, you must have an account in PowerBI.com.

1. In the Power BI Desktop, click on the Home ribbon.
2. Click Publish. You will be prompted to enter the user name and password for your PowerBI.com account.
3. Once the credential has been authenticated, the report is published to your destination you selected.
4. Click Open 'PowerBITutorial.pbix' in Power BI to see and share your report on PowerBI.com.

Now that you have a report, lets share it on PowerBI.com

When you publish your report from Power BI Desktop to PowerBI.com, it generates a Report and a Dataset in your
PowerBI.com tenant. For example, after you published a report called PowerBITutorial to PowerBI.com, you will
see PowerBITutorial in both the Reports and Datasets sections on PowerBI.com.

Refresh data in PowerBI.com

To create a sharable dashboard, click the Pin Live Page button on your PowerBI.com report.

Then follow the instructions in Pin a tile from a report to create a new dashboard.

You can also do ad hoc modifications to report before creating a dashboard. However, it's recommended that you
use Power BI Desktop to perform the modifications and republish the report to PowerBI.com.

There are two ways to refresh data, ad hoc and scheduled.

For an ad hoc refresh, simply click on the eclipses (…) by the Dataset, e.g. PowerBITutorial. You should see a list of
actions including Refresh Now. Click Refresh Now to refresh the data.

https://powerbi.microsoft.com/documentation/powerbi-service-pin-a-tile-to-a-dashboard-from-a-report/#pin-a-tile-from-a-report

Next steps

For a scheduled refresh, do the following.

2. In the Settings page, expand Data source credentials.

4. Enter the key to connect to the Cosmos DB account for that data set, then click Sign in.
5. Expand Schedule Refresh and set up the schedule you want to refresh the dataset.
6. Click Apply and you are done setting up the scheduled refresh.

1. Click Schedule Refresh in the action list.

3. Click on Edit credentials.

The Configure popup appears.

To learn more about Power BI, see Get started with Power BI.

https://powerbi.microsoft.com/documentation/powerbi-service-get-started/

To learn more about Cosmos DB, see the Azure Cosmos DB documentation landing page.

https://azure.microsoft.com/documentation/services/documentdb/

Connect to Azure Cosmos DB using BI analytics tools
with the ODBC driver
5/30/2017 • 11 min to read • Edit Online

Why do I need to normalize my data?

Step 1: Install the Azure Cosmos DB ODBC driver

The Azure Cosmos DB ODBC driver enables you to connect to Azure Cosmos DB using BI analytics tools such as
SQL Server Integration Services, Power BI Desktop, and Tableau so that you can analyze and create visualizations of
your Azure Cosmos DB data in those solutions.

The Azure Cosmos DB ODBC driver is ODBC 3.8 compliant and supports ANSI SQL-92 syntax. The driver offers rich
features to help you renormalize data in Azure Cosmos DB. Using the driver, you can represent data in Azure
Cosmos DB as tables and views. The driver enables you to perform SQL operations against the tables and views
including group by queries, inserts, updates, and deletes.

Azure Cosmos DB is a schemaless database, so it enables rapid development of apps by enabling applications to
iterate their data model on the fly and not confine them to a strict schema. A single Azure Cosmos DB database can
contain JSON documents of various structures. This is great for rapid application development, but when you want
to analyze and create reports of your data using data analytics and BI tools, the data often needs to be flattened and
adhere to a specific schema.

This is where the ODBC driver comes in. By using the ODBC driver, you can now renormalized data in Azure
Cosmos DB into tables and views fitting to your data analytic and reporting needs. The renormalized schemas have
no impact on the underlying data and do not confine developers to adhere to them, they simply enable you to
leverage ODBC-compliant tools to access the data. So now your Azure Cosmos DB database will not only be a
favorite for your development team, but your data analysts will love it too.

Now lets get started with the ODBC driver.

2. Complete the installation wizard using the default input to install the ODBC driver.

1. Download the drivers for your environment:

Microsoft Azure Cosmos DB ODBC 64-bit.msi for 64-bit Windows
Microsoft Azure Cosmos DB ODBC 32x64-bit.msi for 32-bit on 64-bit Windows
Microsoft Azure Cosmos DB ODBC 32-bit.msi for 32-bit Windows

Run the msi file locally, which starts the Microsoft Azure Cosmos DB ODBC Driver Installation
Wizard.

3. Open the ODBC Data source Administrator app on your computer, you can do this by typing ODBC Data
sources in the Windows search box. You can confirm the driver was installed by clicking the Drivers tab and
ensuring Microsoft Azure Cosmos DB ODBC Driver is listed.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/odbc-driver.md
https://aka.ms/documentdb-odbc-64x64
https://aka.ms/documentdb-odbc-32x64
https://aka.ms/documentdb-odbc-32x32

 Step 2: Connect to your Azure Cosmos DB database
1. After Installing the Azure Cosmos DB ODBC driver, in the ODBC Data Source Administrator window, click

Add. You can create a User or System DSN. In this example, we are creating a User DSN.
2. In the Create New Data Source window, select Microsoft Azure Cosmos DB ODBC Driver, and then click

Finish.
3. In the Azure Cosmos DB ODBC Driver SDN Setup window, fill in the following:

Data Source Name: Your own friendly name for the ODBC DSN. This name is unique to your Azure
Cosmos DB account, so name it appropriately if you have multiple accounts.
Description: A brief description of the data source.
Host: URI for your Azure Cosmos DB account. You can retrieve this from the Azure Cosmos DB Keys
blade in the Azure portal, as shown in the following screenshot.
Access Key: The primary or secondary, read-write or read-only key from the Azure Cosmos DB Keys
blade in the Azure portal as shown in the following screenshot. We recommend you use the read-only
key if the DSN is used for read-only data processing and reporting.

4. Click the Test button to make sure you can connect to your Azure Cosmos DB account.
Encrypt Access Key for: Select the best choice based on the users of this machine.

5. Click Advanced Options and set the following values:

Query Consistency: Select the consistency level for your operations. The default is Session.
Number of Retries: Enter the number of times to retry an operation if the initial request does not
complete due to service throttling.
Schema File: You have a number of options here.

By default, leaving this entry as is (blank), the driver scans the first page data for all collections to
determine the schema of each collection. This is known as Collection Mapping. Without a schema
file defined, the driver has to perform the scan for each driver session and could result in a higher
start up time of an application using the DSN. We recommend that you always associate a schema
file for a DSN.
If you already have a schema file (possibly one that you created using the Schema Editor), you can
click Browse, navigate to your file, click Save, and then click OK.
If you want to create a new schema, click OK, and then click Schema Editor in the main window.
Then proceed to the Schema Editor information. Upon creating the new schema file, please
remember to go back to the Advanced Options window to include the newly created schema file.

6. Once you complete and close the Azure Cosmos DB ODBC Driver DSN Setup window, the new User DSN
is added to the User DSN tab.

 Step 3: Create a schema definition using the collection mapping
method
There are two types of sampling methods that you can use: collection mapping or table-delimiters. A sampling
session can utilize both sampling methods, but each collection can only use a specific sampling method. The steps
below create a schema for the data in one or more collections using the collection mapping method. This sampling
method retrieves the data in the page of a collection to determine the structure of the data. It transposes a
collection to a table on the ODBC side. This sampling method is efficient and fast when the data in a collection is
homogenous. If a collection contains heterogenous type of data, we recommend you use the table-delimiters
mapping method as it provides a more robust sampling method to determine the data structures in the collection.

2. In the Schema Editor window, click Create New. The Generate Schema window displays all the collections in
the Azure Cosmos DB account.

3. Select one or more collections to sample, and then click Sample.
4. In the Design View tab, the database, schema, and table are represented. In the table view, the scan displays the

set of properties associated with the column names (SQL Name, Source Name, etc.). For each column, you can
modify the column SQL name, the SQL type, SQL length (if applicable), Scale (if applicable), Precision (if
applicable) and Nullable.

1. After completing steps 1-4 in Connect to your Azure Cosmos DB database, click Schema Editor in the
Azure Cosmos DB ODBC Driver DSN Setup window.

 Step 4: Create a schema definition using the table-delimiters mapping
method

You can set Hide Column to true if you want to exclude that column from query results. Columns
marked Hide Column = true are not returned for selection and projection, although they are still part of
the schema. For example, you can hide all of the Azure Cosmos DB system required properties starting
with “_”.
The id column is the only field that cannot be hidden as it is used as the primary key in the normalized
schema.

5. Once you have finished defining the schema, click File | Save, navigate to the directory to save the schema,
and then click Save.

If in the future you want to use this schema with a DSN, open the Azure Cosmos DB ODBC Driver DSN Setup
window (via the ODBC Data Source Administrator), click Advanced Options, and then in the Schema File box,
navigate to the saved schema. Saving a schema file to an existing DSN modifies the DSN connection to
scope to the data and structure defined by schema.

There are two types of sampling methods that you can use: collection mapping or table-delimiters. A sampling
session can utilize both sampling methods, but each collection can only use a specific sampling method.

The following steps create a schema for the data in one or more collections using the table-delimiters mapping
method. We recommend that you use this sampling method when your collections contain heterogeneous type of
data. You can use this method to scope the sampling to a set of attributes and its corresponding values. For
example, if a document contains a “Type” property, you can scope the sampling to the values of this property. The
end result of the sampling would be a set of tables for each of the values for Type you have specified. For example,
Type = Car will produce a Car table while Type = Plane would produce a Plane table.

1. After completing steps 1-4 in Connect to your Azure Cosmos DB database, click Schema Editor in the Azure
Cosmos DB ODBC Driver DSN Setup window.

2. In the Schema Editor window, click Create New. The Generate Schema window displays all the collections in
the Azure Cosmos DB account.

4. Click OK.
5. After completing the mapping definitions for the collections you want to sample, in the Schema Editor window,

click Sample. For each column, you can modify the column SQL name, the SQL type, SQL length (if applicable),
Scale (if applicable), Precision (if applicable) and Nullable.

3. Select a collection on the Sample View tab, in the Mapping Definition column for the collection, click
Edit. Then in the Mapping Definition window, select Table Delimiters method. Then do the following:

a. In the Attributes box, type the name of a delimiter property. This is a property in your document that you
want to scope the sampling to, for instance, City and press enter.

b. If you only want to scope the sampling to certain values for the attribute you just entered, select the
attribute in the selection box, then enter a value in the Value box, for example, Seattle and press enter. You
can continue to add multiple values for attributes. Just ensure that the correct attribute is selected when
you're entering values.

For example, if you include an Attributes value of City, and you want to limit your table to only include rows
with a city value of New York and Dubai, you would enter City in the Attributes box, and New York and then
Dubai in the Values box.

You can set Hide Column to true if you want to exclude that column from query results. Columns
marked Hide Column = true are not returned for selection and projection, although they are still part of
the schema. For example, you can hide all the Azure Cosmos DB system required properties starting with
“_”.

(Optional) Creating views

Step 5: View your data in BI tools such as Power BI Desktop

Troubleshooting

[HY000]: [Microsoft][Azure Cosmos DB] (401) HTTP 401 Authentication Error: {"code":"Unauthorized","message":"The input authorization
token can't serve the request. Please check that the expected payload is built as per the protocol, and check the key being used. Server used the
following payload to sign: 'get\ndbs\n\nfri, 20 jan 2017 03:43:55 gmt\n\n'\r\nActivityId: 9acb3c0d-cb31-4b78-ac0a-413c8d33e373"}`

6. Once you have finished defining the schema, click File | Save, navigate to the directory to save the schema, and
then click Save.

7. Back in the Azure Cosmos DB ODBC Driver DSN Setup window, click ** Advanced Options. Then, in the
**Schema File box, navigate to the saved schema file and click OK. Click OK again to save the DSN. This saves
the schema you created to the DSN.

The id column is the only field that cannot be hidden as it is used as the primary key in the normalized
schema.

You can define and create views as part of the sampling process. These views are equivalent to SQL views. They are
read-only and are scope the selections and projections of the Azure Cosmos DB SQL defined.

To create a view for your data, in the Schema Editor window, in the View Definitions column, click Add on the
row of the collection to sample. Then in the View Definitions window, do the following:

1. Click New, enter a name for the view, for example, EmployeesfromSeattleView and then click OK.
2. In the Edit view window, enter an Azure Cosmos DB query. This must be an Azure Cosmos DB SQL query, for

example SELECT c.City, c.EmployeeName, c.Level, c.Age, c.Gender, c.Manager FROM c WHERE c.City = “Seattle” , and then click OK.

You can create a many views as you like. Once you are done defining the views, you can then sample the data.

You can use your new DSN to connect DocumentADB with any ODBC-compliant tools - this step simply shows you
how to connect to Power BI Desktop and create a Power BI visualization.

1. Open Power BI Desktop.
2. Click Get Data.
3. In the Get Data window, click Other | ODBC | Connect.
4. In the From ODBC window, select the data source name you created, and then click OK. You can leave the

Advanced Options entries blank.
5. In the Access a data source using an ODBC driver window, select Default or Custom and then click

Connect. You do not need to include the Credential connection string properties.
6. In the Navigator window, in the left pane, expand the database, the schema, and then select the table. The

results pane includes the data using the schema you created.
7. To visualize the data in Power BI desktop, check the box in front of the table name, and then click Load.

8. In Power BI Desktop, on the far left, select the Data tab to confirm your data was imported.

9. You can now create visuals using Power BI by clicking on the Report tab , clicking New Visual, and then
customizing your tile. For more information about creating visualizations in Power BI Desktop, see Visualization
types in Power BI.

If you receive the following error, ensure the Host and Access Key values you copied the Azure portal in Step 2 are
correct and then retry. Use the copy buttons to the right of the Host and Access Key values in the Azure portal to
copy the values error free.

https://powerbi.microsoft.com/documentation/powerbi-service-visualization-types-for-reports-and-q-and-a/

Next steps
To learn more about Azure Cosmos DB, see What is Azure Cosmos DB?.

DocumentDB Java SDK: Release notes and resources
5/30/2017 • 6 min to read • Edit Online

SDK Download Maven

API documentation Java API reference documentation

Contribute to SDK GitHub

Get started Get started with the Java SDK

Web app tutorial Web application development with DocumentDB

Current supported runtime JDK 7

Release Notes
1.11.0

1.10.0

1.9.6

1.9.5

1.9.4

Added support for Request Unit per Minute (RU/m) feature.
Added support for a new consistency level called ConsistentPrefix.
Fixed a bug in reading collection in session mode.

Enabled support for partitioned collection with as low as 2,500 RU/sec and scale in increments of 100 RU/sec.
Fixed a bug in the native assembly which can cause NullRef exception in some queries.

Fixed a bug in the query engine configuration that may cause exceptions for queries in Gateway mode.
Fixed a few bugs in the session container that may cause an "Owner resource not found" exception for
requests immediately after collection creation.

Added support for aggregation queries (COUNT, MIN, MAX, SUM, and AVG). See Aggregation support.
Added support for change feed.
Added support for collection quota information through RequestOptions.setPopulateQuotaInfo.
Added support for stored procedure script logging through RequestOptions.setScriptLoggingEnabled.
Fixed a bug where query in DirectHttps mode may hang when encountering throttle failures.
Fixed a bug in session consistency mode.
Fixed a bug which may cause NullReferenceException in HttpContext when request rate is high.
Improved performance of DirectHttps mode.

Added simple client instance-based proxy support with ConnectionPolicy.setProxy() API.
Added DocumentClient.close() API to properly shutdown DocumentClient instance.
Improved query performance in direct connectivity mode by deriving the query plan from the native assembly

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/documentdb-sdk-java.md
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22com.microsoft.azure%22 AND a%3A%22azure-documentdb%22
http://azure.github.io/azure-documentdb-java/
https://github.com/Azure/azure-documentdb-java/
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html

1.9.3

1.9.2

1.9.1

1.9.0

1.8.1

1.8.0

1.7.1

1.7.0

1.6.0

instead of the Gateway.
Set FAIL_ON_UNKNOWN_PROPERTIES = false so users don't need to define JsonIgnoreProperties in their
POJO.
Refactored logging to use SLF4J.
Fixed a few other bugs in consistency reader.

Fixed a bug in the connection management to prevent connection leaks in direct connectivity mode.
Fixed a bug in the TOP query where it may throw NullReferenece exception.
Improved performance by reducing the number of network call for the internal caches.
Added status code, ActivityID and Request URI in DocumentClientException for better troubleshooting.

Fixed an issue in the connection management for stability.

Added support for BoundedStaleness consistency level.
Added support for direct connectivity for CRUD operations for partitioned collections.
Fixed a bug in querying a database with SQL.
Fixed a bug in the session cache where session token may be set incorrectly.

Added support for cross partition parallel queries.
Added support for TOP/ORDER BY queries for partitioned collections.
Added support for strong consistency.
Added support for name based requests when using direct connectivity.
Fixed to make ActivityId stay consistent across all request retries.
Fixed a bug related to the session cache when recreating a collection with the same name.
Added Polygon and LineString DataTypes while specifying collection indexing policy for geo-fencing spatial
queries.
Fixed issues with Java Doc for Java 1.8.

Fixed a bug in PartitionKeyDefinitionMap to cache single partition collections and not make extra fetch
partition key requests.
Fixed a bug to not retry when an incorrect partition key value is provided.

Added the support for multi-region database accounts.
Added support for automatic retry on throttled requests with options to customize the max retry attempts and
max retry wait time. See RetryOptions and ConnectionPolicy.getRetryOptions().
Deprecated IPartitionResolver based custom partitioning code. Please use partitioned collections for higher
storage and throughput.

Added retry policy support for throttling.

Added time to live (TTL) support for documents.

Implemented partitioned collections and user-defined performance levels.

1.5.1

1.5.0

1.4.0

1.3.0

1.2.0

1.1.0

1.0.0

Release & Retirement Dates

WARNING

VERSION RELEASE DATE RETIREMENT DATE

1.11.0 May 10, 2017 ---

1.10.0 March 11, 2017 ---

1.9.6 February 21, 2017 ---

1.9.5 January 31, 2017 ---

1.9.4 November 24, 2016 ---

1.9.3 October 30, 2016 ---

Fixed a bug in HashPartitionResolver to generate hash values in little-endian to be consistent with other SDKs.

Add Hash & Range partition resolvers to assist with sharding applications across multiple partitions.

Implement Upsert. New upsertXXX methods added to support Upsert feature.
Implement ID Based Routing. No public API changes, all changes internal.

Release skipped to bring version number in alignment with other SDKs

Supports GeoSpatial Index
Validates id property for all resources. Ids for resources cannot contain ?, /, #, \, characters or end with a space.
Adds new header "index transformation progress" to ResourceResponse.

Implements V2 indexing policy

GA SDK

Microsoft will provide notification at least 12 months in advance of retiring an SDK in order to smooth the
transition to a newer/supported version.

New features and functionality and optimizations are only added to the current SDK, as such it is recommend that
you always upgrade to the latest SDK version as early as possible.

Any request to Cosmos DB using a retired SDK will be rejected by the service.

All versions of the Azure DocumentDB SDK for Java prior to version 1.0.0 will be retired on February 29, 2016.

1.9.2 October 28, 2016 ---

1.9.1 October 26, 2016 ---

1.9.0 October 03, 2016 ---

1.8.1 June 30, 2016 ---

1.8.0 June 14, 2016 ---

1.7.1 April 30, 2016 ---

1.7.0 April 27, 2016 ---

1.6.0 March 29, 2016 ---

1.5.1 December 31, 2015 ---

1.5.0 December 04, 2015 ---

1.4.0 October 05, 2015 ---

1.3.0 October 05, 2015 ---

1.2.0 August 05, 2015 ---

1.1.0 July 09, 2015 ---

1.0.1 May 12, 2015 ---

1.0.0 April 07, 2015 ---

0.9.5-prelease Mar 09, 2015 February 29, 2016

0.9.4-prelease February 17, 2015 February 29, 2016

0.9.3-prelease January 13, 2015 February 29, 2016

0.9.2-prelease December 19, 2014 February 29, 2016

0.9.1-prelease December 19, 2014 February 29, 2016

0.9.0-prelease December 10, 2014 February 29, 2016

VERSION RELEASE DATE RETIREMENT DATE

FAQ
1. How will customers be notified of the retiring SDK?

Microsoft will provide 12 month advance notification to the end of support of the retiring SDK in order to facilitate
a smooth transition to a supported SDK. Further, customers will be notified through various communication
channels – Azure Management Portal, Developer Center, blog post, and direct communication to assigned service

See Also

administrators.

2. Can customers author applications using a "to-be" retired DocumentDB SDK during the 12 month
period?

Yes, customers will have full access to author, deploy and modify applications using the "to-be" retired
DocumentDB SDK during the 12 month grace period. During the 12 month grace period, customers are advised
to migrate to a newer supported version of DocumentDB SDK as appropriate.

3. Can customers author and modify applications using a retired DocumentDB SDK after the 12 month
notification period?

After the 12 month notification period, the SDK will be retired. Any access to DocumentDB by an applications
using a retired SDK will not be permitted by the DocumentDB platform. Further, Microsoft will not provide
customer support on the retired SDK.

4. What happens to Customer’s running applications that are using unsupported DocumentDB SDK
version?

Any attempts made to connect to the DocumentDB service with a retired SDK version will be rejected.

5. Will new features and functionality be applied to all non-retired SDKs

New features and functionality will only be added to new versions. If you are using an old, non-retired, version of
the SDK your requests to DocumentDB will still function as previous but you will not have access to any new
capabilities.

6. What should I do if I cannot update my application before a cut-off date

We recommend that you upgrade to the latest SDK as early as possible. Once an SDK has been tagged for
retirement you will have 12 months to update your application. If, for whatever reason, you cannot complete your
application update within this timeframe then please contact the Cosmos DB Team and request their assistance
before the cutoff date.

To learn more about Cosmos DB, see Microsoft Azure Cosmos DB service page.

mailto:askcosmosdb@microsoft.com
https://azure.microsoft.com/services/cosmos-db/

DocumentDB .NET SDK: Download and release
notes
6/12/2017 • 10 min to read • Edit Online

SDK download NuGet

API documentation .NET API reference documentation

Samples .NET code samples

Get started Get started with the DocumentDB .NET SDK

Web app tutorial Web application development with Azure Cosmos DB

Current supported framework Microsoft .NET Framework 4.5

Release notes
1.14.1

1.14.0

1.13.4

1.13.3

1.13.2

1.13.1

1.13.0

Fixed an issue that affected x64 machines that don’t support SSE4 instruction and throw SEHException
when running DocumentDB queries.

Added support for Request Unit per Minute (RU/m) feature.
Added support for a new consistency level called ConsistentPrefix.
Added support for query metrics for individual partitions.
Added support for limiting the size of the continuation token for queries.
Added support for more detailed tracing for failed requests.
Made some performance improvements in the SDK.

Functionally same as 1.13.3. Made some internal changes.

Functionally same as 1.13.2. Made some internal changes.

Fixed an issue that ignored the PartitionKey value provided in FeedOptions for aggregate queries.
Fixed an issue in transparent handling of partition management during mid-flight cross-partition Order
By query execution.

Fixed an issue which caused deadlocks in some of the async APIs when used inside ASP.NET context.

Fixes to make SDK more resilient to automatic failover under certain conditions.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/documentdb-sdk-dotnet.md
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB/
https://msdn.microsoft.com/library/azure/dn948556.aspx
https://www.microsoft.com/download/details.aspx?id=30653

1.12.2

1.12.1

1.12.0

1.11.4

1.11.3

1.11.1

1.11.0

1.10.0

Fix for an issue that occasionally causes a WebException: The remote name could not be resolved.
Added the support for directly reading a typed document by adding new overloads to
ReadDocumentAsync API.

Added LINQ support for aggregation queries (COUNT, MIN, MAX, SUM, and AVG).
Fix for a memory leak issue for the ConnectionPolicy object caused by the use of event handler.
Fix for an issue wherein UpsertAttachmentAsync was not working when ETag was used.
Fix for an issue wherein cross partition order-by query continuation was not working when sorting on
string field.

Added support for aggregation queries (COUNT, MIN, MAX, SUM, and AVG). See Aggregation support.
Lowered minimum throughput on partitioned collections from 10,100 RU/s to 2500 RU/s.

Fix for an issue wherein some of the cross-partition queries were failing in the 32-bit host process.
Fix for an issue wherein the session container was not being updated with the token for failed requests in
Gateway mode.
Fix for an issue wherein a query with UDF calls in projection was failing in some cases.
Client side performance fixes for increasing the read and write throughput of the requests.

Fix for an issue wherein the session container was not being updated with the token for failed requests.
Added support for the SDK to work in a 32-bit host process. Note that if you use cross partition queries,
64-bit host processing is recommended for improved performance.
Improved performance for scenarios involving queries with a large number of partition key values in an
IN expression.
Populated various resource quota stats in the ResourceResponse for document collection read requests
when PopulateQuotaInfo request option is set.

Minor performance fix for the CreateDocumentCollectionIfNotExistsAsync API introduced in 1.11.0.
Performance fix in the SDK for scenarios that involve high degree of concurrent requests.

Support for new classes and methods to process the change feed of documents within a collection.
Support for cross-partition query continuation and some perf improvements for cross-partition queries.
Addition of CreateDatabaseIfNotExistsAsync and CreateDocumentCollectionIfNotExistsAsync methods.
LINQ support for system functions: IsDefined, IsNull and IsPrimitive.
Fix for automatic binplacing of Microsoft.Azure.Documents.ServiceInterop.dll and
DocumentDB.Spatial.Sql.dll assemblies to application’s bin folder when using the Nuget package with
projects that have project.json tooling.
Support for emitting client side ETW traces which could be helpful in debugging scenarios.

Added direct connectivity support for partitioned collections.
Improved performance for the Bounded Staleness consistency level.
Added Polygon and LineString DataTypes while specifying collection indexing policy for geo-fencing
spatial queries.

1.9.5

1.9.4

1.9.3

1.9.2

1.8.0

1.7.1

Added LINQ support for StringEnumConverter, IsoDateTimeConverter and UnixDateTimeConverter while
translating predicates.
Various SDK bug fixes.

Fixed an issue that caused the following NotFoundException: The read session is not available for the
input session token. This exception occurred in some cases when querying for the read-region of a geo-
distributed account.
Exposed the ResponseStream property in the ResourceResponse class, which enables direct access to the
underlying stream from a response.

Modified the ResourceResponse, FeedResponse, StoredProcedureResponse and MediaResponse classes
to implement the corresponding public interface so that they can be mocked for test driven deployment
(TDD).
Fixed an issue that caused a malformed partition key header when using a custom JsonSerializerSettings
object for serializing data.

Fixed an issue that caused long running queries to fail with error: Authorization token is not valid at the
current time.
Fixed an issue that removed the original SqlParameterCollection from cross partition top/order-by
queries.

Added support for parallel queries for partitioned collections.
Added support for cross partition ORDER BY and TOP queries for partitioned collections.
Fixed the missing references to DocumentDB.Spatial.Sql.dll and
Microsoft.Azure.Documents.ServiceInterop.dll that are required when referencing a DocumentDB project
with a reference to the DocumentDB Nuget package.
Fixed the ability to use parameters of different types when using user-defined functions in LINQ.
Fixed a bug for globally replicated accounts where Upsert calls were being directed to read locations
instead of write locations.
Added methods to the IDocumentClient interface that were missing:

Unsealed public classes that are exposed in the IDocumentClient interface.

UpsertAttachmentAsync method that takes mediaStream and options as parameters
CreateAttachmentAsync method that takes options as a parameter
CreateOfferQuery method that takes querySpec as a parameter.

Added the support for multi-region database accounts.
Added support for retry on throttled requests. User can customize the number of retries and the max wait
time by configuring the ConnectionPolicy.RetryOptions property.
Added a new IDocumentClient interface that defines the signatures of all DocumenClient properties and
methods. As part of this change, also changed extension methods that create IQueryable and
IOrderedQueryable to methods on the DocumentClient class itself.
Added configuration option to set the ServicePoint.ConnectionLimit for a given DocumentDB endpoint
Uri. Use ConnectionPolicy.MaxConnectionLimit to change the default value, which is set to 50.
Deprecated IPartitionResolver and its implementation. Support for IPartitionResolver is now obsolete. It's
recommended that you use Partitioned Collections for higher storage and throughput.

1.7.0

1.6.3

1.6.2

1.5.3

1.5.2

1.5.1

1.5.0

1.4.1

1.4.0

Added an overload to Uri based ExecuteStoredProcedureAsync method that takes RequestOptions as a
parameter.

Added time to live (TTL) support for documents.

Fixed a bug in Nuget packaging of .NET SDK for packaging it as part of an Azure Cloud Service solution.

Implemented partitioned collections and user-defined performance levels.

[Fixed] Querying DocumentDB endpoint throws: 'System.Net.Http.HttpRequestException: Error while
copying content to a stream'.

Expanded LINQ support including new operators for paging, conditional expressions and range
comparison.

[Fixed] ArgumentOutOfRangeException when combining Model projection with Where-In in linq query.
#81

Take operator to enable SELECT TOP behavior in LINQ
CompareTo operator to enable string range comparisons
Conditional (?) and coalesce operators (??)

[Fixed] If Select is not the last expression the LINQ Provider assumed no projection and produced SELECT
* incorrectly. #58

Implemented Upsert, Added UpsertXXXAsync methods
Performance improvements for all requests
LINQ Provider support for conditional, coalesce and CompareTo methods for strings
[Fixed] LINQ provider --> Implement Contains method on List to generate the same SQL as on
IEnumerable and Array
[Fixed] BackoffRetryUtility uses the same HttpRequestMessage again instead of creating a new one on
retry
[Obsolete] UriFactory.CreateCollection --> should now use UriFactory.CreateDocumentCollection

[Fixed] Localization issues when using non en culture info such as nl-NL etc.

ID Based Routing

Added IsValid() and IsValidDetailed() in LINQ for geospatial
LINQ Provider support enhanced

New UriFactory helper to assist with constructing ID based resource links
New overloads on DocumentClient to take in URI

Math - Abs, Acos, Asin, Atan, Ceiling, Cos, Exp, Floor, Log, Log10, Pow, Round, Sign, Sin, Sqrt, Tan,
Truncate
String - Concat, Contains, EndsWith, IndexOf, Count, ToLower, TrimStart, Replace, Reverse,
TrimEnd, StartsWith, SubString, ToUpper

https://github.com/Azure/azure-documentdb-dotnet/issues/81
https://github.com/Azure/azure-documentdb-dotnet/issues/58

1.3.0

1.2.0

1.1.0

1.0.0

Release & Retirement dates

VERSION RELEASE DATE RETIREMENT DATE

1.14.1 May 23, 2017 ---

Array - Concat, Contains, Count
IN operator

Added support for modifying indexing policies

Added support for spatial indexing and query

[Fixed] : Incorrect SQL query generated from linq expression #38

New ReplaceDocumentCollectionAsync method in DocumentClient
New IndexTransformationProgress property in ResourceResponse for tracking percent progress of
index policy changes
DocumentCollection.IndexingPolicy is now mutable

New Microsoft.Azure.Documents.Spatial namespace for serializing/deserializing spatial types like
Point and Polygon
New SpatialIndex class for indexing GeoJSON data stored in Cosmos DB

Dependency on Newtonsoft.Json v5.0.7
Changes to support Order By

LINQ provider support for OrderBy() or OrderByDescending()
IndexingPolicy to support Order By

NB: Possible breaking change

If you have existing code that provisions collections with a custom indexing policy, then your
existing code will need to be updated to support the new IndexingPolicy class. If you have no
custom indexing policy, then this change does not affect you.

Support for partitioning data by using the new HashPartitionResolver and RangePartitionResolver classes
and the IPartitionResolver
DataContract serialization
Guid support in LINQ provider
UDF support in LINQ

GA SDK

Microsoft will provide notification at least 12 months in advance of retiring an SDK in order to smooth the
transition to a newer/supported version.

New features and functionality and optimizations are only added to the current SDK, as such it is
recommended that you always upgrade to the latest SDK version as early as possible.

Any request to Cosmos DB using a retired SDK will be rejected by the service.

https://github.com/Azure/azure-documentdb-net/issues/38

1.14.0 May 10, 2017 ---

1.13.4 May 09, 2017 ---

1.13.3 May 06, 2017 ---

1.13.2 April 19, 2017 ---

1.13.1 March 29, 2017 ---

1.13.0 March 24, 2017 ---

1.12.2 March 20, 2017 ---

1.12.1 March 14, 2017 ---

1.12.0 February 15, 2017 ---

1.11.4 February 06, 2017 ---

1.11.3 January 26, 2017 ---

1.11.1 December 21, 2016 ---

1.11.0 December 08, 2016 ---

1.10.0 September 27, 2016 ---

1.9.5 September 01, 2016 ---

1.9.4 August 24, 2016 ---

1.9.3 August 15, 2016 ---

1.9.2 July 23, 2016 ---

1.8.0 June 14, 2016 ---

1.7.1 May 06, 2016 ---

1.7.0 April 26, 2016 ---

1.6.3 April 08, 2016 ---

1.6.2 March 29, 2016 ---

1.5.3 February 19, 2016 ---

1.5.2 December 14, 2015 ---

VERSION RELEASE DATE RETIREMENT DATE

1.5.1 November 23, 2015 ---

1.5.0 October 05, 2015 ---

1.4.1 August 25, 2015 ---

1.4.0 August 13, 2015 ---

1.3.0 August 05, 2015 ---

1.2.0 July 06, 2015 ---

1.1.0 April 30, 2015 ---

1.0.0 April 08, 2015 ---

VERSION RELEASE DATE RETIREMENT DATE

FAQ
1. How will customers be notified of the retiring SDK?

Microsoft will provide 12 month advance notification to the end of support of the retiring SDK in order to
facilitate a smooth transition to a supported SDK. Further, customers will be notified through various
communication channels – Azure Management Portal, Developer Center, blog post, and direct
communication to assigned service administrators.

2. Can customers author applications using a "to-be" retired DocumentDB SDK during the 12
month period?

Yes, customers will have full access to author, deploy and modify applications using the "to-be" retired
DocumentDB SDK during the 12 month grace period. During the 12 month grace period, customers are
advised to migrate to a newer supported version of DocumentDB SDK as appropriate.

3. Can customers author and modify applications using a retired DocumentDB SDK after the 12
month notification period?

After the 12 month notification period, the SDK will be retired. Any access to DocumentDB by an applications
using a retired SDK will not be permitted by the DocumentDB platform. Further, Microsoft will not provide
customer support on the retired SDK.

4. What happens to Customer’s running applications that are using unsupported DocumentDB SDK
version?

Any attempts made to connect to the DocumentDB service with a retired SDK version will be rejected.

5. Will new features and functionality be applied to all non-retired SDKs

New features and functionality will only be added to new versions. If you are using an old, non-retired,
version of the SDK your requests to DocumentDB will still function as previous but you will not have access
to any new capabilities.

6. What should I do if I cannot update my application before a cut-off date

We recommend that you upgrade to the latest SDK as early as possible. Once an SDK has been tagged for
retirement you will have 12 months to update your application. If, for whatever reason, you cannot complete

See also

your application update within this timeframe then please contact the Cosmos DB Team and request their
assistance before the cutoff date.

To learn more about Cosmos DB, see Microsoft Azure Cosmos DB service page.

mailto:askcosmosdb@microsoft.com
https://azure.microsoft.com/services/cosmos-db/

DocumentDB .NET Core SDK: Release notes and
resources
6/12/2017 • 2 min to read • Edit Online

SDK download NuGet

API documentation .NET API reference documentation

Samples .NET code samples

Get started Get started with the DocumentDB .NET Core SDK

Web app tutorial Web application development with DocumentDB

Current supported framework .NET Standard 1.6 and .NET Standard 1.5

Release Notes

NOTE

1.3.2

1.3.1

1.3.0

1.2.2

1.2.1

The DocumentDB .NET Core SDK has feature parity with the latest version of the DocumentDB .NET SDK.

The DocumentDB .NET Core SDK is not yet compatible with Universal Windows Platform (UWP) apps. If you are interested
in the .NET Core SDK that does support UWP apps, send email to askcosmosdb@microsoft.com.

Supporting .NET Standard 1.5 as one of the target frameworks.

Fixed an issue that affected x64 machines that don’t support SSE4 instruction and throw SEHException when
running DocumentDB queries.

Added support for Request Unit per Minute (RU/m) feature.
Added support for a new consistency level called ConsistentPrefix.
Added support for query metrics for individual partitions.
Added support for limiting the size of the continuation token for queries.
Added support for more detailed tracing for failed requests.
Made some performance improvements in the SDK.

Fixed an issue that ignored the PartitionKey value provided in FeedOptions for aggregate queries.
Fixed an issue in transparent handling of partition management during mid-flight cross-partition Order By
query execution.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/documentdb-sdk-dotnet-core.md
https://www.nuget.org/packages/Microsoft.Azure.DocumentDB.Core/
https://msdn.microsoft.com/library/azure/dn948556.aspx
https://www.nuget.org/packages/NETStandard.Library
mailto:askcosmosdb@microsoft.com

1.2.0

1.1.2

1.1.1

1.1.0

1.0.0

0.1.0-preview

Release & Retirement Dates
VERSION RELEASE DATE RETIREMENT DATE

1.3.2 June 12, 2017 ---

1.3.1 May 23, 2017 ---

1.3.0 May 10, 2017 ---

1.2.2 April 19, 2017 ---

1.2.1 March 29, 2017 ---

Fixed an issue which caused deadlocks in some of the async APIs when used inside ASP.NET context.

Fixes to make SDK more resilient to automatic failover under certain conditions.

Fix for an issue that occasionally causes a WebException: The remote name could not be resolved.
Added the support for directly reading a typed document by adding new overloads to ReadDocumentAsync
API.

Added LINQ support for aggregation queries (COUNT, MIN, MAX, SUM, and AVG).
Fix for a memory leak issue for the ConnectionPolicy object caused by the use of event handler.
Fix for an issue wherein UpsertAttachmentAsync was not working when ETag was used.
Fix for an issue wherein cross partition order-by query continuation was not working when sorting on string
field.

Added support for aggregation queries (COUNT, MIN, MAX, SUM, and AVG). See Aggregation support.
Lowered minimum throughput on partitioned collections from 10,100 RU/s to 2500 RU/s.

The DocumentDB .NET Core SDK enables you to build fast, cross-platform ASP.NET Core and .NET Core apps to
run on Windows, Mac, and Linux. The latest release of the DocumentDB .NET Core SDK is fully Xamarin
compatible and be used to build applications that target iOS, Android, and Mono (Linux).

The DocumentDB .NET Core Preview SDK enables you to build fast, cross-platform ASP.NET Core and .NET Core
apps to run on Windows, Mac, and Linux.

The DocumentDB .NET Core Preview SDK has feature parity with the latest version of the DocumentDB .NET SDK
and supports the following:

All connection modes: Gateway mode, Direct TCP, and Direct HTTPs.
All consistency levels: Strong, Session, Bounded Staleness, and Eventual.
Partitioned collections.
Multi-region database accounts and geo-replication.

If you have questions related to this SDK, post to StackOverflow, or file an issue in the github repository.

https://www.asp.net/core
https://www.microsoft.com/net/core#windows
https://www.xamarin.com
https://www.asp.net/core
https://www.microsoft.com/net/core#windows
http://stackoverflow.com/questions/tagged/azure-documentdb
https://github.com/Azure/azure-documentdb-dotnet/issues

1.2.0 March 25, 2017 ---

1.1.2 March 20, 2017 ---

1.1.1 March 14, 2017 ---

1.1.0 February 16, 2017 ---

1.0.0 December 21, 2016 ---

0.1.0-preview November 15, 2016 December 31, 2016

VERSION RELEASE DATE RETIREMENT DATE

See Also
To learn more about Cosmos DB, see Microsoft Azure Cosmos DB service page.

https://azure.microsoft.com/services/cosmos-db/

DocumentDB Node.js SDK: Release notes and
resources
5/30/2017 • 6 min to read • Edit Online

Download SDK NPM

API documentation Node.js API reference documentation

SDK installation instructions Installation instructions

Contribute to SDK GitHub

Samples Node.js code samples

Get started tutorial Get started with the Node.js SDK

Web app tutorial Build a Node.js web application using DocumentDB

Current supported platform Node.js v0.10
Node.js v0.12
Node.js v4.2.0

Release notes
1.12.0

1.11.0

1.10.2

1.10.1

Added support for Request Unit per Minute (RU/m) feature.
Added support for a new consistency level called ConsistentPrefix.
Added support for UriFactory.
Fixed a unicode support bug. (GitHub issue #171)

Added the support for aggregation queries (COUNT, MIN, MAX, SUM, and AVG).
Added the option for controlling degree of parallelism for cross partition queries.
Added the option for disabling SSL verification when running against DocumentDB Emulator.
Lowered minimum throughput on partitioned collections from 10,100 RU/s to 2500 RU/s.
Fixed the continuation token bug for single partition collection (github #107).
Fixed the executeStoredProcedure bug in handling 0 as single param (github #155).

Fixed user-agent header to include the SDK version.
Minor code cleanup.

Disabling SSL verification when using the SDK to target the emulator(hostname=localhost).
Added support for enabling script logging during stored procedure execution.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/documentdb-sdk-node.md
https://www.npmjs.com/package/documentdb
http://azure.github.io/azure-documentdb-node/DocumentClient.html
http://azure.github.io/azure-documentdb-node/
https://github.com/Azure/azure-documentdb-node/tree/master/source
https://nodejs.org/en/blog/release/v0.10.0/
https://nodejs.org/en/blog/release/v0.12.0/
https://nodejs.org/en/blog/release/v4.2.0/

1.10.0

1.9.0

1.8.0

1.7.0

1.6.0

1.5.6

1.5.5

1.5.4

1.5.3

1.5.2

1.5.1

1.5.0

1.4.0

1.3.0

Added support for cross partition parallel queries.
Added support for TOP/ORDER BY queries for partitioned collections.

Added retry policy support for throttled requests. (Throttled requests receive a request rate too large
exception, error code 429.) By default, DocumentDB retries nine times for each request when error code 429
is encountered, honoring the retryAfter time in the response header. A fixed retry interval time can now be set
as part of the RetryOptions property on the ConnectionPolicy object if you want to ignore the retryAfter time
returned by server between the retries. DocumentDB now waits for a maximum of 30 seconds for each
request that is being throttled (irrespective of retry count) and returns the response with error code 429. This
time can also be overriden in the RetryOptions property on ConnectionPolicy object.
Cosmos DB now returns x-ms-throttle-retry-count and x-ms-throttle-retry-wait-time-ms as the response
headers in every request to denote the throttle retry count and the cummulative time the request waited
between the retries.
The RetryOptions class was added, exposing the RetryOptions property on the ConnectionPolicy class that
can be used to override some of the default retry options.

Added the support for multi-region database accounts.

Added the support for Time To Live(TTL) feature for documents.

Implemented partitioned collections and user-defined performance levels.

Fixed RangePartitionResolver.resolveForRead bug where it was not returning links due to a bad concat of
results.

Fixed hashParitionResolver resolveForRead(): When no partition key supplied was throwing exception, instead
of returning a list of all registered links.

Fixes issue #100 - Dedicated HTTPS Agent: Avoid modifying the global agent for DocumentDB purposes. Use
a dedicated agent for all of the lib’s requests.

Fixes issue #81 - Properly handle dashes in media ids.

Fixes issue #95 - EventEmitter listener leak warning.

Fixes issue #92 - rename folder Hash to hash for case sensitive systems.

Implement sharding support by adding hash & range partition resolvers.

Implement Upsert. New upsertXXX methods on documentClient.

https://github.com/Azure/azure-documentdb-node/issues/100
https://github.com/Azure/azure-documentdb-node/issues/81
https://github.com/Azure/azure-documentdb-node/issues/95
https://github.com/Azure/azure-documentdb-node/issues/90

1.2.2

1.2.1

1.2.0

1.1.0

1.0.3

1.0.2

1.0.1

1.0.0

Release & Retirement Dates

VERSION RELEASE DATE RETIREMENT DATE

1.12.0 May 10, 2017 ---

1.11.0 March 16, 2017 ---

1.10.2 January 27, 2017 ---

1.10.1 December 22, 2016 ---

Skipped to bring version numbers in alignment with other SDKs.

Split Q promises wrapper to new repository.
Update to package file for npm registry.

Implements ID Based Routing.
Fixes Issue #49 - current property conflicts with method current().

Added support for GeoSpatial index.
Validates id property for all resources. Ids for resources cannot contain ?, /, #, //, characters or end with a
space.
Adds new header "index transformation progress" to ResourceResponse.

Implements V2 indexing policy.

Issue #40 - Implemented eslint and grunt configurations in the core and promise SDK.

Issue #45 - Promises wrapper does not include header with error.

Implemented ability to query for conflicts by adding readConflicts, readConflictAsync, and queryConflicts.
Updated API documentation.
Issue #41 - client.createDocumentAsync error.

GA SDK.

Microsoft will provide notification at least 12 months in advance of retiring an SDK in order to smooth the
transition to a newer/supported version.

New features and functionality and optimizations are only added to the current SDK, as such it is recommend
that you always upgrade to the latest SDK version as early as possible.

Any request to Cosmos DB using a retired SDK will be rejected by the service.

https://github.com/Azure/azure-documentdb-node/issues/49
https://github.com/Azure/azure-documentdb-node/issues/40
https://github.com/Azure/azure-documentdb-node/issues/45
https://github.com/Azure/azure-documentdb-node/issues/41

1.10.0 October 03, 2016 ---

1.9.0 July 07, 2016 ---

1.8.0 June 14, 2016 ---

1.7.0 April 26, 2016 ---

1.6.0 March 29, 2016 ---

1.5.6 March 08, 2016 ---

1.5.5 February 02, 2016 ---

1.5.4 February 01, 2016 ---

1.5.2 January 26, 2016 ---

1.5.2 January 22, 2016 ---

1.5.1 January 4, 2016 ---

1.5.0 December 31, 2015 ---

1.4.0 October 06, 2015 ---

1.3.0 October 06, 2015 ---

1.2.2 September 10, 2015 ---

1.2.1 August 15, 2015 ---

1.2.0 August 05, 2015 ---

1.1.0 July 09, 2015 ---

1.0.3 June 04, 2015 ---

1.0.2 May 23, 2015 ---

1.0.1 May 15, 2015 ---

1.0.0 April 08, 2015 ---

VERSION RELEASE DATE RETIREMENT DATE

FAQ
1. How will customers be notified of the retiring SDK?

Microsoft will provide 12 month advance notification to the end of support of the retiring SDK in order to
facilitate a smooth transition to a supported SDK. Further, customers will be notified through various
communication channels – Azure Management Portal, Developer Center, blog post, and direct communication to

See also

assigned service administrators.

2. Can customers author applications using a "to-be" retired DocumentDB SDK during the 12 month
period?

Yes, customers will have full access to author, deploy and modify applications using the "to-be" retired
DocumentDB SDK during the 12 month grace period. During the 12 month grace period, customers are advised
to migrate to a newer supported version of DocumentDB SDK as appropriate.

3. Can customers author and modify applications using a retired DocumentDB SDK after the 12 month
notification period?

After the 12 month notification period, the SDK will be retired. Any access to DocumentDB by an applications
using a retired SDK will not be permitted by the DocumentDB platform. Further, Microsoft will not provide
customer support on the retired SDK.

4. What happens to Customer’s running applications that are using unsupported DocumentDB SDK
version?

Any attempts made to connect to the DocumentDB service with a retired SDK version will be rejected.

5. Will new features and functionality be applied to all non-retired SDKs

New features and functionality will only be added to new versions. If you are using an old, non-retired, version of
the SDK your requests to DocumentDB will still function as previous but you will not have access to any new
capabilities.

6. What should I do if I cannot update my application before a cut-off date

We recommend that you upgrade to the latest SDK as early as possible. Once an SDK has been tagged for
retirement you will have 12 months to update your application. If, for whatever reason, you cannot complete
your application update within this timeframe then please contact the Cosmos DB Team and request their
assistance before the cutoff date.

To learn more about Cosmos DB, see Microsoft Azure Cosmos DB service page.

mailto:askcosmosdb@microsoft.com
https://azure.microsoft.com/services/cosmos-db/

DocumentDB Python SDK: Release notes and
resources
5/30/2017 • 5 min to read • Edit Online

Download SDK PyPI

API documentation Python API reference documentation

SDK installation instructions Python SDK installation instructions

Contribute to SDK GitHub

Get started Get started with the Python SDK

Current supported platform Python 2.7 and Python 3.5

Release notes
2.2.0

2.1.0

2.0.1

2.0.0

1.9.0

Added support for Request Unit per Minute (RU/m) feature.
Added support for a new consistency level called ConsistentPrefix.

Added support for aggregation queries (COUNT, MIN, MAX, SUM, and AVG).
Added an option for disabling SSL verification when running against DocumentDB Emulator.
Removed the restriction of dependent requests module to be exactly 2.10.0.
Lowered minimum throughput on partitioned collections from 10,100 RU/s to 2500 RU/s.
Added support for enabling script logging during stored procedure execution.
REST API version bumped to '2017-01-19' with this release.

Made editorial changes to documentation comments.

Added support for Python 3.5.
Added support for connection pooling using a requests module.
Added support for session consistency.
Added support for TOP/ORDERBY queries for partitioned collections.

Added retry policy support for throttled requests. (Throttled requests receive a request rate too large
exception, error code 429.) By default, DocumentDB retries nine times for each request when error code 429
is encountered, honoring the retryAfter time in the response header. A fixed retry interval time can now be set
as part of the RetryOptions property on the ConnectionPolicy object if you want to ignore the retryAfter time
returned by server between the retries. DocumentDB now waits for a maximum of 30 seconds for each

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/documentdb-sdk-python.md
https://pypi.python.org/pypi/pydocumentdb
http://azure.github.io/azure-documentdb-python/api/pydocumentdb.html
http://azure.github.io/azure-documentdb-python/
https://github.com/Azure/azure-documentdb-python
https://www.python.org/downloads/
https://www.python.org/downloads/

1.8.0

1.7.0

1.6.1

1.6.0

1.5.0

1.4.2

1.2.0

1.1.0

1.0.1

1.0.0

Release & retirement dates

request that is being throttled (irrespective of retry count) and returns the response with error code 429. This
time can also be overriden in the RetryOptions property on ConnectionPolicy object.
Cosmos DB now returns x-ms-throttle-retry-count and x-ms-throttle-retry-wait-time-ms as the response
headers in every request to denote the throttle retry count and the cummulative time the request waited
between the retries.
Removed the RetryPolicy class and the corresponding property (retry_policy) exposed on the
document_client class and instead introduced a RetryOptions class exposing the RetryOptions property on
ConnectionPolicy class that can be used to override some of the default retry options.

Added the support for multi-region database accounts.

Added the support for Time To Live(TTL) feature for documents.

Bug fixes related to server side partitioning to allow special characters in partitionkey path.

Implemented partitioned collections and user-defined performance levels.

Add Hash & Range partition resolvers to assist with sharding applications across multiple partitions.

Implement Upsert. New UpsertXXX methods added to support Upsert feature.
Implement ID Based Routing. No public API changes, all changes internal.

Supports GeoSpatial index.
Validates id property for all resources. Ids for resources cannot contain ?, /, #, \, characters or end with a
space.
Adds new header "index transformation progress" to ResourceResponse.

Implements V2 indexing policy.

Supports proxy connection.

GA SDK.

Microsoft will provide notification at least 12 months in advance of retiring an SDK in order to smooth the
transition to a newer/supported version.

New features and functionality and optimizations are only added to the current SDK, as such it is recommend
that you always upgrade to the latest SDK version as early as possible.

Any request to Cosmos DB using a retired SDK will be rejected by the service.

WARNING

VERSION RELEASE DATE RETIREMENT DATE

2.2.0 May 10, 2017 ---

2.1.0 May 01, 2017 ---

2.0.1 October 30, 2016 ---

2.0.0 September 29, 2016 ---

1.9.0 July 07, 2016 ---

1.8.0 June 14, 2016 ---

1.7.0 April 26, 2016 ---

1.6.1 April 08, 2016 ---

1.6.0 March 29, 2016 ---

1.5.0 January 03, 2016 ---

1.4.2 October 06, 2015 ---

1.4.1 October 06, 2015 ---

1.2.0 August 06, 2015 ---

1.1.0 July 09, 2015 ---

1.0.1 May 25, 2015 ---

1.0.0 April 07, 2015 ---

0.9.4-prelease January 14, 2015 February 29, 2016

0.9.3-prelease December 09, 2014 February 29, 2016

0.9.2-prelease November 25, 2014 February 29, 2016

0.9.1-prelease September 23, 2014 February 29, 2016

0.9.0-prelease August 21, 2014 February 29, 2016

FAQ

All versions of the Azure DocumentDB SDK for Python prior to version 1.0.0 will be retired on February 29, 2016.

See also

1. How will customers be notified of the retiring SDK?

Microsoft will provide 12 month advance notification to the end of support of the retiring SDK in order to
facilitate a smooth transition to a supported SDK. Further, customers will be notified through various
communication channels – Azure Management Portal, Developer Center, blog post, and direct communication to
assigned service administrators.

2. Can customers author applications using a "to-be" retired DocumentDB SDK during the 12 month
period?

Yes, customers will have full access to author, deploy and modify applications using the "to-be" retired
DocumentDB SDK during the 12 month grace period. During the 12 month grace period, customers are advised
to migrate to a newer supported version of DocumentDB SDK as appropriate.

3. Can customers author and modify applications using a retired DocumentDB SDK after the 12 month
notification period?

After the 12 month notification period, the SDK will be retired. Any access to DocumentDB by an applications
using a retired SDK will not be permitted by the DocumentDB platform. Further, Microsoft will not provide
customer support on the retired SDK.

4. What happens to Customer’s running applications that are using unsupported DocumentDB SDK
version?

Any attempts made to connect to the DocumentDB service with a retired SDK version will be rejected.

5. Will new features and functionality be applied to all non-retired SDKs

New features and functionality will only be added to new versions. If you are using an old, non-retired, version of
the SDK your requests to DocumentDB will still function as previous but you will not have access to any new
capabilities.

6. What should I do if I cannot update my application before a cut-off date

We recommend that you upgrade to the latest SDK as early as possible. Once an SDK has been tagged for
retirement you will have 12 months to update your application. If, for whatever reason, you cannot complete
your application update within this timeframe then please contact the Cosmos DB Team and request their
assistance before the cutoff date.

To learn more about Cosmos DB, see Microsoft Azure Cosmos DB service page.

mailto:askcosmosdb@microsoft.com
https://azure.microsoft.com/services/cosmos-db/

Azure Cosmos DB Table .NET API: Download and
release notes
5/30/2017 • 1 min to read • Edit Online

SDK download NuGet

API documentation .NET API reference documentation

Quickstart Azure Cosmos DB: Build an app with .NET and the Table API

Tutorial Azure CosmosDB: Create a container with the Graph API

Current supported framework Microsoft .NET Framework 4.5

Release notes

Release & Retirement dates

See also

Initial preview release.

Microsoft will provide notification at least 12 months in advance of retiring an SDK in order to smooth the
transition to a newer/supported version.

New features and functionality and optimizations are only added to the current SDK, as such it is recommended
that you always upgrade to the latest SDK version as early as possible.

Any request to Azure Cosmos DB using a retired SDK will be rejected by the service.

To learn more about the Azure Cosmos DB Table API, see Introduction to Azure Cosmos DB: Table API.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/table-sdk-dotnet.md
https://aka.ms/acdbtablenuget
https://aka.ms/acdbtableapiref
https://aka.ms/acdbtnetqs
https://www.microsoft.com/download/details.aspx?id=30653

Azure Cosmos DB Graph .NET API: Download and
release notes
5/30/2017 • 1 min to read • Edit Online

SDK download NuGet

API documentation .NET API reference documentation

Quickstart Azure Cosmos DB: Create a graph app using .NET and the
Graph API

Tutorial Azure CosmosDB: Create a container with the Graph API

Current supported framework Microsoft .NET Framework 4.5

Release notes

Release & Retirement dates

See also

Initial preview release.

Microsoft will provide notification at least 12 months in advance of retiring an SDK in order to smooth the
transition to a newer/supported version.

New features and functionality and optimizations are only added to the current SDK, as such it is recommended
that you always upgrade to the latest SDK version as early as possible.

Any request to Azure Cosmos DB using a retired SDK will be rejected by the service.

To learn more about the Azure Cosmos DB Graph API, see Introduction to Azure Cosmos DB: Graph API.

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/graph-sdk-dotnet.md
https://aka.ms/acdbgraphnuget
https://aka.ms/acdbgraphapiref
https://www.microsoft.com/download/details.aspx?id=30653

Azure Cosmos DB FAQ
6/13/2017 • 29 min to read • Edit Online

Azure Cosmos DB fundamentals
What is Azure Cosmos DB?

What happened to DocumentDB?

How do I get to my DocumentDB account in the Azure portal?

What are the typical use cases for Azure Cosmos DB?

How does Azure Cosmos DB offer predictable performance?

Is Azure Cosmos DB HIPAA compliant?

What are the storage limits of Azure Cosmos DB?

What are the throughput limits of Azure Cosmos DB?

How much does Azure Cosmos DB cost?

Is a free account available?

How can I get additional help with Azure Cosmos DB?

Set up Azure Cosmos DB
How do I sign up for Azure Cosmos DB?

What is a master key?

Azure Cosmos DB is a globally replicated, multi-model database service that that offers rich querying over schema-free data, helps deliver configurable and reliable
performance, and enables rapid development. It's all achieved through a managed platform that's backed by the power and reach of Microsoft Azure.

Azure Cosmos DB is the right solution for web, mobile, gaming, and IoT applications when predictable throughput, high availability, low latency, and a schema-free
data model are key requirements. It delivers schema flexibility and rich indexing, and it includes multi-document transactional support with integrated JavaScript.

For more database questions, answers, and instructions for deploying and using this service, see the Azure Cosmos DB documentation page.

The DocumentDB API is one of the supported APIs and data models for Azure Cosmos DB. In addition, Azure Cosmos DB supports you with Graph API (Preview), Table
API (Preview) and MongoDB API. For more information, see Questions from DocumentDB customers.

In the Azure portal, click the Azure Cosmos DB icon in the left pane. If you had a DocumentDB account before, you now have an Azure Cosmos DB account, with no
change to your billing.

Azure Cosmos DB is a good choice for new web, mobile, gaming, and IoT applications where automatic scale, predictable performance, fast order of millisecond
response times, and the ability to query over schema-free data is important. Azure Cosmos DB lends itself to rapid development and supporting the continuous
iteration of application data models. Applications that manage user-generated content and data are common use cases for Azure Cosmos DB.

A request unit (RU) is the measure of throughput in Azure Cosmos DB. A 1-RU throughput corresponds to the throughput of the GET of a 1-KB document. Every
operation in Azure Cosmos DB, including reads, writes, SQL queries, and stored procedure executions, has a deterministic RU value that's based on the throughput
required to complete the operation. Instead of thinking about CPU, IO, and memory and how they each affect your application throughput, you can think in terms of a
single RU measure.

You can reserve each Azure Cosmos DB container with provisioned throughput in terms of RUs of throughput per second. For applications of any scale, you can
benchmark individual requests to measure their RU values, and provision a container to handle the total of request units across all requests. You can also scale up or
scale down your container's throughput as the needs of your application evolve. For more information about request units and for help determining your container
needs, see Estimating throughput needs and try the throughput calculator. The term container here refers to refers to a DocumentDB API collection, Graph API graph,
MongoDB API collection, and Table API table.

Yes, Azure Cosmos DB is HIPAA-compliant. HIPAA establishes requirements for the use, disclosure, and safeguarding of individually identifiable health information. For
more information, see the Microsoft Trust Center.

There is no limit to the total amount of data that a container can store in Azure Cosmos DB.

There is no limit to the total amount of throughput that a container can support in Azure Cosmos DB. The key idea is to distribute your workload roughly evenly among
a sufficiently large number of partition keys.

For details, refer to the Azure Cosmos DB pricing details page. Azure Cosmos DB usage charges are determined by the number of provisioned containers, the number
of hours the containers were online, and the provisioned throughput for each container. The term containers here refers to the DocumentDB API collection, Graph API
graph, MongoDB API collection, and Table API tables.

If you are new to Azure, you can sign up for an Azure free account, which gives you 30 days and $200 to try all the Azure services. Or, if you have a Visual Studio
subscription, you are eligible for $150 in free Azure credits per month to use on any Azure service.

You can also use the Azure Cosmos DB Emulator to develop and test your application locally for free, without creating an Azure subscription. When you're satisfied
with how your application is working in the Azure Cosmos DB Emulator, you can switch to using an Azure Cosmos DB account in the cloud.

If you need any help, reach out to us on Stack Overflow or the MSDN forum, or schedule a one-on-one chat with the Azure Cosmos DB engineering team by sending
mail to askcosmosdb@microsoft.com.

Azure Cosmos DB is available in the Azure portal. First, sign up for an Azure subscription. After you've signed up, you can add a DocumentDB API, Graph API (Preview),
Table API (Preview), or MongoDB API account to your Azure subscription.

A master key is a security token to access all resources for an account. Individuals with the key have read and write access to all resources in the database account. Use
caution when you distribute master keys. The primary master key and secondary master key are available on the Keys blade of the Azure portal. For more information

https://github.com/Microsoft/azure-docs/blob/master/articles/cosmos-db/faq.md
https://azure.microsoft.com/documentation/services/cosmos-db/
https://www.documentdb.com/capacityplanner
https://www.microsoft.com/en-us/TrustCenter/Compliance/HIPAA
https://azure.microsoft.com/pricing/details/cosmos-db/
https://azure.microsoft.com/free/
https://azure.microsoft.com/pricing/member-offers/msdn-benefits-details/
http://stackoverflow.com/questions/tagged/azure-cosmosdb
https://social.msdn.microsoft.com/forums/azure/en-US/home?forum=AzureDocumentDB
mailto:askcosmosdb@microsoft.com
https://portal.azure.com

What are the regions that PreferredLocations can be set to?

Is there anything I should be aware of when distributing data across the world via the Azure datacenters?

Develop against the DocumentDB API
How do I start developing against the DocumentDB API?

Can I access some ready-made samples to get a head start?

Does the DocumentDB API database support schema-free data?

Does the DocumentDB API support ACID transactions?

What is a collection?

How do I create a database?

How do I set up users and permissions?

Does the DocumentDB API support SQL?

Does the DocumentDB API support SQL aggregation functions?

How does the DocumentDB API provide concurrency?

How do I perform transactions in the DocumentDB API?

How can I bulk-insert documents into the DocumentDB API?

about keys, see View, copy, and regenerate access keys.

The PreferredLocations value can be set to any of the Azure regions in which Cosmos DB is available. For a list of available regions, see Azure regions.

Azure Cosmos DB is present across all Azure regions, as specified on the Azure regions page. Because it is the core service, every new datacenter has an Azure Cosmos
DB presence.

When you set a region, remember that Azure Cosmos DB respects sovereign and government clouds. That is, if you create an account in a sovereign region, you cannot
replicate out of that sovereign region. Similarly, you cannot enable replication into other sovereign locations from an outside account.

Microsoft DocumentDB API is available in the Azure portal. First you must sign up for an Azure subscription. Once you sign up for an Azure subscription, you can add
DocumentDB API container to your Azure subscription. For instructions on adding an Azure Cosmos DB account, see Create an Azure Cosmos DB database account. If
you had a DocumentDB account in the past, you now have an Azure Cosmos DB account.

SDKs are available for .NET, Python, Node.js, JavaScript, and Java. Developers can also use the RESTful HTTP APIs to interact with Azure Cosmos DB resources from
various platforms and languages.

Samples for the DocumentDB API .NET, Java, Node.js, and Python SDKs are available on GitHub.

Yes, the DocumentDB API allows applications to store arbitrary JSON documents without schema definitions or hints. Data is immediately available for query through
the Azure Cosmos DB SQL query interface.

Yes, the DocumentDB API supports cross-document transactions expressed as JavaScript-stored procedures and triggers. Transactions are scoped to a single partition
within each collection and executed with ACID semantics as "all or nothing," isolated from other concurrently executing code and user requests. If exceptions are
thrown through the server-side execution of JavaScript application code, the entire transaction is rolled back. For more information about transactions, see Database
program transactions.

A collection is a group of documents and their associated JavaScript application logic. A collection is a billable entity, where the cost is determined by the throughput
and used storage. Collections can span one or more partitions or servers and can scale to handle practically unlimited volumes of storage or throughput.

Collections are also the billing entities for Azure Cosmos DB. Each collection is billed hourly, based on the provisioned throughput and used storage space. For more
information, see DocumentDB API pricing.

You can create databases by using the Azure portal, as described in Add a collection, one of the Azure Cosmos DB SDKs, or the REST APIs.

You can create users and permissions by using one of the DocumentDB API SDKs or the REST APIs.

The SQL query language is an enhanced subset of the query functionality that's supported by SQL. The Azure Cosmos DB SQL query language provides rich
hierarchical and relational operators and extensibility via JavaScript-based, user-defined functions (UDFs). JSON grammar allows for modeling JSON documents as
trees with labeled nodes, which are used by both the Azure Cosmos DB automatic indexing techniques and the SQL query dialect of Azure Cosmos DB. For information
about using SQL grammar, see the QueryDocumentDB article.

The DocumentDB API supports low-latency aggregation at any scale via aggregate functions COUNT , MIN , MAX , AVG , and SUM via the SQL grammar. For more
information, see Aggregate functions.

The DocumentDB API supports optimistic concurrency control (OCC) through HTTP entity tags, or ETags. Every DocumentDB API resource has an ETag, and the ETag is
set on the server every time a document is updated. The ETag header and the current value are included in all response messages. ETags can be used with the If-Match
header to allow the server to decide whether a resource should be updated. The If-Match value is the ETag value to be checked against. If the ETag value matches the
server ETag value, the resource is updated. If the ETag is no longer current, the server rejects the operation with an "HTTP 412 Precondition failure" response code. The
client then re-fetches the resource to acquire the current ETag value for the resource. In addition, ETags can be used with the If-None-Match header to determine
whether a re-fetch of a resource is needed.

To use optimistic concurrency in .NET, use the AccessCondition class. For a .NET sample, see Program.cs in the DocumentManagement sample on GitHub.

The DocumentDB API supports language-integrated transactions via JavaScript-stored procedures and triggers. All database operations inside scripts are executed
under snapshot isolation. If it is a single-partition collection, the execution is scoped to the collection. If the collection is partitioned, the execution is scoped to
documents with the same partition-key value within the collection. A snapshot of the document versions (ETags) is taken at the start of the transaction and committed
only if the script succeeds. If the JavaScript throws an error, the transaction is rolled back. For more information, see DocumentDB API server-side programming.

You can bulk-insert documents into Azure Cosmos DB in either of two ways:

The data migration tool, as described in Import data to DocumentDB API.
Stored procedures, as described in DocumentDB API server-side programming.

https://azure.microsoft.com/regions/
https://azure.microsoft.com/regions/
https://portal.azure.com
https://msdn.microsoft.com/library/azure/dn781481.aspx
https://github.com/Azure/azure-documentdb-java
https://azure.microsoft.com/pricing/details/cosmos-db/
https://portal.azure.com
https://msdn.microsoft.com/library/azure/dn781481.aspx
https://msdn.microsoft.com/library/azure/dn781481.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.accesscondition.aspx
https://github.com/Azure/azure-documentdb-dotnet/blob/master/samples/code-samples/DocumentManagement/Program.cs

Does the DocumentDB API support resource link caching?

Is a local instance of DocumentDB API available?

Develop against the API for MongoDB
What is the Azure Cosmos DB API for MongoDB?

How do I connect to my API for MongoDB database?

Are there additional error codes for an API for MongoDB database?

ERROR CODE DESCRIPTION SOLUTION

TooManyRequests 16500 The total number of request units
consumed has exceeded the provisioned
request-unit rate for the collection and has
been throttled.

Consider scaling the throughput of the
collection from the Azure portal or retrying
again.

ExceededMemoryLimit 16501 As a multi-tenant service, the operation has
exceeded the client's memory allotment.

Reduce the scope of the operation through
more restrictive query criteria or contact
support from the Azure portal.

Example:
 db.getCollection('users').aggregate([
 {$match: {name: "Andy"}},
 {$sort: {age: -1}}
]))

Develop with the Table API (Preview)
Terms

How can I use the new Table API (Preview) offering?

Do I need a new SDK to use the Table API (Preview)?

How do I provide feedback about the SDK or bugs?

What is the connection string that I need to use to connect to the Table API (Preview)?

How do I override the config settings for the request options in the new Table API (Preview)?

Yes, because Azure Cosmos DB is a RESTful service, resource links are immutable and can be cached. DocumentDB API clients can specify an "If-None-Match" header
for reads against any resource-like document or collection and then update their local copies after the server version has changed.

Yes. The Azure Cosmos DB Emulator provides a high-fidelity emulation of the DocumentDB API service. It supports functionality that's identical to Azure Cosmos DB,
including support for creating and querying JSON documents, provisioning and scaling collections, and executing stored procedures and triggers. You can develop and
test applications by using the Azure Cosmos DB Emulator, and deploy them to Azure at a global scale by making a single configuration change to the connection
endpoint for Azure Cosmos DB.

The Azure Cosmos DB API for MongoDB is a compatibility layer that allows applications to easily and transparently communicate with the native Azure Cosmos DB
database engine by using existing, community-supported Apache MongoDB APIs and drivers. Developers can now use existing MongoDB tool chains and skills to build
applications that take advantage of Azure Cosmos DB. Developers benefit from the unique capabilities of Azure Cosmos DB, which include auto-indexing, backup
maintenance, financially backed service level agreements (SLAs), and so on.

The quickest way to connect to the Azure Cosmos DB API for MongoDB is to head over to the Azure portal. Go to your account and then, on the left navigation menu,
click Quick Start. Quick Start is the best way to get code snippets to connect to your database.

Azure Cosmos DB enforces strict security requirements and standards. Azure Cosmos DB accounts require authentication and secure communication via SSL, so be
sure to use TLSv1.2.

For more information, see Connect to your API for MongoDB database.

In addition to the common MongoDB error codes, the MongoDB API has its own specific error codes:

The Azure Cosmos DB: Table API (Preview) refers to the premium offering by Azure Cosmos DB for table support announced at Build 2017.

The standard table SDK is the existing Azure Storage table SDK.

The Azure Cosmos DB Table API is available in the Azure portal. First you must sign up for an Azure subscription. After you've signed up, you can add an Azure Cosmos
DB Table API account to your Azure subscription, and then add tables to your account.

During the preview period, when SDKs are available for .NET, you can get started by completing the Table API quick-start article.

Yes, the Windows Azure Storage premium table (Preview) SDK is available on NuGet. Additional information is available on the Azure Cosmos DB Table .NET API:
Download and release notes page.

You can share your feedback in any of the following ways:

Uservoice
MSDN forum
Stackoverflow

The connection string is
DefaultEndpointsProtocol=https;AccountName=<AccountNamefromCosmos DB;AccountKey=<FromKeysPaneofCosmosDB>;TableEndpoint=https://<AccountNameFromDocumentDB>.documents.azure.com .

You can get the connection string from the Keys page in the Azure portal.

For information about config settings, see Azure Cosmos DB capabilities. You can change the settings by adding them to app.config in the appSettings section in the
client application.

https://portal.azure.com
https://portal.azure.com/?#blade/Microsoft_Azure_Support/HelpAndSupportBlade
https://portal.azure.com
https://www.nuget.org/packages/WindowsAzure.Storage-PremiumTable
https://github.com/Microsoft/azure-docs-pr/cosmos-db/table-sdk-dotnet.md
https://feedback.azure.com/forums/263030-documentdb
https://social.msdn.microsoft.com/forums/azure/en-US/home?forum=AzureDocumentDB
http://stackoverflow.com/questions/tagged/azure-cosmosdb

<appSettings>
 <add key="TableConsistencyLevel" value="Eventual|Strong|Session|BoundedStaleness|ConsistentPrefix"/>
 <add key="TableThroughput" value="<PositiveIntegerValue"/>
 <add key="TableIndexingPolicy" value="<jsonindexdefn>"/>
 <add key="TableUseGatewayMode" value="True|False"/>
 <add key="TablePreferredLocations" value="Location1|Location2|Location3|Location4>"/>....
</appSettings>

Are there any changes for customers who are using the existing standard table SDK?

How do I view table data that is stored in Azure Cosmos DB for use with the Table API (review)?

Which tools work with the Table API (Preview)?

Do PowerShell or Azure CLI work with the new Table API (Preview)?

Is the concurrency on operations controlled?

Is the OData query model supported for entities?

Can I connect to the standard Azure table and the new premium Table API (Preview) side by side in the same application?

How do I migrate an existing Azure Table storage application to this new offering?

What is the roadmap for this service, and when will you offer other standard Table API functionality?

How is expansion of the storage size done for this service if, for example, I start with nn GB of data and my data will grow to 1 TB over time?

How do I monitor the Table API (Preview) offering?

How do I calculate the throughput I require?

Can I use the new Table API (Preview) SDK locally with the emulator?

Can my existing application work with the Table API (Preview)?

Do I need to migrate my existing Azure table-based applications to the new SDK if I do not want to use the Table API (Preview) features?

How do I add replication of the data in the premium Table API (Preview) across multiple regions of Azure?

How do I change the primary write region for the account in the premium Table API (Preview)?

How do I configure my preferred read regions for low latency when I distribute my data?

How should I think about consistency levels in the Table API (Preview)?

None. There are no changes for existing or new customers who are using the existing standard table SDK.

You can use the Azure portal to browse the data. You can also use the Table API (Preview) code or the tools mentioned in the next answer.

You can use the older version of Azure Explorer (0.8.9).

Tools with the flexibility to take a connection string in the format specified previously can support the new Table API (Preview). A list of table tools is provided on the
Azure Storage Client Tools page.

We plan to add support for PowerShell and Azure CLI for Table API (Preview).

Yes, optimistic concurrency is provided via the use of the ETag mechanism.

Yes, the Table API (Preview) supports OData query and LINQ query.

Yes, you can connect by creating two separate instances of the CloudTableClient, each pointing to its own URI via the connection string.

To take advantage of the new Table API offering on your existing Table storage data, contact askcosmosdb@microsoft.com.

We plan to add support for SAS tokens, ServiceContext, Stats, Encryption, Analytics, and other features as we proceed toward GA. You can give us feedback on
Uservoice.

Azure Cosmos DB is designed to provide unlimited storage via the use of horizontal scaling. The service can monitor and effectively increase your storage.

You can use the Table API (Preview) Metrics pane to monitor requests and storage usage.

You can use the capacity estimator to calculate the TableThroughput that's required for the operations. For more information, see Estimate Request Units and Data
Storage. In general, you can represent your entity as JSON and provide the numbers for your operations.

Yes, you can use the Table API (Preview) with the local emulator when you use the new SDK. To download new emulator, go to Use the Azure Cosmos DB Emulator for
local development and testing. The StorageConnectionString value in app.config needs to be
DefaultEndpointsProtocol=https;AccountName=localhost;AccountKey=C2y6yDjf5/R+ob0N8A7Cgv30VRDJIWEHLM+4QDU5DE2nQ9nDuVTqobD4b8mGGyPMbIZnqyMsEcaGQy67XIw/Jw==;TableEndpoint=https://localhost:8081

.

The surface area of the new Table API (Preview) is compatible with the existing Azure standard table SDK across the create, delete, update, and query operations in the
.NET API. Ensure that you have a row key, because the Table API (Preview) requires both a partition key and a row key. We also plan to add more SDK support as we
proceed toward GA of this service offering.

No, you can create and use existing standard table assets without interruption of any kind. However, if you do not use the new Table API (Preview), you cannot benefit
from the automatic index, the additional consistency option, or global distribution.

You can use the Azure Cosmos DB portal’s global replication settings to add regions that are suitable for your application. To develop a globally distributed application,
you should also add your application with the PreferredLocation information set to the local region for providing low read latency.

You can use the Azure Cosmos DB global replication portal pane to add a region and then fail over to the required region. For instructions, see Developing with multi-
region Azure Cosmos DB accounts.

To help read from the local location, use the PreferredLocation key in the app.config file. For existing applications, the Table API (Preview) throws an error if
LocationMode is set. Remove that code, because the premium Table API (Preview) picks up this information from the app.config file. For more information, see Azure
Cosmos DB capabilities.

Azure Cosmos DB provides well-reasoned trade-offs between consistency, availability, and latency. Azure Cosmos DB offers five consistency levels to Table API

https://docs.microsoft.com/en-us/azure/storage/storage-explorers
mailto:askcosmosdb@microsoft.com
https://feedback.azure.com/forums/263030-documentdb
https://www.documentdb.com/capacityplanner

Does Azure Cosmos DB offer more consistency levels than standard tables?

When global distribution is enabled, how long does it take to replicate the data?

Can the read request consistency level be changed?

How does the premium Table API (Preview) account handle failover if a region goes down?

Is the premium Table API (Preview) enabled for backups?

Does the Table API (Preview) index all attributes of an entity by default?

Does this mean I do not have to create multiple indexes to satisfy the queries?

Can I change the indexing policy?

{
 "indexingMode": "consistent",
 "automatic": true,
 "includedPaths": [
 {
 "path": "/somepath",
 "indexes": [
 {
 "kind": "Range",
 "dataType": "Number",
 "precision": -1
 },
 {
 "kind": "Range",
 "dataType": "String",
 "precision": -1
 }
]
 }
],
 "excludedPaths":
[
 {
 "path": "/anotherpath"
 }
]
}

Azure Cosmos DB as a platform seems to have lot of capabilities, such as sorting, aggregates, hierarchy, and other functionality. Will you be adding these capabilities to the Table API?

When should I change TableThroughput for the Table API (Preview)?

(Preview) developers, so you can choose the right consistency model at the table level and make individual requests while querying the data. When a client connects, it
can specify a consistency level. You can change the level via the app.config setting for the value of the TableConsistencyLevel key.

The Table API (Preview) provides low-latency reads with "Read your own writes," with Session consistency as the default. For more information, see Consistency levels.

By default, Azure Table storage provides Strong consistency within a region and Eventual consistency in the secondary locations.

Yes, for information about how to benefit from the distributed nature of Azure Cosmos DB, see Consistency levels. Because guarantees are provided for the consistency
levels, you can use them with confidence. For more information, see Azure Cosmos DB capabilities.

We commit the data durably in the local region and push the data to other regions immediately in a matter of milliseconds. This replication is dependent only on the
round-trip time (RTT) of the datacenter. To learn more about the global-distribution capability of Azure Cosmos DB, see Azure Cosmos DB: A globally distributed
database service on Azure.

With Azure Cosmos DB, you can set the consistency level at the container level (on the table). By using the SDK, you can change the level by providing the value for
TableConsistencyLevel key in the app.config file. The possible values are: Strong, Bounded Staleness, Session, Consistent Prefix, and Eventual. For more information, see
Tunable data consistency levels in Azure Cosmos DB. The key idea is that you cannot set the request consistency level at more than the setting for the table. For
example, you cannot set the consistency level for the table at Eventual and the request consistency level at Strong.

The premium Table API (Preview) borrows from the globally distributed platform of Azure Cosmos DB. To ensure that your application can tolerate datacenter
downtime, enable at least one more region for the account in the Azure Cosmos DB portal Developing with multi-region Azure Cosmos DB accounts. You can set the
priority of the region by using the portal Developing with multi-region Azure Cosmos DB accounts.

You can add as many regions as you want for the account and control where it can fail over to by providing a failover priority. Of course, to use the database, you need
to provide an application there too. When you do so, your customers will not experience downtime. The client SDK is auto homing. That is, it can detect the region
that's down and automatically fail over to the new region.

Yes, the premium Table API (Preview) borrows from the platform of Azure Cosmos DB for backups. Backups are made automatically. For more information, see Online
backup and restore with Azure Cosmos DB.

Yes, all attributes of an entity are indexed by default. For more information, see Azure Cosmos DB: Indexing policies.

Yes, Azure Cosmos DB provides automatic indexing of all attributes without any schema definition. This automation frees developers to focus on the application rather
than on index creation and management. For more information, see Azure Cosmos DB: Indexing policies.

Yes, you can change the indexing policy by providing the index definition. For more information, see Azure Cosmos DB capabilities. You need to properly encode and
escape the settings.

In string json format in the app.config file:

In preview, the Table API provides the same query functionality as Azure Table storage. Azure Cosmos DB also supports sorting, aggregates, geospatial query,
hierarchy, and a wide range of built-in functions. We will provide additional functionality in the Table API in a future service update. For more information, see Azure
Cosmos DB query.

You should change TableThroughput when either of the following conditions applies:

You're performing an extract, transform, and load (ETL) of data, or you want to upload a lot of data in short amount of time.

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-sql-query

Can I scale up or scale down the throughput of my Table API (Preview) table?

Can the premium Table API (Preview) take advantage of the RU-per-minute offering?

Is a default TableThroughput set for newly provisioned tables?

Is there any change of pricing for existing customers of the standard Table API?

How is the price calculated for the Table API (Preview)?

How do I handle any throttling on the tables in Table API (Preview) offering?

Why do I need to choose a throughput apart from PartitionKey and RowKey to take advantage of the premium Table API (Preview) offering of Azure Cosmos DB?

Azure Storage SDK has been very inexpensive for me, because I pay only to store the data, and I rarely query. The new Azure Cosmos DB offering seems to be charging me even though I have
not performed a single transaction or stored anything. Can you please explain?

I never get a “quota full" notification (indicating that a partition is full) when I ingest data into Table storage. With the Table API (Preview), I do get this message. Is this offering limiting me and
forcing me to change my existing application?

So PartitionKey and RowKey are still required with the new Table API (Preview)?

What are the error messages for the Table API (Preview)?

Why do I get throttled when I try to create lot of tables one after another in the Table API (Preview)?

Develop against the Graph API (Preview)
How can I apply the functionality of Graph API (Preview) to Azure Cosmos DB?

It looks like you support the Gremlin graph traversal language. Do you plan to add more forms of query?

How can I use the new Graph API (Preview) offering?

Questions from DocumentDB customers
Why are you moving to Azure Cosmos DB?

You need more throughput from the container at the back end. For example, you see that the used throughput is more than the provisioned throughput, and you
are getting throttled. For more information, see Set throughput.

Yes, you can use the Azure Cosmos DB portal’s scale pane to scale the throughput. For more information, see Set throughput.

Yes, the premium Table API (Preview) borrows from the capabilities of Azure Cosmos DB to provide SLAs for performance, latency, availability, and consistency. This
capability ensures that the table can use the RU-per-minute offering. For more information, see Request Units in Azure Cosmos DB. With this capability, customers can
avoid provisioning for the peak and smooth out the spikes in the workload.

Yes, if you do not override the TableThroughput via app.config and do not use a pre-created container in Azure Cosmos DB, the service creates a table with throughput
of 400.

None. There is no change in price for existing standard Table API customers.

The price depends on the allocated TableThroughput.

If the request rate exceeds the capacity of the provisioned throughput for the underlying container, you will get an error, and the SDK will retry the call by applying the
retry policy.

Azure Cosmos DB sets a default throughput for your container if you do not provide one in the app.config file.

Azure Cosmos DB provides guarantees for performance and latency, with upper bounds on operation. This guarantee is possible when the engine can enforce
governance on the tenant's operations. Setting TableThroughput ensures that you get the guaranteed throughput and latency, because the platform reserves this
capacity and guarantees operational success.

By using the throughput specification, you can elastically change it to benefit from the seasonality of your application, meet the throughput needs, and save costs.

Azure Cosmos DB is designed to be a globally distributed, SLA-based system with guarantees for availability, latency, and throughput. When you reserve throughput in
Azure Cosmos DB, it is guaranteed, unlike the throughput of other systems. Azure Cosmos DB provides additional capabilities that customers have requested, such as
secondary indexes and global distribution. During the preview period, we provide a throughput-optimized model and, eventually, we plan to provide a storage-
optimized model to meet our customers' needs.

Azure Cosmos DB is an SLA-based system that provides unlimited scale, with guarantees for latency, throughput, availability, and consistency. To ensure guaranteed
premium performance, make sure that your data size and index are manageable and scalable. The 10-GB limit on the number of entities or items per partition key is to
ensure that we provide great lookup and query performance. To ensure that your application scales well even for Azure Storage, we recommend that you not create a
hot partition by storing all information in one partition and querying it.

Yes. Because the surface area of the Table API (Preview) is similar to that of the Table storage SDK, the partition key provides an efficient way to distribute the data. The
row key is unique within that partition. The row key needs to be present and can't be null as in the standard SDK. The length of RowKey is 255 bytes and the length of
PartitionKey is 100 bytes (soon to be increased to 1 KB).

Because this preview is compatible with the standard table, most of the errors will map to the errors from the standard table.

Azure Cosmos DB is an SLA-based system that provides latency, throughput, availability and consistency guarantees. Because it is a provisioned system, it reserves
resources to guarantee these requirements. The rapid rate of creation of tables is detected and throttled. We recommend that you look at the rate of creation of tables
and lower it to less than 5 per minute. Remember that the Table API (Preview) is a provisioned system. The moment you provision it, you will begin to pay for it.

You can use an extension library to apply the functionality of Graph API (Preview). This library is called Microsoft Azure Graphs, and it is available on NuGet.

Yes, we plan to add other mechanisms for query in the future.

To get started, complete the Graph API quick-start article.

Azure Cosmos DB is the next big leap in globally distributed, at-scale cloud databases. As a DocumentDB customer, you now have access to the breakthrough system
and capabilities offered by Azure Cosmos DB.

Azure Cosmos DB started as “Project Florence” in 2010 to address the pain points faced by developers in building large-scale applications inside Microsoft. The

What do I need to do to ensure that my DocumentDB resources continue to run on Azure Cosmos DB?

What changes do I need to make for my app to work with Azure Cosmos DB?

What's changed in the Azure portal?

Are there changes to pricing?

Are there changes to the SLAs?

challenges of building globally distributed apps are not unique to Microsoft, so we made the first generation of this technology available in 2015 to Azure developers
in the form of Azure DocumentDB.

Since that time, we’ve added new features and introduced significant new capabilities. Azure Cosmos DB is the result. As a part of this release, DocumentDB customers,
with their data, automatically and seamlessly become Azure Cosmos DB customers. These capabilities are in the areas of the core database engine, as well as global
distribution, elastic scalability, and industry-leading, comprehensive SLAs. Specifically, we have evolved the Azure Cosmos DB database engine to efficiently map all
popular data models, type systems, and APIs to the underlying data model of Azure Cosmos DB.

The current developer-facing manifestation of this work is the new support for Gremlin and Table storage APIs. And this is just the beginning. We plan to add other
popular APIs and newer data models over time, with more advances in performance and storage at global scale.

It is important to point out that the DocumentDB SQL dialect has always been just one of the many APIs that the underlying Azure Cosmos DB can support. For
developers who use a fully managed service such as Azure Cosmos DB, the only interface to the service is the APIs that are exposed by the service. Nothing really
changes for existing DocumentDB customers. In Azure Cosmos DB, you get exactly the same SQL API that DocumentDB offers. And now (and in the future), you can
access other previously inaccessible capabilities

Another manifestation of our continued work is the extended foundation for global and elastic scalability of throughput and storage. One of the very first
manifestations of scalability is the RU/m, but we plan to announce additional capabilities that can help reduce costs for our customers for various workloads. We have
made several foundational enhancements to the global distribution subsystem. One of the many such developer-facing features is the Consistent Prefix consistency
model, which makes a total five well-defined consistency models. We will release many more interesting capabilities as they mature.

You need to make no changes at all. Your DocumentDB resources are now Azure Cosmos DB resources, and there was no interruption in the service when this move
occurred.

There are no changes to make. Classes, namespaces, and NuGet package names have not changed. As always, we recommend that you keep your SDKs up to date to
take advantage of the latest features and improvements.

DocumentDB no longer appears in the portal as an Azure service. In its place is a new Azure Cosmos DB icon, as shown in the following image. All your collections are
available, as they were before, and you can still scale throughput, change consistency levels, and monitor SLAs. The capabilities of Data Explorer (Preview) have been
enhanced. You can now view and edit documents, create and run queries, and work with stored procedures, triggers, and UDF from one page, as shown in the
following image:

No, the cost of running your app on Azure Cosmos DB is the same as it was before. However, you might benefit from the new "Request Unit per minute" feature. For
more information, see the Scale throughput per minute article.

No, the SLAs for availability, consistency, latency, and throughput are unchanged and are still displayed in the portal. For more information, see SLA for Azure Cosmos
DB.

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-sql-query
https://azure.microsoft.com/support/legal/sla/cosmos-db/

	Cover Page
	Cosmos DB Documentation
	Overview
	About Azure Cosmos DB
	Welcome DocumentDB customers

	Quickstarts
	DocumentDB
	.NET
	Java
	Node.js
	Python
	Xamarin

	MongoDB
	Node.js
	.NET
	Java

	Graph
	.NET
	Gremlin console
	Java
	Node.js

	Table
	.NET

	Tutorials
	1 - Create
	DocumentDB
	MongoDB
	Table
	Graph

	2 - Import
	DocumentDB
	MongoDB

	3 - Query
	DocumentDB
	MongoDB
	Table
	Graph

	4 - Distribute globally
	DocumentDB
	MongoDB
	Table
	Graph

	5 - Develop locally
	Use the emulator
	Export certificates

	Samples
	Azure CLI 2.0
	Azure PowerShell

	Concepts
	Global distribution
	Partitioning
	Consistency
	Throughput
	Request units per minute

	Multi-model APIs
	DocumentDB
	MongoDB
	Table
	Graph

	Security
	TCO
	Use cases
	Social media apps

	How To Guides
	Develop
	DocumentDB API
	Resources
	SQL query
	SQL playground
	Partitioning
	Stored procedures, triggers, and UDFs
	Performance testing
	Performance tips
	Multi-master setup
	DateTimes
	Modeling document data
	Tutorials
	Write your first app
	.NET
	.NET Core
	Java
	Node.js
	C++

	Build a web app
	.NET
	Xamarin
	Node.js
	Java
	Python Flask

	Samples
	.NET samples
	Node.js samples
	Python samples
	SQL syntax
	SQL grammar cheat sheet

	Resources
	Stack Overflow
	Videos
	Service updates
	Community portal
	Schema agnostic indexing paper
	Retire S1, S2, S3

	MongoDB API
	Connect to your MongoDB account
	Using MongoChef
	Using Robomongo
	Tutorials
	Node.js console app

	Graph API
	Gremlin support

	Table API
	Table storage

	Change feed
	Geospatial
	Indexing

	Manage
	Cost-effective reads and writes
	Expire data automatically
	Back up and restore
	Regional failover
	Set throughput
	Monitor SLAs
	Manage keys and consistency
	Security
	Encryption at rest
	Firewall support
	Securing access to data

	Integrate
	Connect to Spark
	Connect to Spark GraphX
	Deploy a website with Azure App Service
	Application logging with Logic Apps
	Bind to Azure Functions
	Analyze data with Hadoop
	Integrate with Azure Search
	Move data with Azure Data Factory
	Analyze real-time data with Azure Stream Analytics
	Get changed HL7 FHIR record using Logic Apps
	Process sensor data in real time
	Visualize your data with Power BI
	Leverage the ODBC driver for data visualization

	Reference
	DocumentDB APIs
	Java
	.NET
	.NET Core
	Node.js
	Python
	REST
	REST Resource Provider

	Table APIs
	.NET

	Graph APIs
	.NET

	Resources
	Pricing
	FAQ
	Stack Overflow
	Data consistency explained through baseball

