
1 D

SQL

Write
Tech
Hyne

Publi
Appli

Sum
Serve
2005
provi
comp
simila
Drive
of wh
EFS,
for ap
depth
conce
to be
datab

Database E

 Server Te

ers: Sung H
nical Review

es, Ruslan O

shed: Febr
es To: SQL

mary: Wit
er 2008, us

5, full datab
ded by Win

pliance or c
ar to two W
e Encryption
hich also en
 or BitLocke
pplication d
h review of
epts such a
e familiar w
base encryp

Encryption

echnical Ar

Hsueh
wers: Raul
Ovechkin, L

uary 2008
L Server 20

h the introd
sers now ha
base-level e
ndows. TDE
corporate da
Windows® f
n, the new
ncrypt data
er. This wh
developers
f TDE, techn
as virtual lo
ith cell-leve
ption is cov

n in SQL Se

rticle

 Garcia, Sa
Laurentiu C

008 (pre-re

duction of t
ave the cho
encryption
E is the opt
ata security
features: th
 volume-lev
 on the har
ite paper c
 and databa
nical implem
og files and
el encryptio
vered, but n

erver 2008

ameer Tejan
Cristofor, Ri

lease versio

transparent
oice betwee
by using TD
imal choice
y standards
he Encryptin
vel encrypt
rd drive. TD
ompares T
ase adminis
mentations
 the buffer
on and cryp
not the rati

8 Enterpris

ni, Chas Jef
ck Byham,

on)

t data encr
en cell-leve
DE, or the f
e for bulk e
s. TDE wor
ng File Syst
tion introdu
DE does no
DE with the
strators. W
s are explor
 pool are as
ptography i
onale for e

e Edition

ffries, Doug
 Sethu Kala

ryption (TD
el encryptio
file-level en
ncryption t
ks at the fi
tem (EFS)

uced in Win
t replace ce
ese other e

While this is
red and a fa
ssumed. Th
in general.

encrypting a

glas MacIve
avakur

E) in SQL
n as in SQL
ncryption o
to meet reg
le level, wh
and BitLoc
dows Vista
ell-level en

encryption m
 not a techn
amiliarity w
he user is a
 Implement
a database

er, Byron

L Server
ptions

gulatory
hich is
ker™
®, both
cryption,
methods
nical, in-
with
assumed
ting
.

Copyright

This is a preliminary document and may be changed substantially prior to final commercial release of the
software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues
discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it

should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the

accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS,

IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under

copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or

for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights

covering subject matter in this document. Except as expressly provided in any written license agreement

from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks,
copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses,
logos, people, places and events depicted herein are fictitious, and no association with any real company,

organization, product, domain name, email address, logo, person, place or event is intended or should be

inferred.

© 2008 Microsoft Corporation. All rights reserved.

Microsoft, BitLocker, SQL Server, Windows, Windows Server, and Windows Vista are either registered

trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective

owners.

Table of Contents

he Database Level 1

yption 1

Cryptographic Key Hierarchy .. 1
TDE .. 2

How to Enable TDE ... 3
How Data is Encrypted .. 4
What Is Encrypted .. 4
Impact on the Database .. 5
Database Backups .. 6
Other Features that Write to Disk ... 6

Cell-Level Encryption ... 6
Comparison with TDE ... 6
Recommended Usage with TDE .. 7

Extensible Key Management ... 8

8

Encrypting File System .. 8
Comparison with TDE ... 8
Recommended Usage with TDE .. 9

BitLocker Drive Encryption ... 9
BitLocker and EFS .. 9
Comparison with TDE ... 9
Recommended Usage with TDE ... 10

10

Database Encryption in SQL Server 2008 Enterprise Edition 1

 Microsoft Corporation ©2008

Introduction: Encrypting at the Database Level

Transparent data encryption (TDE) is a new encryption feature introduced in Microsoft®
SQL Server™ 2008. It is designed to provide protection for the entire database at rest
without affecting existing applications. Implementing encryption in a database
traditionally involves complicated application changes such as modifying table schemas,
removing functionality, and significant performance degradations. For example, to use
encryption in Microsoft SQL Server 2005, the column data type must be changed to
varbinary; ranged and equality searches are not allowed; and the application must call
built-ins (or stored procedures or views that automatically use these built-ins) to handle
encryption and decryption, all of which slow query performance. These issues are not
unique to SQL Server; other database management systems face similar limitations.
Custom schemes are often used to resolve equality searches and ranged searches often
cannot be used at all. Even basic database elements such as creating an index or using
foreign keys often do not work with cell-level or column-level encryption schemes
because the use of these features inherently leak information. TDE solves these
problems by simply encrypting everything. Thus, all data types, keys, indexes, and so
on can be used to their full potential without sacrificing security or leaking information
on the disk. While cell-level encryption cannot offer these benefits, two Windows®
features, Encrypting File System (EFS) and BitLocker™ Drive Encryption, are often used
for the same reasons as TDE—they provide protection on a similar scale and are
transparent to the user.

Microsoft SQL Server Encryption

Microsoft SQL Server offers two levels of encryption: database-level and cell-level. Both
use the key management hierarchy.

Cryptographic Key Hierarchy

At the root of encryption tree is the Windows Data Protection API (DPAPI), which
secures the key hierarchy at the machine level and is used to protect the service
master key (SMK) for the database server instance. The SMK protects the database
master key (DMK), which is stored at the user database level and which in turn protects
certificates and asymmetric keys. These in turn protect symmetric keys, which protect
the data. TDE uses a similar hierarchy down to the certificate. The primary difference is
that when you use TDE, the DMK and certificate must be stored in the master database
rather than in the user database. A new key, used only for TDE and referred to as the
database encryption key (DEK), is created and stored in the user database.
This hierarchy enables the server to automatically open keys and decrypt data in both
cell-level and database-level encryption. The important distinction is that when cell-
level encryption is used, all keys from the DMK down can be protected by a password
instead of by another key. This breaks the decryption chain and forces the user to input
a password to access data. In TDE, the entire chain from DPAPI down to the DEK must
be maintained so that the server can automatically provide access to files protected by
TDE. In both cell-level encryption and TDE, encryption and decryption through these
keys is provided by the Windows Cryptographic API (CAPI).
The following figure shows the full encryption hierarchy. The dotted lines represent the
encryption hierarchy used by TDE.

Database Encryption in SQL Server 2008 Enterprise Edition 2

 Microsoft Corporation ©2008

Figure: SQL Server encryption key hierarchy with TDE and EKM

TDE

Database Encryption in SQL Server 2008 Enterprise Edition 3

 Microsoft Corporation ©2008

Transparent data encryption is the new database-level encryption feature introduced in
SQL Server 2008.

How to Enable TDE

To enable TDE, you must have the normal permissions associated with creating a
database master key and certificates in the master database. You must also have
CONTROL permissions on the user database.
To enable TDE
Perform the following steps in the master database:
1. If it does not already exist, create a database master key (DMK) for the master

database. Ensure that the database master key is encrypted by the service master
key (SMK).
CREATE MASTER KEY ENCRYPTION BY PASSWORD = ‘some password’;

2. Either create or designate an existing certificate for use as the database encryption
key (DEK) protector. For the best security, it is recommended that you create a new
certificate whose only function is to protect the DEK. Ensure that this certificate is
protected by the DMK.
CREATE CERTIFICATE tdeCert WITH SUBJECT = ‘TDE Certificate’;

3. Create a backup of the certificate with the private key and store it in a secure
location. (Note that the private key is stored in a separate file—be sure to keep both
files). Be sure to maintain backups of the certificate as data loss may occur
otherwise.
BACKUP CERTIFICATE tdeCert TO FILE = ‘path_to_file’

 WITH PRIVATE KEY (

 FILE = ‘path_to_private_key_file’,

 ENCRYPTION BY PASSWORD = ‘cert password’);

4. Optionally, enable SSL on the server to protect data in transit.
Perform the following steps in the user database. These require CONTROL permissions
on the database.
5. Create the database encryption key (DEK) encrypted with the certificate designated

from step 2 above. This certificate is referenced as a server certificate to distinguish
it from other certificates that may be stored in the user database.
CREATE DATABASE ENCRYPTION KEY

 WITH ALGORITHM = AES_256

 ENCRYPTION BY SERVER CERTIFICATE tdeCert

6. Enable TDE. This command starts a background thread (referred to as the
encryption scan), which runs asynchronously.
ALTER DATABASE myDatabase SET ENCRYPTION ON

To monitor progress, query the sys.dm_database_encryption_keys view (the
VIEW SERVER STATE permission is required) as in the following example:

Database Encryption in SQL Server 2008 Enterprise Edition 4

 Microsoft Corporation ©2008

SELECT db_name(database_id), encryption_state

FROM sys.dm_database_encryption_keys

How Data is Encrypted

When TDE is enabled (or disabled), the database is marked as encrypted in the
sys.databases catalog view and the DEK state is set to Encryption In Progress. The
server starts a background thread (called the encryption scan or scan) that scans all
database files and encrypts them (or decrypts them if you are disabling TDE). While the
DDL executes, an update lock is taken on the database. The encryption scan, which
runs asynchronously to the DDL, takes a shared lock. All normal operations that do not
conflict with these locks can proceed. Excluded operations include modifying the file
structure and detaching the database. While normal database writes to disk from the
buffer pool are encrypted, log file writes may not be. The scan also forces a rollover for
the virtual log file (VLF) to ensure that future writes to the log are encrypted. This is
discussed in more detail later in this white paper.
When the encryption scan is completed, the DEK state is set to the Encrypted state. At
this point all database files on disk are encrypted and database and log file writes to
disk will be encrypted. Supported encryption algorithms are AES with 128-bit, 192-bit,
or 256-bit keys or 3 Key Triple DES. Data is encrypted in the cipher block chaining
(CBC) encryption mode. The encrypted database files that are written to disk are the
same size as the unencrypted files because no extra padding is required and the
initialization vector (IV) and encrypted DEK are stored within the existing space.
Because the log is padded to the next VLF boundary, the log will grow in size. Note that
while the database state is marked as Encryption enabled, the actual state of the
encryption should be monitored through the DEK state. When the background scan is
complete the DEK state is set to Encrypted. At this point, future writes to the log and to
disk are protected. This is explained in more detail later in this paper.

What Is Encrypted

TDE operates at the I/O level through the buffer pool. Thus, any data that is written
into the database file (*.mdf) is encrypted. Snapshots and backups are also designed to
take advantage of the encryption provided by TDE so these are encrypted on disk as
well. Data that is in use, however, is not encrypted because TDE does not provide
protection at the memory or transit level. The transaction log is also protected, but
additional caveats apply.
For data that is in use, all pages are decrypted as they are read and stored into the
buffer pool and are in clear text in memory. The operating system may page data out of
memory as part of memory management. In this process, decrypted data may be
written to disk. Windows and SQL Server can be configured to prevent memory from
being paged to disk, although the performance cost of this can be high. Other OS
actions such as hibernation and crash dumps can also cause memory to be written to
disk. Data in transit is not protected because the information is already decrypted
before it reaches this point; SSL should be enabled to protect communication between
the server and any clients.
When the database page file is written to disk, the headers are not encrypted with the
rest of the data because this information is necessary for the page to be reloaded. The
header contains status details such as the database compatibility level, database

Database Encryption in SQL Server 2008 Enterprise Edition 5

 Microsoft Corporation ©2008

version, mirroring status, and so forth. Any important data (such as the DEK) is
encrypted before it is inserted into the header. The header also includes a data
corruption checksum (CRC). Users can have both a checksum on the plaintext and a
checksum on the encrypted text. This is not a cryptographic checksum; it detects only
data corruption (checking to see if the data is readable) and not data integrity
(checking to see if the data was modified). All other user data that is stored in the
database page is encrypted, including any unused (or previously deleted) sections of
data, to avoid information leakage. When TDE is enabled on any user database,
encryption is also automatically enabled for the temporary database (tempdb). This
prevents temporary objects that are used by the user database from leaking to disk.
System databases other than tempdb cannot currently be encrypted by using TDE.
Encrypting at the I/O level also allows the snapshots and backups to be encrypted, thus
all snapshots and backups created by the database will be encrypted by TDE. The
certificate that was used to protect the DEK when the file was written must be on the
server for these files to be restored or reloaded. Thus, you must maintain backups for
all certificates used, not just the most current certificate.
The transaction log is more complicated. Because the transaction log is designed as a
write-once fail safe, TDE does not attempt to encrypt portions of the logs that are
already written to disk. Similarly, the log header cannot be re-written because of this
write-once principle so there is no guarantee that data that is written to the log even
after TDE is enabled will be encrypted. The TDE background scan forces the log to roll
over to the next VLF boundary, which allows for the key to be stored in the header. At
this point, if the file scan is also complete, the DEK state changes to Encrypted and all
subsequent writes to the log are encrypted.

Impact on the Database

TDE is designed to be as transparent as possible. No application changes are required
and the user experience is the same whether using a TDE-encrypted database or a non-
encrypted database.
While TDE operations are not allowed if the database has any read-only filegroups, TDE
can be used with read-only filegroups. To enable TDE on a database that has read-only
filegroups, the filegroups must first be set to allow writes. After the encryption scan
completes, the filegroup can be set back to read only. Key changes or decryption must
be performed the same way.
The performance impact of TDE is minor. Because the encryption occurs at the
database level, the database can leverage indexes and keys for query optimization. This
allows for full range and equality scans. In tests using sample data and TPC-C runs, the
overall performance impact was estimated to be around 3-5% and can be much lower if
most of the data accessed is stored in memory. Encryption is CPU intensive and is
performed at I/O. Therefore, servers with low I/O and a low CPU load will have the
least performance impact. Applications with high CPU usage will suffer the most
performance loss, estimated to be around 28%. The primary cost is in CPU usage, so
even applications or servers with high I/O should not be too adversely affected if CPU
usage is low enough. Also, because the initial encryption scan spawns a new thread,
performance is most sharply impacted at this time; expect to see queries perform
several orders of magnitude worse. For disk space concerns, TDE does not pad
database files on disk although it does pad transaction logs as previously noted in How
Data is Encrypted.

Database Encryption in SQL Server 2008 Enterprise Edition 6

 Microsoft Corporation ©2008

TDE is not a form of access control. All users who have permission to access the
database are still allowed access; they do not need to be given permission to use the
DEK or a password.
TDE is available only in the Enterprise and Developer editions of SQL Server 2008.
Databases used in other editions cannot be encrypted by using TDE and TDE-encrypted
databases cannot be used in other editions (the server will error out on attempts to
attach or restore).

Database Backups

When TDE is enabled on a database, all backups are encrypted. Thus, special care must
be taken to ensure that the certificate that was used to protect the DEK (see How to
Enable TDE) is backed up and maintained with the database backup. If this certificate
(or certificates) is lost, the data will be unreadable. Back up the certificate along with
the database. Each certificate backup should have two files; both of these files should
be archived (ideally separately from the database backup file for security).
Alternatively, consider using the extensible key management (EKM) feature (see
Extensible Key Management) for storage and maintenance of keys used for TDE.

Other Features that Write to Disk

If a feature writes to disk through the buffer pool, data is protected. Features that write
directly to files outside of the buffer pool must manually manage encryption and
decryption. Thus, older versions of Full-Text Search and even the new Filestream
features are not protected by TDE.

Cell-Level Encryption

SQL Server offers encryption at the cell level. Cell-level encryption was introduced in
Microsoft SQL Server 2005 and is still fully supported. Cell-level encryption is
implemented as a series of built-ins and a key management hierarchy. Using this
encryption is a manual process that requires a re-architecture of the application to call
the encryption and decryption functions. In addition, the schema must be modified to
store the data as varbinary and then re-cast back to the appropriate data type when
read. The traditional limitations of encryption are inherent in this method as none of the
automatic query optimization techniques can be used.

Comparison with TDE

Cell-level encryption has a number of advantages over database-level encryption. It
offers a more granular level of encryption. In addition, data is not decrypted until it is
used (when a decryption built-in is called) so that even if a page is loaded into memory,
sensitive data is not in clear text. Cell-level encryption also allows for explicit key
management. Keys can be assigned to users and protected by passwords to prevent
automatic decryption. This offers another degree of control (users can, for example,
have individual keys for their own data); however, the administrator is further
burdened with maintaining the keys (although Extensible Key Management, described
later in this paper, can also be used for easier administration). Because cell-level
encryption is highly configurable, it may be a good fit for applications that have
targeted security requirements.

Database Encryption in SQL Server 2008 Enterprise Edition 7

 Microsoft Corporation ©2008

The primary disadvantages of cell-level encryption are the application changes needed
to use it, the performance penalties, and the administration cost. As noted previously,
encryption and decryption requires that you use built-ins. This is an entirely manual
process and requires the varbinary data type; this means columns must be changed
from their original data type to varbinary. For security, the encryption is always salted
so the same data will have a different value after encryption. As a result, referential
constraints such as foreign keys, and candidate keys such as primary keys do not
provide any benefit on these encrypted columns. This also affects query optimization—
indexes on the encrypted columns offer no advantage so range and equality searches
turn into full table scans. TDE allows full use of indexes and other traditional query
optimization tools as well as performing the encryption in bulk.
As a rough comparison, performance for a very basic query (that selects and decrypts a
single encrypted column) when using cell-level encryption tends to be around 20%
worse. This inversely scales with workload size resulting in performance degradations
that are several magnitudes worse when attempting to encrypt an entire database. One
sample application with 10,000 rows was four times worse with one column encrypted,
and 20 times worse with nine columns encrypted. Because cell-level encryption is
custom to each application, performance degradation will vary depending on application
and workload specifics. As noted in Impact on the Database, this compares to 3-5% for
TDE on average and 28% in the worst case (assuming the encryption scan is not
running).
Although these performance concerns for cell-level encryption can be mitigated by
explicit application design, more care must be exercised to prevent the accidental
leakage of data. For example, consider a quick scheme to enable fast equality searches
by using hashes of the sensitive data. If these hashes are stored in a column along with
the encrypted data, it quickly becomes obvious if two rows have identical values
because the hashes will be the same. Extra security reviews must be used to ensure
that unintended data disclosures do not occur so both the database and application
must be security aware. TDE prevents these data leak scenarios by encrypting at the
broadest scope. In both cell-level encryption and database-level encryption, information
is decrypted on the server; decrypted data is sent to clients in plaintext. SSL is
recommended to protect this channel.

Recommended Usage with TDE

Cell-level encryption can be used for defense in depth both for a database encrypted by
TDE and for limited access control through the use of passwords. That way, even if
either TDE or authorization is subverted, data might still be safe if it is encrypted at the
root by a password so that it cannot be as easily accessed. While all the disadvantages
of using cell-level encryption apply, using both cell-level encryption and TDE may be
useful for a subset of highly sensitive data.
In general, TDE and cell-level encryption accomplish two different objectives. If the
amount of data that must be encrypted is very small or if the application can be custom
designed to use it (or if the application has custom design requirements) and
performance is not a concern, cell-level encryption is recommended over TDE.
Otherwise, TDE is recommended for encrypting existing applications or for performance
sensitive applications. Additionally, cell-level encryption is available in all SQL Server
editions while TDE is available only in SQL Server 2008 Enterprise Edition and SQL
Server 2008 Developer Edition.

Database Encryption in SQL Server 2008 Enterprise Edition 8

 Microsoft Corporation ©2008

Extensible Key Management

Extensible Key Management (EKM) is another new feature in SQL Server 2008. It
enables parts of the cryptographic key hierarchy to be managed by an external source
such as Hardware Security Module (HSM), referred to as a cryptographic provider.
Encryption and decryption operations using these keys are handled by the
cryptographic provider. This allows for flexibility and choice in cryptographic providers
as well as common key management. TDE supports asymmetric keys that are
provisioned by EKM. No other form of asymmetric key is supported by TDE and
database certificates cannot currently be provisioned through EKM. EKM is supported
for cell-level encryption through symmetric and asymmetric keys. It is highly
recommended that you use EKM with both database- and cell-level encryption for more
comprehensive key management and hardware-based cryptography (if available
through the HSM).

Windows File Encryption

Depending on which version of Windows is installed, Windows offers two granularities of
file protection. In most releases of Windows 2000 and later (including Windows Vista®),
the Encrypting File System (EFS) is available. EFS encrypts data at the file level.
BitLocker is a new technology that encrypts data at the volume level. It is available in
Windows Vista Enterprise Edition, Windows Vista Ultimate Edition, and all editions of
Windows Server® 2008.

Encrypting File System

EFS is a file encryption feature introduced in Windows 2000. Like encryption in
SQL Server, EFS relies on the Windows Cryptographic API (CAPI). Both files and folders
can be marked as encrypted, although the encryption actually occurs only at the file
level. Each file is encrypted by an individual File Encryption Key (FEK) much as each
database is encrypted with an individual DEK in TDE. The FEK is protected by the user’s
certificate, similar to how the DEK is protected by a certificate. The EFS certificate is
assigned to a user while the TDE certificate is conceptually a server-wide object.
Multiple certificates can be used to encrypt the FEK, which allows for more than one
user to access a file. When using EFS with SQL Server, the database server service
account must have access to the file encryption keys encrypting any database file so
that it can read the file. This cannot be used as a form of access control—the service
account is used to read database files regardless of the login account.
For more general information on EFS, see How it Works on Microsoft TechNet.
For more technical details on EFS, see the Encrypting File System Technical Reference
on TechNet.

Comparison with TDE

As an operating system level encryption feature, EFS has some advantages. Whereas
TDE is restricted to database files only, EFS allows for non-database and even folder-
level encryption, which allows for broader encryption coverage. Key management is
abstracted to the operating system, which enables users to leverage the Windows
certificate store. EFS offers a data recovery path if keys are lost, while TDE does not
currently have a similar solution.

Database Encryption in SQL Server 2008 Enterprise Edition 9

 Microsoft Corporation ©2008

The disadvantages to using EFS over TDE, are primarily in performance and
administration. EFS is not designed for high-concurrency random access (it does not
support prefetch or asynchronous I/O). Therefore, I/O operations may become
bottlenecked and serialized. While this has a minimal impact in a normal user scenario,
it has been a cause for concern in database usage. For more information on using EFS
with Microsoft SQL Server, see You may experience decreased performance in some
features of SQL Server 2005 when you use EFS to encrypt database files on the
Microsoft Help and Support site. EFS requires file administration privileges on the OS
level, which the database administrator (DBA) might not have. Because protection is
tied to EFS, detaching the database, backing up the database, or adding filegroups may
not be protected if these files are in locations not protected by EFS. Also, the
implementation of EFS may change from release to release. This normally is not an
issue because EFS is primarily used on a single computer for a single user, but it is
something to consider. For more information, see this EFS and Vista... and XP blog
entry.

Recommended Usage with TDE

EFS is best used on a mobile PC, desktop, or workstation where the database is
primarily used by a small set of users. Because of performance concerns, EFS is
generally not recommended for use with TDE although nothing prohibits EFS from
working with TDE (or with SQL Server in general). Using EFS with TDE is a viable option
when performance is not an issue and when defense in depth is desired. EFS can also
be used in place of TDE for filegroup level granularity. Also, because it protects at the
folder level, EFS can be used to protect some corner cases where data is temporarily
written to disk. In environments where performance is a major concern, EFS is not
recommended for use with SQL Server.

BitLocker Drive Encryption

BitLocker is a volume encryption feature included in Windows Vista Enterprise Edition,
Windows Vista Ultimate Edition, and all editions of Windows Server 2008. By default,
BitLocker takes advantage of a Trusted Platform Module (TPM) if one is available, to
provide boot integrity protection.
For more information on BitLocker, see BitLocker Drive Encryption on TechNet.

BitLocker and EFS

It is beyond the scope of this article to compare EFS and BitLocker as both are complex
technologies that require more technical detail than is covered here. Generally, EFS is
targeted at protecting user data while BitLocker is designed to protect volume and
system data. In terms of Microsoft SQL Server performance, BitLocker has lower
latency on disk reads and writes without the concurrency issues EFS has.
For more information on data protection options at the OS level, see Data Encryption
Toolkit for Mobile PCs.

Comparison with TDE

BitLocker and TDE both primarily protect against offline attacks. BitLocker protects at
the volume level so when the server is online, the volume is unlocked, though not

Database Encryption in SQL Server 2008 Enterprise Edition 10

 Microsoft Corporation ©2008

decrypted. Like EFS, BitLocker has a data recovery mechanism, which TDE does not yet
have. The advantages of using BitLocker are ease of administration, abstraction of key
management, and transparency. The disadvantage is that the protection only extends
to the volume. Detaching or backing up the database to a different volume that is not
protected by EFS or BitLocker causes any protection the file currently has to be lost.
The other disadvantage of BitLocker is the broad scope of protection. Because the
entire volume is unlocked, any user with access to a computer that can access the files
on disk can access the data in plaintext. Similarly to TDE, BitLocker relies on other
mechanisms for access control (such as the database permissions used in TDE and the
Windows file permissions used by BitLocker). As with EFS, the database administrator
might not have the necessary privileges to administrate BitLocker.

Recommended Usage with TDE

BitLocker does not have the same performance concerns associated with EFS so it is
recommended that you use BitLocker with TDE for defense in depth. As discussed
previously, situations exist where memory can be written to disk, such as hibernation or
crash dumps. Additionally, other features may write to the disk outside of TDE.
BitLocker can be used to mitigate these scenarios.

Conclusion

Those who are looking for database-level encryption have many options in SQL Server
and Windows. These options are not mutually exclusive. The different levels of
encryption available in SQL Server and Windows can be leveraged to provide defense in
depth and greater overall security. Transparent data encryption provides a good blend
of ease of administration, ease of use, performance, and security. TDE also provides a
comprehensive defense because the encryption stays with the database even when it is
moved to different locations. Both backups and snapshots are protected without
requiring support from the server administrator. EFS and BitLocker are also valid
solutions either in conjunction with TDE or as standalone encryption systems. TDE is
not designed to replace these solutions. Cell-level encryption provides much more
granular control including explicit key management although at a cost to performance,
ease of use, and administration. BitLocker and EFS provide protection in situations that
TDE does not such as crash dump information or hibernation files (if protecting the
system volume or system folders). BitLocker and EFS (and to a much more limited
degree, cell-level encryption) can be used to protect system databases (master,
model, resource, and msdb), which cannot currently be encrypted by TDE. EFS is
also more generally available as TDE is restricted to SQL Server 2008 Enterprise Edition
or SQL Server 2008 Developer Edition and BitLocker is available only with Windows
Vista Enterprise, Windows Vista Ultimate, or Windows Server 2008.

For more information:
http://technet.microsoft.com/en-us/sqlserver/default.aspx
http://msdn2.microsoft.com/en-us/sqlserver/default.aspx

Database Encryption in SQL Server 2008 Enterprise Edition 11

 Microsoft Corporation ©2008

Did this paper help you? Please give us your feedback. Tell us on a scale of 1 (poor) to
5 (excellent), how would you rate this paper and why have you given it this rating? For
example:

• Are you rating it high due to having good examples, excellent screenshots, clear
writing, or another reason?

• Are you rating it low due to poor examples, fuzzy screenshots, unclear writing?
This feedback will help us improve the quality of white papers we release. Send
feedback.

