
Top 5 Considerations When Evaluating
NoSQL Databases
June 2016

A MongoDB White Paper



Table of Contents
1Introduction

2Data Model
2Document Model
2Graph Model
2Key-Value and Wide Column Models

3Query Model
3Document Database
3Graph Database
3Key Value and Wide Column Databases

4Consistency Model
4Consistent Systems
4Eventually Consistent Systems

5APIs
5Idiomatic Drivers
5Thrift or RESTful APIs
5SQL-Like APIs

6Commercial Support and Community Strength
6Commercial Support
6Community Strength
6Nexus Architecture

7Conclusion

7We Can Help



Introduction

Relational databases have a long-standing position in most

organizations, and for good reason. Relational databases

underpin existing applications that meet current business

needs; they are supported by an extensive ecosystem of

tools; and there is a large pool of labor qualified to

implement and maintain these systems.

But organizations are increasingly considering alternatives

to legacy relational infrastructure. In some cases the

motivation is technical — such as a need to handle new,

multi-structured data types or scale beyond the capacity

constraints of existing systems — while in other cases the

motivation is driven by the desire to identify viable

alternatives to expensive proprietary database software

and hardware. A third motivation is agility or speed of

development, as companies look to adapt to the market

more quickly and embrace agile development

methodologies.

These motivations apply both to analytical and operational

applications. Companies are shifting workloads to Hadoop

for their bulk analytical workloads, and they are building

online, operational applications with a new class of

so-called “NoSQL” or non-relational databases.

Development teams exert strong influence in the

technology selection process. This community tends to find

that the relational data model is not well aligned with the

needs of their applications. Consider:

• Developers are working with applications that create

new, rapidly changing data types — structured,

semi-structured, unstructured and polymorphic data —

and massive volumes of it.

• Long gone is the twelve-to-eighteen month waterfall

development cycle. Now small teams work in agile

sprints, iterating quickly and pushing code every week

or two, some even multiple times every day.

• Applications that once served a finite audience are now

delivered as services that must be always-on, accessible

from many different devices and scaled globally.

• Organizations are now turning to scale-out architectures

using open source software, commodity servers and

cloud computing instead of large monolithic servers and

storage infrastructure.

1



When compared to relational databases, many NoSQL

systems share several key characteristics including a more

flexible data model, higher scalability, and superior

performance. But most of these NoSQL databases also

discard the very foundation that has made relational

databases so useful for generations of applications –

expressive query language, secondary indexes and strong

consistency. In fact, the term “NoSQL” is often used as an

umbrella category for all non-relational databases. As we

will see, this term is far too wide and loosely defined to be

truly useful. It often ignores the trade-offs NoSQL

databases have made to achieve flexibility, scalability and

performance.

In this paper, we hope to help you navigate the complex

and rapidly evolving domain of NoSQL and non-relational

databases. We describe five critical dimensions

organizations should use to evaluate these databases as

they determine the right choice for their applications and

their businesses.

Data Model

The primary way in which non-relational databases differ

from relational databases is the data model. Although there

are dozens of non-relational databases, they primarily fall

into one of the following three categories:

Document Model

Whereas relational databases store data in rows and

columns, document databases store data in documents.

These documents typically use a structure that is like

JSON (JavaScript Object Notation), a format popular

among developers. Documents provide an intuitive and

natural way to model data that is closely aligned with

object-oriented programming – each document is

effectively an object. Documents contain one or more

fields, where each field contains a typed value, such as a

string, date, binary, or array. Rather than spreading out a

record across multiple columns and tables connected with

foreign keys, each record and its associated (i.e., related)

data are typically stored together in a single document.

This simplifies data access and, in many cases, eliminates

the need for expensive JOIN operations and complex,

multi-record transactions.

In a document database, the notion of a schema is

dynamic: each document can contain different fields. This

flexibility can be particularly helpful for modeling

unstructured and polymorphic data. It also makes it easier

to evolve an application during development, such as

adding new fields. Additionally, document databases

generally provide the query robustness that developers

have come to expect from relational databases. In

particular, data can be queried based on any combination

of fields in a document.

ApplicApplications:ations: Document databases are general purpose,

useful for a wide variety of applications due to the flexibility

of the data model, the ability to query on any field and the

natural mapping of the document data model to objects in

modern programming languages.

Examples:Examples: MongoDB and CouchDB.

Graph Model

Graph databases use graph structures with nodes, edges

and properties to represent data. In essence, data is

modeled as a network of relationships between specific

elements. While the graph model may be counter-intuitive

and takes some time to understand, it can be useful for a

specific class of queries. Its main appeal is that it makes it

easier to model and navigate relationships between entities

in an application.

ApplicApplications:ations: Graph databases are useful in cases where

traversing relationships are core to the application, like

navigating social network connections, network topologies

or supply chains.

Examples:Examples: Neo4j and Giraph.

Key-Value and Wide Column Models

From a data model perspective, key-value stores are the

most basic type of non-relational database. Every item in

the database is stored as an attribute name, or key,

together with its value. The value, however, is entirely

opaque to the system; data can only be queried by the key.

This model can be useful for representing polymorphic and

2



unstructured data, as the database does not enforce a set

schema across key-value pairs.

Wide column stores, or column family stores, use a sparse,

distributed multi-dimensional sorted map to store data.

Each record can vary in the number of columns that are

stored. Columns can be grouped together for access in

column families, or columns can be spread across multiple

column families. Data is retrieved by primary key per

column family.

ApplicApplications:ations: Key value stores and wide column stores

are useful for a narrow set of applications that only query

data by a single key value. The appeal of these systems is

their performance and scalability, which can be highly

optimized due to the simplicity of the data access patterns

and opacity of the data itself.

Examples:Examples: Riak and Redis (Key-Value); HBase and

Cassandra (Wide Column).

TAKEAWAYS

• All of these data models provide schema flexibility.

• The key-value and wide-column data model is opaque in

the system - only the primary key can be queried.

• The document data model has the broadest applicability.

• The document data model is the most natural and most

productive because it maps directly to objects in

modern object-oriented languages.

• The wide column model provides more granular access

to data than the key value model, but less flexibility than

the document data model.

Query Model

Each application has its own query requirements. In some

cases, it may be acceptable to have a very basic query

model in which the application only accesses records

based on a primary key. For most applications, however, it is

important to have the ability to query based on several

different values in each record. For instance, an application

that stores data about customers may need to look up not

only specific customers, but also specific companies, or

customers by a certain size, or aggregations of customer

sales value by zip code or state.

It is also common for applications to update records,

including one or more individual fields. To satisfy these

requirements, the database needs to be able to query data

based on secondary indexes. In these cases, a document

database will often be the most appropriate solution.

Document Database

Document databases provide the ability to query on any

field within a document. Some products, such as

MongoDB, provide a rich set of indexing options to

optimize a wide variety of queries, including text indexes,

geospatial indexes, compound indexes, sparse indexes,

time to live (TTL) indexes, unique indexes, and others.

Furthermore, some of these products provide the ability to

analyze data in place, without it needing to be replicated to

dedicated analytics or search engines. MongoDB, for

instance, provides both the Aggregation Framework for

providing real-time analytics (along the lines of the SQL

GROUP BY functionality), and a native MapReduce

implementation for other types of sophisticated analyses.

To update data, MongoDB provides a find and modify

method so that values in documents can be updated in a

single statement to the database, rather than making

multiple round trips.

Graph Database

These systems tend to provide rich query models where

simple and complex relationships can be interrogated to

make direct and indirect inferences about the data in the

system. Relationship-type analysis tends to be very

efficient in these systems, whereas other types of analysis

may be less optimal. As a result, graph databases are rarely

used for more general purpose operational applications.

Key Value and Wide Column Databases

These systems provide the ability to retrieve and update

data based only on a single or a limited range of primary

keys. For querying on other values, users are encouraged

to build and maintain their own indexes. Some products

provide limited support for secondary indexes, but with

3



several caveats. To perform an update in these systems,

multiple round trips may be necessary: first find the record,

then update it, then update the index. In these systems, the

update may be implemented as a complete rewrite of the

entire record irrespective of whether a single attribute has

changed, or the entire record.

TAKEAWAYS

• The biggest difference between non-relational

databases lies in the ability to query data efficiently.

• Document databases provide the richest query

functionality, which allows them to address a wide

variety of operational and real-time analytics

applications.

• Key-value stores and wide column stores provide a

single means of accessing data: by primary key. This

can be fast, but they offer very limited query

functionality and may impose additional development

costs and application-level requirements to support

anything more than basic query patterns.

Consistency Model

Most non-relational systems typically maintain multiple

copies of the data for availability and scalability purposes.

These databases can impose different guarantees on the

consistency of the data across copies. Non-relational

databases tend to be categorized as either consistent or

eventually consistent.

With a consistent system, writes by the application are

immediately visible in subsequent queries. With an

eventually consistent system writes are not immediately

visible. As an example, when reflecting inventory levels for

products in a product catalog, with a consistent system

each query will see the current inventory as inventory levels

are updated by the application, whereas with an eventually

consistent system the inventory levels may not be accurate

for a query at a given time, but will eventually become

accurate. For this reason application code tends to be

somewhat different for eventually consistent systems -

rather than updating the inventory by taking the current

inventory and subtracting one, for example, developers are

encouraged to issue idempotent queries that explicitly set

the inventory level.

Consistent Systems

Each application has different requirements for data

consistency. For many applications, it is imperative that the

data be consistent at all times. As development teams have

worked under a model of consistency with relational

databases for decades, this approach is more natural and

familiar. In other cases, eventual consistency is an

acceptable trade-off for the flexibility it allows in the

system’s availability.

Document databases and graph databases can be

consistent or eventually consistent. MongoDB provides

tunable consistency. By default, data is consistent — all

writes and reads access the primary copy of the data. As

an option, read queries can be issued against secondary

copies where data maybe eventually consistent if the write

operation has not yet been synchronized with the

secondary copy; the consistency choice is made at the

query level.

Eventually Consistent Systems

With eventually consistent systems, there is a period of

time in which all copies of the data are not synchronized.

This may be acceptable for read-only applications and data

stores that do not change often, like historical archives. By

the same token, it may also be appropriate for

write-intensive use cases in which the database is

capturing information like logs, which will only be read at a

later point in time. Key-value and wide column stores are

typically eventually consistent.

Eventually consistent systems must be able to

accommodate conflicting updates in individual records.

Because writes can be applied to any copy of the data, it is

possible and not uncommon for writes to conflict with one

another. Some systems like Riak use vector clocks to

determine the ordering of events and to ensure that the

most recent operation wins in the case of a conflict. Other

systems like CouchDB retain all conflicting values and

push the responsibility to resolving conflict back to the

user. Another approach, followed by Cassandra, is simply to

assume the latest value is the correct one. For these

4



reasons, inserts tend to perform well in eventually

consistent systems, but updates and deletes can involve

trade-offs that complicate the application significantly.

TAKEAWAYS

• Most applications and development teams expect

consistent systems.

• Different consistency models pose different trade-offs

for applications in the areas of consistency and

availability.

• MongoDB provides tunable consistency, defined at the

query level.

• Eventually consistent systems provide some advantages

for inserts at the cost of making reads, updates and

deletes more complex, while incurring performance

overhead through read repairs and compactions.

APIs

There is no standard for interfacing with non-relational

systems. Each system presents different designs and

capabilities for application development teams. The

maturity of the API can have major implications for the time

and cost required to develop and maintain the application

and database.

Idiomatic Drivers

There are a number of popular programming languages,

and each provides different paradigms for working with

data and services. Idiomatic drivers are created by

development teams that are experts in the given language

and that know how programmers prefer to work within that

language. This approach can also benefit from its ability to

leverage specific features in a programming language that

might provide efficiencies for accessing and processing

data.

For programmers, idiomatic drivers are easier to learn and

use, and they reduce the onboarding time for teams to

begin working with the underlying database. For example,

idiomatic drivers provide direct interfaces to set and get

documents or fields within documents. With other types of

interfaces it may be necessary to retrieve and parse entire

documents and navigate to specific values in order to set

or get a field.

MongoDB supports idiomatic drivers in over ten languages:

Java, .NET, Ruby, Node.js, Perl, Python, PHP, C, C++, C#,

Javascript, and Scala. 30+ other drivers are supported by

the community.

Thrift or RESTful APIs

Some systems provide RESTful interfaces. This approach

has the appeal of simplicity and familiarity, but it relies on

the inherent latencies associated with HTTP. It also shifts

the burden of building an interface to the developers; and

this interface is likely to be inconsistent with the rest of

their programming interfaces. Similarly, some systems

provide a Thrift interface, a very low level paradigm that

shifts the burden to developers to develop more abstract

interfaces within their applications.

SQL-Like APIs

Some non-relational databases have attempted to add a

SQL-like access layer to the database, in the hope this will

reduce the learning curve for those developers and DBAs

already skilled in SQL. It is important to evaluate these

implementations before serious development begins,

considering the following:

• Most of these implementations fall a long way short

compared to the power and expressivity of SQL, and will

demand SQL users learn a feature-limited dialect of the

language.

• Most support queries only, with no support for write

operations. Therefore developers will still need to learn

the database’s native query language.

• SQL-based BI, reporting, and ETL tools will not be

compatible with a custom SQL implementation.

• While some of the syntax may be familiar to SQL

developers, data modeling will not be. Trying to impose a

relational model on any non-relational database will

have disastrous consequences for performance and

application maintenance.

5



TAKEAWAYS

• The maturity and functionality of APIs vary significantly

across non-relational products.

• MongoDB’s idiomatic drivers minimize onboarding time

for new developers and simplify application

development.

• Not all SQL is created equal. Carefully evaluate the

SQL-like APIs offered by non-relational databases to

ensure they can meet the needs of your application and

developers

Commercial Support and
Community Strength

Choosing a database is a major investment. Once an

application has been built on a given database, it is costly,

challenging and risky to migrate it to a different database.

Companies usually invest in a small number of core

technologies so they can develop expertise, integrations

and best practices that can be amortized across many

projects. Non-relational systems are relatively new, and

while there are many options in the market, a small number

of products will stand the test of time.

Commercial Support

Users should consider the health of the company or project

when evaluating a database. It is important not only that

the product continues to exist, but also to evolve and to

provide new features. Having a strong, experienced

support organization capable of providing services globally

is another relevant consideration.

Community Strength

There are significant advantages of having a strong

community around a technology, particularly databases. A

database with a strong community of users makes it easier

to find and hire developers that are familiar with the

product. It makes it easier to find best practices,

documentation and code samples, all of which reduce risk

in new projects. It also helps organizations retain key

technical talent. Lastly, a strong community encourages

other technology vendors to develop integrations and to

participate in the ecosystem.

TAKEAWAYS

• Community size and commercial strength is an

important part of evaluating non-relational databases.

• MongoDB has the largest commercial backing; the

largest and most active community; support teams

spread across the world providing 24x7 coverage;

user-groups in most major cities; and extensive

documentation.

The Nexus Architecture

MongoDB’s design philosophy is focused on combining the

critical capabilities of relational databases with the

innovations of NoSQL technologies. Our vision is to

leverage the work that Oracle and others have done over

the last 40 years to make relational databases what they

are today. Rather than discard decades of proven database

maturity, MongoDB is picking up where they left off by

combining key relational database capabilities with the

work that Internet pioneers have done to address the

requirements of modern applications.

FigurFigure 1:e 1: MongoDB Nexus Architecture, blending the best
of relational and NoSQL technologies

6



Relational databases have reliably served applications for

many years, and offer features that remain critical today as

developers build the next generation of applications :

• ExprExpressive query language.essive query language. Users should be able to

access and manipulate their data in sophisticated ways

with powerful query, projection, aggregation and update

operators, to support both operational and analytical

applications.

• Secondary indexes.Secondary indexes. Indexes play a critical role in

providing efficient access to data, for both reads and

writes, supported natively by the database rather than

maintained in application code.

• StrStrong consistencyong consistency.. Applications should be able to

immediately read what has been written to the

database. It is much, much more complicated to build

applications around an eventually consistent model,

imposing significant work on the developer, even for the

most sophisticated development teams.

However, modern applications impose requirements not

addressed by relational databases, and this has driven the

development of NoSQL databases which offer:

• Flexible DatFlexible Data Model.a Model. NoSQL databases emerged to

address the requirements for the data we see

dominating modern applications. Whether document,

graph, key-value or wide-column, all of them offer a

flexible data model, making it easy to store and combine

data of any structure and allow dynamic modification of

the schema without downtime.

• Elastic ScElastic Scalabilityalability.. NoSQL databases were all built

with a focus on scalability, so they all include some form

of sharding or partitioning, allowing the database to

scale-out on commodity hardware deployed on-premise

or in the cloud, allowing for almost unlimited growth.

• High PHigh Performance.erformance. NoSQL databases are designed to

deliver great performance, measured in terms of both

throughput and latency at any scale.

While offering these innovations, NoSQL systems have

sacrificed the critical capabilities that people have come to

expect and rely upon from relational databases. MongoDB

offers a different approach. With its Nexus Architecture,

MongoDB is the only database that harnesses the

innovations of NoSQL while maintaining the foundation of

relational databases.

Conclusion

As the technology landscape evolves, organizations

increasingly find the need to evaluate new databases to

support changing application and business requirements.

The media hype around non-relational databases and the

commensurate lack of clarity in the market makes it

important for organizations to understand the differences

between the available solutions. As discussed in this paper,

key criteria to consider when evaluating these technologies

are the data model, query model, consistency model and

APIs, as well as commercial support and community

strength. Many organizations find that document databases

such as MongoDB are best suited to meet these criteria,

though we encourage technology decision makers to

evaluate these considerations for themselves.

We Can Help

We are the MongoDB experts. Over 2,000 organizations

rely on our commercial products, including startups and

more than a third of the Fortune 100. We offer software

and services to make your life easier:

MongoDB Enterprise Advanced is the best way to run

MongoDB in your data center. It’s a finely-tuned package

of advanced software, support, certifications, and other

services designed for the way you do business.

MongoDB Atlas is a database as a service for MongoDB,

letting you focus on apps instead of ops. With MongoDB

Atlas, you only pay for what you use with a convenient

hourly billing model. With the click of a button, you can

scale up and down when you need to, with no downtime,

full security, and high performance.

MongoDB Cloud Manager is a cloud-based tool that helps

you manage MongoDB on your own infrastructure. With

automated provisioning, fine-grained monitoring, and

continuous backups, you get a full management suite that

reduces operational overhead, while maintaining full control

over your databases.

7

https://www.mongodb.com/products/mongodb-enterprise-advanced
https://www.mongodb.com/atlas
https://www.mongodb.com/products/cloud-manager


MongoDB Professional helps you manage your

deployment and keep it running smoothly. It includes

support from MongoDB engineers, as well as access to

MongoDB Cloud Manager.

Development Support helps you get up and running quickly.

It gives you a complete package of software and services

for the early stages of your project.

MongoDB Consulting packages get you to production

faster, help you tune performance in production, help you

scale, and free you up to focus on your next release.

MongoDB Training helps you become a MongoDB expert,

from design to operating mission-critical systems at scale.

Whether you’re a developer, DBA, or architect, we can

make you better at MongoDB.

Contact us to learn more, or visit mongodb.com.

Resources

For more information, please visit mongodb.com or contact

us at sales@mongodb.com.

Case Studies (mongodb.com/customers)

Presentations (mongodb.com/presentations)

Free Online Training (university.mongodb.com)

Webinars and Events (mongodb.com/events)

Documentation (docs.mongodb.com)

MongoDB Enterprise Download (mongodb.com/download)

MongoDB Atlas database as a service for MongoDB

(mongodb.com/cloud)

New York • Palo Alto • Washington, D.C. • London • Dublin • Barcelona • Sydney • Tel Aviv
US 866-237-8815 • INTL +1-650-440-4474 • info@mongodb.com
© 2016 MongoDB, Inc. All rights reserved.

8

https://www.mongodb.com/products/mongodb-professional
https://www.mongodb.com/products/development-support
https://www.mongodb.com/products/consulting
https://university.mongodb.com/private_training
https://www.mongodb.com/contact
https://www.mongodb.com/
http://www.mongodb.com
mailto:sales@mongodb.com
http://mongodb.com/customers
http://mongodb.com/presentations
http://university.mongodb.com
http://mongodb.com/events
http://docs.mongodb.com
http://mongodb.com/download
https://www.mongodb.com/cloud

	Table of Contents
	Introduction1
	Data Model2
	Document Model2
	Graph Model2
	Key-Value and Wide Column Models2

	Query Model3
	Document Database3
	Graph Database3
	Key Value and Wide Column Databases3

	Consistency Model4
	Consistent Systems4
	Eventually Consistent Systems4

	APIs5
	Idiomatic Drivers5
	Thrift or RESTful APIs5
	SQL-Like APIs5

	Commercial Support and Community Strength6
	Commercial Support6
	Community Strength6
	Nexus Architecture6

	Conclusion7
	We Can Help7
	Introduction
	Data Model
	Document Model
	Graph Model
	Key-Value and Wide Column Models

	Query Model
	Document Database
	Graph Database
	Key Value and Wide Column Databases

	Consistency Model
	Consistent Systems
	Eventually Consistent Systems

	APIs
	Idiomatic Drivers
	Thrift or RESTful APIs
	SQL-Like APIs

	Commercial Support and Community Strength
	Commercial Support
	Community Strength

	The Nexus Architecture
	Conclusion
	We Can Help
	Resources

