
What’s New in MongoDB 3.2
June 2016

A MongoDB White Paper

Table of Contents
1Introduction

2New Use Cases Served by MongoDB
2New Default MongoDB Storage Engine: WiredTiger
3New MongoDB Encrypted Storage Engine
4Flexible In-Memory Computing with MongoDB

5Mission-Critical Deployments
Document Validation: Data Governance for Dynamic

6Schema
6Enhanced Replication Protocol: Fast Failover
7Simplified Sharded Cluster Management

7New Users

7Data Analysts and Scientists
7MongoDB Connector for BI
8Dynamic Lookup: Left Outer JOINs
9Real-Time Analytics and Search

10DBAs: MongoDB Compass
10Querying Data

11Operations Teams
11APM Integration: New Relic & AppDynamics
11Query Performance Visualization
12Index Suggestions & Automated Index Builds
13New Indexing Option: Partial Indexes
13Additional Ops Manager Enhancements

13MongoDB Atlas: Database as a Service For MongoDB

14Summary

14We Can Help

15Resources

Introduction

IT teams are under intense pressure to differentiate from

competitors by building new classes of applications able to

fully exploit the wealth of new and untapped data

generated by sensors, mobile, social, and cloud

applications. However, the challenges associated with

delivering on these needs are immense:

• IDC research states data volumes continue to grow at

over 40% per annum. 90% of this data is now

unstructured, rather than formated in the neat tabular

structures most databases expect.

• The window to analyze and act on new data is shrinking

– IBM estimates 60% of data loses its value within

milliseconds of generation, and only 0.5% of all data is

ever analyzed at all.

• Data governance has never been more important. The

University of Texas, Austin calculated a 10%

improvement in data usability at a Fortune 1000

company could increase revenues by $2bn per year.

• But as data increases in value, so too does the cost of

protecting it. Based on research from PWC, the IT

systems of organizations around the world were

attacked over 117,000 times a day, every day, in 2014,

representing a rise of nearly 50% over the previous

year.

Technologies used in the past were never designed for the

speed and scale demanded by modern applications.

Architects and developers rely on new approaches to

database management and analytics, but they must avoid

the risks of exploding complexity that would come from

using a myriad of niche technologies, each requiring its

own tools and workflows.

MongoDB is designed to provide a solution to these

challenges. With its Nexus Architecture, MongoDB is the

only database that harnesses the innovations of NoSQL –

scalability, performance, and data model flexibility – while

maintaining the foundation of strong consistency,

secondary indexes, and a rich query language that have

made relational databases such an enduring technology

over the past three decades.

MongoDB 3.2 is a giant step forward in enabling

organizations to standardize on a single, modern database

for mission-critical applications that could never be

delivered on existing technologies. In-memory computing

1

https://www.mongodb.com/mongodb-architecture

allows you to deliver high throughput at consistent latency

for the most demanding workloads. End-to-end data

encryption allows you to meet the most stringent regulatory

standards. Document Validation gives you the benefits of a

flexible data model without sacrificing governance controls

for data quality.

To preserve existing investments and reign in TCO,

MongoDB supports seamless integration with existing

administrative skills, analytics platforms, and operational

tooling. Analysts and data scientists can unlock smarter

insights faster – from JOINs between different collections,

to richer aggregations and search, to graphically exploring

and visualizing multi-structured data sets using standard

SQL-based BI and visualization platforms. By integrating

MongoDB within their existing tool-sets and workflows,

DBAs and Operations teams can industrialize new

applications with less effort, time and cost, while gaining

greater oversight and control over their entire IT estate.

In this whitepaper, you’ll learn about what’s new in

MongoDB 3.2, and how to get started with this latest

release.

New Use Cases Served by
MongoDB

For developers building increasingly complex data-driven

apps, there is no longer a "one size fits all" database

storage technology that will perform optimally for every

type of application required by the business. Modern

applications need to support a variety of services with

different access patterns, security requirements and price/

performance profiles – from high throughput in-memory

operations, to real-time analytics, to managing highly

sensitive data.

MongoDB 3.0 introduced a new flexible storage

architecture, making it fast and easy for MongoDB and the

ecosystem to build new pluggable storage engines that

allow the database to be extended with new capabilities,

and to be configured for specific workload requirements.

Moving beyond the two original storage engines supported

with the 3.0 release, MongoDB 3.2 now adds two new

options to the mix. The supported storage engines

comprise:

• The default WiredTiger storage engine. For many

applications, WiredTiger's granular concurrency control

and native compression will provide the best all-around

performance and storage efficiency for the broadest

range of applications.

• The MMAPv1 engine, an improved version of the

storage engine used in pre-3.x MongoDB releases.

• NNEW: TEW: The Encrypted storage enginehe Encrypted storage engine, protecting

highly sensitive data, without the performance or

management overhead of separate filesystem

encryption.

• NNEW: TEW: The In-Memory storage enginehe In-Memory storage engine, delivering

extreme performance and predictable latency coupled

with real-time analytics for the most demanding,

applications.

MongoDB uniquely allows users to mix and match multiple

storage engines within a single MongoDB cluster. This

flexibility provides a more simple and reliable approach to

meeting diverse application needs for data. Traditionally,

multiple database technologies would need to be managed

to meet these needs, with complex, custom integration

code to move data between the technologies, and to

ensure consistent, secure access.

With MongoDB’s flexible storage architecture, the

database automatically manages the movement of data

between storage engine technologies using native

replication. This approach significantly reduces developer

and operational complexity when compared to running

multiple distinct database technologies. Users can leverage

the same MongoDB query language, data model, scaling,

security, and operational tooling across different parts of

their application, with each powered by the optimal storage

engine.

New Default MongoDB Storage Engine:
WiredTiger

MongoDB 3.2 now uses WiredTiger as its default storage

engine. When compared to the original MMAP storage

engine used in earlier MongoDB releases, WiredTiger's

more granular concurrency control and native compression

improve performance by 7-10x, while reducing storage

overhead by up to 80%. WiredTiger is ideal for a wide

2

FigurFigure 1:e 1: Mix and match storage engines within a single MongoDB replica set

range of operational applications, and is therefore the

default storage engine.

New MongoDB Encrypted Storage
Engine

The frequency and severity of data breaches continues to

escalate year on year. Research from PWC identified over

117,000 attacks against information systems every day in

2014, representing an increase of 48% over the previous

year. Companies reporting losses from security breaches

totaling $20m or more doubled over the same period.

Updated European Union General Data Protection

regulations will increase penalties on those organizations

proven to have not taken sufficient measures to protect

their customers’ data against unauthorized disclosure. With

databases storing an organization’s most important

information assets, securing them is top of mind for

administrators.

With advanced authentication, authorization, auditing and

network encryption security controls, MongoDB is widely

used in regulated industries such as finance, retail,

healthcare, education and government. However,

protecting data stored “at-rest” on persistent storage

required encryption to be implemented either at the

application level, or via external filesystem and disk

encryption solutions. By introducing additional technology

into the stack, both of these approaches can add cost and

complexity.

With the introduction of the Encrypted storage engine,

protection of data at-rest now becomes an integral feature

of the database. By natively encrypting database files on

disk, administrators eliminate both the management and

performance overhead of external encryption mechanisms.

FigurFigure 2:e 2: End to End Encryption – Data In-Flight and Data
At-Rest

3

This new storage engine provides an additional level of

defense, allowing only those staff with the appropriate

database credentials access to encrypted data.

Using the Encrypted storage engine, the raw database

“plaintext” content is encrypted using an algorithm that

takes a random encryption key as input and generates

ciphertext that can only be read if decrypted with the

decryption key. The process is entirely transparent to the

application. MongoDB supports a variety of encryption

schema, with AES-256 (256 bit encryption) in CBC mode

being the default. AES-256 in GCM mode is also

supported. The encryption schema can be configured for

FIPS 140-2 compliance.

The storage engine encrypts each database with a

separate key. The key-wrapping scheme in MongoDB

wraps all of the individual internal database keys with one

external master key for each server. The Encrypted storage

engine supports two key management options – in both

cases, the only key being managed outside of MongoDB is

the master key:

• Local key management via a keyfile.

• Integration with a third party key management appliance

via the KMIP protocol (recommended).

Most regulatory requirements mandate that the encryption

keys must be rotated and replaced with a new key at least

once annually. MongoDB can achieve key rotation without

incurring downtime by performing rolling restarts of the

replica set. When using a KMIP appliance, the database

files themselves do not need to be re-encrypted, thereby

avoiding the significant performance overhead imposed by

key rotation in other databases. Only the master key is

rotated, and the internal database keystore is re-encrypted.

The Encrypted storage engine is based on WiredTiger, and

so is designed for operational efficiency and performance:

• Document level concurrency control and compression.

• Support for Intel’s AES-NI equipped CPUs for

acceleration of the encryption/decryption process.

• As documents are modified, only updated storage

blocks need to be encrypted, rather than the entire

database.

Based on user testing, the Encrypted storage engine

minimizes performance overhead to around 15% (this can

vary, based on data types being encrypted), which can be

much less than the observed overhead imposed by some

filesystem encryption solutions.

The Encrypted storage engine is available as part of

MongoDB Enterprise Advanced. Refer to the

documentation to learn more, and see a tutorial on how to

configure the storage engine.

Flexible In-Memory Computing with
MongoDB

The advantages of in-memory computing are well

understood. Data can be accessed in RAM nearly 100,000

times faster than retrieving it from disk, delivering

orders-of-magnitude higher performance for the most

demanding applications. Amazon famously published

research showing that every 1/10th additional second in

latency resulted in a 1% loss in sales. IBM estimates that

60% of data starts to lose its value within milliseconds of

being generated. Examples of applications benefiting from

in-memory computing include real-time re-scoring of

personalized product recommendations as users are

browsing a site, or trading stocks in immediate response to

market events. Critical for modern applications, in-memory

computing enables data access and analytics at speeds

never before possible.

FigurFigure 3:e 3: Reductions in RAM prices make In-Memory
computing economically viable

4

https://www.mongodb.com/products/mongodb-enterprise-advanced
https://docs.mongodb.com/manual/core/security-encryption-at-rest/#encrypted-storage-engine

FigurFigure 4:e 4: Using MongoDB pluggable storage engines allows a single database to power multiple applications

Despite these benefits, the adoption of in-memory

computing has been constrained by high memory costs.

However, with RAM prices continuing to tumble, the

promised performance gains can now be realized with an

acceptable ROI. Even with growing demand from the

consumer sector, memory prices have declined over 220x

since the start of the century, and nearly 3x in the past five

years alone.

With the addition of the new In-Memory engine based on

WiredTiger, MongoDB users can now realize the

performance advantages of in-memory computing, without

trading away the rich query flexibility, real-time analytics,

scalable capacity, or durability guarantees offered by

conventional disk-based databases. The In-Memory

storage engine delivers the extreme throughput and

predictable latency required by the most demanding

applications in AdTech, finance, telecoms, e-commerce, and

more.

The benefits of storage engine flexibility extend beyond the

boundaries of a single application. Unlike monolithic code

bases of the past, modern applications typically comprise

multiple services, each can have its own unique data

access patterns and performance profiles. MongoDB’s

storage architecture allows users to optimize for the

requirements of each service. As illustrated by the

e-commerce example in Figure 4, user data is managed by

the In-Memory engine to provide the throughput and

bounded latency essential for great customer experience.

However, the product catalog’s data storage requirements

exceed server memory capacity, so is provisioned to

another MongoDB replica set configured with the

disk-based WiredTiger storage engine.

In this example, MongoDB’s flexible storage architecture

means developers are freed from the complexity of having

to use different in-memory and disk-based databases to

support the e-commerce application. Administrators are

freed from the complexity of having to configure and

manage separate data layers. Instead, the application uses

the same MongoDB database with each service powered

by the storage engine best optimized for the use case.

The In-Memory storage engine is part of MongoDB

Enterprise Advanced.

Mission-Critical Deployments

MongoDB 3.2 delivers major advances in the critical areas

of governance, high availability, and disaster recovery.

5

Ensuring data quality and maintaining continuous service

availability is essential as more mission-critical applications

are deployed to MongoDB.

Document Validation: Data Governance
for Dynamic Schema

Dynamic schemas bring great agility, but it is also important

that controls can be implemented to maintain data quality,

especially if the database is powering multiple applications,

or is integrated into a larger data management platform

that feeds into upstream and downstream systems. Rather

than delegating enforcement of these controls back into

application code, MongoDB provides Document Validation

within the database. Users can enforce checks on

document structure, data types, data ranges, and the

presence of mandatory fields. As a result, DBAs can apply

data governance standards, while developers maintain the

benefits of a flexible document model.

Validating Documents in MongoDB 3.2

There is significant flexibility to customize which parts of

the documents are and arand are note not validated for any

collection. For any key it might be appropriate to check:

• That it exists

• If it does exist, that the value is of the correct type

• That the value is in a particular format (regular

expressions can be used to check if the contents of the

string matches a particular pattern – that it’s a properly

formatted email address, for example)

• That the value falls within a given range

As an example, the following snippet adds a rule to the

contacts collection that validates:

• The year of birth is no later than 1994

• The document contains a phone number and/or an

email address

• When present, the phone number and email addresses

are strings

db.runCommand({
collMod: "contacts",
validator: {

$and: [
{year_of_birth: {$lte: 1994}},
{$or: [

{phone: { $type: "string" }},
{email: { $type: "string" }}

]}]
}})

Adding the validation checks to a collection is very intuitive

to any developer or DBA familiar with MongoDB, as

Document Validation uses the standard MongoDB Query

Language.

In summary, Document Validation delivered in MongoDB

3.2 allows users to enforce governance across MongoDB

data, while maintaining the agility benefits of a dynamic

schema. For a more in-depth discussion of this feature,

including code samples and a tutorial, please see the

Document Validation blog post or the documentation.

Enhanced Replication Protocol: Fast
Failover and Stricter Durability
Guarantees

In a distributed system like MongoDB, it should be

assumed that individual nodes can and will fail. MongoDB’s

priorities in the event of a node failing are to:

• Ensure data consistency

• Resume full service as quickly as possible to maximize

availability

MongoDB 3.2 introduces an enhanced replication protocol

that delivers faster service recovery in the event of a

primary failure, as well as stricter durability guarantees. The

enhanced replication protocol extends the Raft consensus

algorithm to offer greater deployment flexibility while

maintaining compatibility with replication constructs offered

in earlier MongoDB releases. Specifically, the protocol

maintains support for replica set arbiters, replica set

member election priorities and secondary members

replicating from other secondaries to enable chained

replication.

The enhanced replication protocol reduces the failover

interval by optimizing the algorithms used to detect replica

set primary failures and elect a new primary. Failover time

6

https://www.mongodb.com/blog/post/document-validation-part-1-adding-just-the-right-amount-of-control-over-your-documents
https://www.mongodb.com/blog/post/document-validation-part-1-adding-just-the-right-amount-of-control-over-your-documents
http://docs.mongodb.com/manual/release-notes/3.2/#document-validation
https://docs.mongodb.com/manual/core/replica-set-arbiter/
https://docs.mongodb.com/master/tutorial/adjust-replica-set-member-priority/
https://docs.mongodb.com/master/tutorial/adjust-replica-set-member-priority/
https://docs.mongodb.com/manual/tutorial/manage-chained-replication/
https://docs.mongodb.com/manual/tutorial/manage-chained-replication/

is dependent on several factors, including network latency.

It is important for the system to avoid unnecessary

failovers, and to provide flexibility for the needs of different

deployments. MongoDB 3.2 introduces a new parameter

called electionTimeoutMillis to allow users to

configure their systems for optimal failover behavior:

• Higher values result in slower failovers but decreased

sensitivity to network latency and load on the primary

node

• Lower values result in faster failover, but increased

sensitivity to network latency and load on the primary.

electionTimeoutMillis defaults to 10,000

milliseconds (10 seconds).

Review the documentation for more information.

Durability Guarantees

In addition to faster failover, the enhanced protocol offers

stricter consistency and durability controls for write

operations across replica sets. With a write concern

configured to apply writes to one or more secondaries

before acknowledging the operation, the enhanced

protocol will now commit operations to both the memory

and the journal on those secondary members before

reporting successful completion to the application.

Additionally, when using the majority write concern, the

change will also be committed to the memory and journal

on the primary before the acknowledgment is made.

By default, any replica set upgraded from a pre-MongoDB

3.2 release will use the previous replication protocol, while

new replica sets will use the enhanced protocol. It is

possible to manually switch to the old or new protocol by

setting protocolVersion to 0 or 1 respectively.

Simplified Sharded Cluster Management

MongoDB scales out databases on commodity hardware

using a technique called sharding. The config servers are a

critical component in a sharded cluster, storing the

metadata used by the mongos query router to direct read

and write operations to the appropriate shards, thereby

abstracting complexity from applications accessing the

database.

Prior to MongoDB 3.2, the config servers were

implemented as three special-purpose mongod instances

using their own write protocols, coordinators, and

consistency checking. This architecture complicated the

management of sharded clusters, and increased latency

when deploying MongoDB across more than three data

centers.

Starting with MongoDB 3.2, the config servers will, by

default, be deployed as a MongoDB replica set. This

change improves metadata consistency and manageability

as the config servers can now take advantage of the

standard replica set read and write protocols. Furthermore,

config server replica sets can now span more than three

data centers with up to 50 replica set members supported,

providing higher levels of availability and lower cross-region

latency. Review the documentation to learn more.

New Users

With MongoDB deployed across a wider range of an

organization’s application portfolio, data analysts, DBAs,

and operations teams will need to integrate MongoDB

within their existing processes and tool sets. MongoDB 3.2

allows analysts to support the business with new insights

from untapped data sources, while DBAs and Ops teams

are able to operationalize MongoDB alongside existing

relational databases, protecting existing investments in

management platforms and skillsets.

Data Analysts and Scientists

MongoDB Connector for BI

Driven by growing requirements for self-service analytics,

faster discovery and prediction based on real-time

operational data, and the need to integrate multi-structured

and streaming data sets, BI and analytics platforms are one

of the fastest growing software markets.

To address these requirements, modern application data

stored in MongoDB can for the first time be easily explored

with industry-standard SQL-based BI and analytics

platforms. Using the MongoDB Connector for BI, analysts,

data scientists and business users can now seamlessly

7

http://docs.mongodb.com/manual/release-notes/3.2/#replication-election-enhancements
https://docs.mongodb.com/manual/core/sharding-introduction/
http://docs.mongodb.com/manual/core/sharded-cluster-config-servers/
http://docs.mongodb.com/manual/release-notes/3.2/#sharded-cluster-enhancements
https://www.mongodb.com/products/bi-connector

FigurFigure 5:e 5: Uncover new insights with powerful visualizations generated from MongoDB

visualize semi-structured and unstructured data managed

in MongoDB, alongside traditional data in their SQL

databases, using the same BI tools deployed within millions

of enterprises.

MongoDB Connector for BI Implementation

SQL-based BI tools expect to connect to a data source

with a fixed schema presenting tabular data. This presents

a challenge when working with MongoDB’s dynamic

schema and rich, multi-dimensional documents. In order for

BI tools to query MongoDB as a data source, the BI

Connector does the following:

• Provides the BI tool with the schema of the MongoDB

collection to be visualized. Users can review the schema

output to ensure data types, sub-documents and arrays

are correctly represented

• Translates SQL statements issued by the BI tool into

equivalent MongoDB queries that are then sent to

MongoDB for processing

• Converts the returned results into the tabular format

expected by the BI tool, which can then visualize the

data based on user requirements

The BI Connector is available with MongoDB Enterprise

Advanced. Watch the demo to see the BI Connector in

action, and review the documentation to learn more. You

can also download the BI Connector for evaluation

Dynamic Lookup: Bringing Left Outer
JOINs to MongoDB

Applications get great efficiency from MongoDB by

combining data that is accessed together into a single

document. In contrast, a typical relational database schema

scatters related data across scores of tables – e.g., a blog

site that stores every tag, category, comment, author and

callback as rows in separate tables from the blog post

they’re associated with.

Typically it is most advantageous to take a denormalized

data modeling approach for operational databases – the

efficiency of reading or writing an entire record in a single

operation outweighing any modest increase in storage

requirements. However, there are examples where

normalizing data can be beneficial, especially when data

from multiple sources needs to be blended for analysis.

Consider a shopping cart, which presents two options for

handling the order and product information:

• Include all datInclude all data for an ora for an order in the same documentder in the same document

◦ Fast reads – one find delivers all the required data

◦ The order document contains the product details

that were correct at the time the order was placed;

the price of that product may change in the future

but the order document remains an accurate

representation of the order

◦ Consumes additional storage – the details of each

product are stored in many order documents; this

has become less of an issue as memory and storage

prices have fallen

8

https://www.youtube.com/watch?v=0kwopDp0bmg&feature=youtu.be
https://docs.mongodb.com/manual/products/bi-connector/
https://www.mongodb.com/download-center#bi-connector

• OrOrder document rder document refereferences prences product documentsoduct documents

◦ Space efficient – product details are stored just once

◦ Slower reads – multiple trips to the database

◦ If an attribute of the product (such as the unit price)

changes in the future, any older order documents are

then incorrect as they reference this newer version

◦ Extra application logic – an application must iterate

over product IDs in the order document and then

fetch the product documents

MongoDB 3.2 introduces the ability to combine data from

multiple collections by implementing left outer joins

through the $lookup operator, which can now be included

as a stage in a MongoDB Aggregation Framework pipeline.

The new $lookup stage provides more flexibility in data

modeling, and allows richer analytics to be run with higher

performance and less application-side code.

You can learn more from the documentation and see

worked examples in this series of blog posts.

Real-Time Analytics and Search

With the emergence of new data sources such as social

media, mobile applications, and sensor-equipped Internet

of Things networks, organization can extend analytics to

deliver real-time insight and discovery into such areas as

operational performance, customer satisfaction, and

competitor behavior. However, time to value is everything.

For example, having access to real-time customer

sentiment or fleet tracking is of little benefit unless the

data can be analyzed and reported in real time.

MongoDB 3.2 extends the options for performing analytics

on the live, operational database – ensuring that answers

are delivered quickly and simply, and are based on current

data. Work that would previously have needed to be

implemented in client code can now be performed by the

database – freeing the developer to focus on building new

features.

Improved Aggregation

As the size of operational databases grow, efforts to

analyze and derive insights from the data becomes

increasingly important, as well as complex.

The aggregation pipeline is a powerful way to perform

complex analytical queries on MongoDB data. Aggregation

pipeline stages allow manipulation of a "stream" of

documents from a collection that can either be returned via

a cursor to the client (similar to find), or be stored in a

new collection via a final $out stage.

FigurFigure 6:e 6: Example stages in an aggregation pipeline

When analyzing very large data sets, it is frequently

sufficient to look at a random sample of documents rather

than all of the data. For example, if you wanted to compare

the number of check-ins to coffee shops to those at bars,

you can get a good approximation without searching

through every single check-in. Previously, this sampling

would have to have been implemented in the application,

but MongoDB introduces the $sample operator, which can

be included at any point in the aggregation pipeline.

MongoDB documents can store arrays as well as simple

values. While this feature is very expressive and powerful,

without the corresponding ability to manipulate and filter

arrays in documents during aggregations, their usefulness

has been limited in an analytical context. New operators

have been added to allow more flexibility when dealing with

arrays: $slice, $arrayElemAt, $concatArrays,

$isArray, $filter, and $min.

New mathematical operators have been added for

operations such as truncate, ceiling, floor, absolute,

rounding, square root, logarithms and standard deviations.

These operators can be used to move code from the client

tier directly into the database, allowing higher performance

with lower developer complexity.

By combining the new and existing operators aggregation

pipelines can be built to generate sophisticated results with

a single query. Review the documentation to learn more

about all of the aggregation pipeline enhancements.

Improved Text Search

Text searches on the data in MongoDB can either be

performed in the database or by an external search engine.

9

http://docs.mongodb.com/manual/core/aggregation-introduction/
https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/#pipe._S_lookup
https://www.mongodb.com/blog/post/joins-and-other-aggregation-enhancements-coming-in-mongodb-3-2-part-1-of-3-introduction
https://docs.mongodb.com/manual/release-notes/3.2/#aggregation-framework-enhancements

Performing the search within the database is more efficient

and simpler to administer, so that is the preferred option

whenever possible.

MongoDB 3.2 increases the set of use cases that can be

met with in-database text searches by adding support for

case-sensitive searches, as well as additional languages

including Arabic, Farsi, Urdu, Simplified Chinese, and

Traditional Chinese. To provide support for these

languages, MongoDB Enterprise Advanced provides

integratation with Basis Technology Rosette Linguistics

Platform (RLP) to perform normalization, word breaking,

sentence breaking, and stemming or tokenization

depending on the language.

More information on text search enhancements can be

found in the documentation

DBAs: MongoDB Compass

MongoDB’s dynamic schema and rich document model

make developers more productive, but they also make it

difficult to explore and understand the underlying data and

its structure – in particular for non-developers who aren't

familiar with the MongoDB query language.

The MongoDB Compass GUI allows users to understand

the structure of data in the database and perform ad hoc

queries against it – all with zero knowledge of MongoDB's

query language. Typical users could include architects

building a new MongoDB project or a DBA who has

inherited a database from an engineering team, and who

must now maintain it in production. They need to

understand what kind of data is present, define what

indexes might be appropriate, and identify if Document

Validation rules should be added to enforce a consistent

document structure.

Until now, users wishing to understand the shape of their

data would have to connect to the MongoDB shell and

write queries to reverse engineer the document structure,

field names and data types. Similarly, anyone wanting to

run custom queries on the data would need to understand

MongoDB's query language.

MongoDB Compass provides users with a graphical view

of their MongoDB schema by sampling a subset of

FigurFigure 7:e 7: Document structure and contents exposed by
MongoDB Compass

documents from a collection. By using sampling, MongoDB

Compass minimizes database overhead and can present

results to the user almost instantly.

FigurFigure 8:e 8: Interactively build and execute database queries
with MongoDB Compass

Querying Data

As illustrated in Figure 8, a query can be built and executed

by simply selecting document elements from the

MongoDB Compass user interface. By selecting multiple

values, sophisticated queries can be built. The query can

then be executed at the push of a button and the results

viewed both graphically and as a set of JSON documents.

MongoDB Compass samples the database to provide a

fast, interactive experience no matter how large the

database. If the full results are needed then the query can

be simply copied and pasted into a MongoDB shell window.

10

http://www.basistech.com/text-analytics/rosette/
http://www.basistech.com/text-analytics/rosette/
http://docs.mongodb.com/manual/release-notes/3.2/#text-search-enhancements
https://www.mongodb.com/products/compass

MongoDB Compass is included with MongoDB

Professional and MongoDB Enterprise Advanced. You can

learn more about Compass in the documentation, and see

it in action in our short 3-part demo series:

• Part 1: Introduction to Compass

• Part 2: Schema visualization

• Part 3: Visual query building

To evaluate MongoDB Compass, head to the MongoDB

Download Center.

Operations Teams

For those needing full control, MongoDB Ops Manager and

Cloud Manager are the most powerful way to run

MongoDB, reducing tasks such as deployment, scaling,

upgrades and backups to just a few clicks or an API call.

Operations teams can be 10-20x more productive using

the Ops or Cloud Manager platforms. For those seeking

even greater simplification and automation, consider

MongoDB Atlas – the database as a service for MongoDB

- described later in this paper.

With the enhancements to both Ops and Cloud Manager in

MongoDB 3.2, administrators can:

• Integrate MongoDB alongside existing Application

Performance Monitoring platforms for global health

visibility over the entire IT estate, all from a single pane

of glass

• Drill down into any MongoDB-specific issues using Ops

Manager’s granular monitoring of database telemetry,

including new query profiler visualizations

• Use Ops Manager automation to initiate zero-downtime

maintenance and upgrade activities, such as rolling out

new indexes across a sharded cluster

• Create point-in-time, consistent snapshots of the

database on standard network-mountable filesystems,

and restore complete running MongoDB clusters from

backup files.

APM Integration: New Relic &
AppDynamics

Many operations teams use Application Performance

Monitoring (APM) platforms such as New Relic and

AppDynamics to gain global oversight of their complete IT

infrastructure from a single management UI. Issues that

risk affecting customer experience can be quickly

identified and isolated to specific components – whether

attributable to devices, hardware infrastructure, networks,

APIs, application code, databases and more.

The MongoDB drivers have been enhanced with a new API

that exposes query performance metrics to APM tools.

Administrators can monitor time spent on each operation,

and identify slow running queries that require further

analysis and optimization.

In addition, MongoDB Atlas and Cloud Manager provide

packaged integration with the New Relic platform. Key

metrics from MongoDB Atlas or Cloud Manager are

accessible to the APM for visualization, enabling MongoDB

health to be monitored and correlated with the rest of the

application estate.

As shown in Figure 9, summary metrics familiar to Cloud

Manager users are presented within the APM’s UI.

Administrators can also run New Relic Insights for analytics

against monitoring data to generate dashboards that

provide real-time tracking of Key Performance Indicators

(KPIs).

If the operations team needs finer grained telemetry, they

can drill down into the 100+ system metrics maintained by

Cloud Manager. For example, the new visual query profiler

helps diagnose slow running queries, which can then be

resolved by adding a new index and automatically

deploying that across every node in the cluster.

Query Performance Visualization: Enabling
Fast and Simple Query Optimization

The MongoDB database profiler collects fine-grained

information that can be used to analyze query performance.

However, the output could be difficult to parse, making

slow running queries difficult to correct. In addition, the

profiler had to be individually activated for each MongoDB

instance, and the output manually aggregated from every

11

https://www.mongodb.com/products/mongodb-professional
https://www.mongodb.com/products/mongodb-professional
https://docs.mongodb.com/manual/products/compass/
https://www.youtube.com/watch?v=3w9HVFh1hRs&feature=youtu.be
https://www.youtube.com/watch?v=E6KT6gsSSRc&feature=youtu.be
https://www.youtube.com/watch?v=rUv_FuFmtk0&feature=youtu.be
https://www.mongodb.com/download-center#compass
https://www.mongodb.com/download-center#compass
https://www.mongodb.com/products/ops-manager
https://www.mongodb.com/products/cloud-manager
http://docs.mongodb.com/master/tutorial/manage-the-database-profiler/

FigurFigure 9:e 9: MongoDB integrated into a single view of application performance

node to provide a holistic view across the entire

deployment.

FigurFigure 1e 10:0: Visual Query Profiling in MongoDB Ops
Manager

Delivered as part of Ops Manager and Cloud Manager, the

new Visual Query Profiler provides a quick and convenient

way for operations teams and DBAs to analyze specific

queries or query families. The Visual Query Profiler (as

shown in Figure 10) displays how query and write latency

varies over time – making it simple to identify slower

queries with common access patterns and characteristics,

as well as identify any latency spikes. A single click in the

Ops Manager UI activates the profiler, which then

consolidates and displays metrics from every node in a

single screen.

Index Suggestions & Automated Index
Builds

Further simplifying operations, the visual query profiler will

analyze data it collects to provide recommendations for

new indexes that can be created to improve query

performance.

Once identified, these new indexes need to be rolled out in

the production system. In order to minimize the impact to

the live system, the best practice is to perform a rolling

index build – starting with each of the secondaries and

finally applying changes to the original primary, after

swapping its role with one of the secondaries. While this

rolling process can be performed manually, Ops Manager

and Cloud Manager can now automate the process across

MongoDB replica sets, reducing operational overhead and

the risk of failovers caused by incorrectly sequencing

management processes.

12

New Indexing Option: Partial Indexes

Secondary indexes are one of the ways that MongoDB

distinguishes itself from NoSQL databases – allowing

applications to efficiently access their data in multiple

ways. However, secondary indexes do come with a cost:

• Database writes will be slower when they need to

update the secondary index

• Memory and storage is needed to store the secondary

index

Partial indexes balance delivering good query performance

while consuming fewer system resources. For example,

consider an order processing application. The order

collection is frequently queried by the application to display

all incomplete orders for a particular user. Building an index

on the userID field of the collection is necessary for good

performance. However, only a small percentage of orders

are in progress at a given time. Limiting the index on

userID to contain only orders that are in the “active” state

could reduce the number of index entries from millions to

thousands, saving working set memory and disk space,

while speeding up queries even further as smaller indexes

result in faster searches.

By specifying a filtering expression during index creation, a

user can instruct MongoDB to include only documents that

meet the desired conditions.

When performing the database find operation, the

application should include the value being used for the

filtering as well as the indexed value in order for the partial

index to be used by the optimizer. Review the

documentation to learn more.

Additional Ops Manager Enhancements

Beyond the functionality discussed above, a number of

enhancements improve productivity of Ops teams and

simply installation and management.

• Ops teams can now automate their database restores

reliably and safely using Ops Manager and Cloud

Manager. Complete development, test, and recovery

clusters can now be built in a few simple clicks.

• Integrating with existing storage infrastructure,

MongoDB backup files can now be stored on a

standard network-mountable file system.

• Operations teams can configure backups against

specific collections only, rather than the entire database,

speeding up backups and reducing the requisite

storage space. This enhancement is also available in the

Cloud Manager platform.

• Installation and configuration of all application and

backup components can now be made through the

centralized Ops Manager UI, which also provides a

single, at-a-glance dashboard for health monitoring.

• Enhancements to the backup architecture provide

faster time to first database snapshot.

• Eliminating false alarms, maintenance windows can now

be defined during which Ops Manager and Cloud

Manager alerts will not be triggered.

You can learn more about the enhancements discussed

above in the Ops Manager documentation and the Cloud

Manager documentation.

MongoDB Atlas: Database as a
Service For MongoDB

MongoDB Atlas provides all of the features of MongoDB,

without the operational heavy lifting required for any new

application. MongoDB Atlas is available on-demand

through a pay-as-you-go model and billed on an hourly

basis, letting you focus on what you do best.

It’s easy to get started – use a simple GUI to select the

instance size, region, and features you need. MongoDB

Atlas provides:

• Security features to protect access to your data

• Built in replication for always-on availability, tolerating

complete data center failure

• Backups and point in time recovery to protect against

data corruption

• Fine-grained monitoring to let you know when to scale.

Additional instances can be provisioned with the push

of a button

13

https://docs.mongodb.com/manual/core/index-partial/
https://docs.opsmanager.mongodb.com/current/
https://docs.cloud.mongodb.com/
https://docs.cloud.mongodb.com/
https://www.mongodb.com/atlas

• Automated patching and one-click upgrades for new

major versions of the database, enabling you to take

advantage of the latest and greatest MongoDB features

• A choice of cloud providers, regions, and billing options

MongoDB Atlas is versatile. It’s great for everything from a

quick Proof of Concept, to test/QA environments, to

complete production clusters. If you decide you want to

bring operations back under your control, it is easy to move

your databases onto your own infrastructure and manage

them using MongoDB Ops Manager or MongoDB Cloud

Manager. The user experience across MongoDB Atlas,

Cloud Manager, and Ops Manager is consistent, ensuring

that disruption is minimal if you decide to migrate to your

own infrastructure.

MongoDB Atlas runs on MongoDB 3.2 and the WiredTiger

storage engine – providing the easiest way to get access

to the great features and enhancements described in this

paper

MongoDB Atlas is automated, it’s easy, and it’s from the

creators of MongoDB. Learn more and take it for a spin.

Summary

MongoDB 3.2 is a significant release of the world’s fastest

growing database. New storage engine options, coupled

with document validation, the enhanced replication protocol

and sharding improvements extend the range of

mission-critical applications MongoDB can serve. New

tools such as the BI Connector, Compass, and Cloud

Manager integration to APM platforms allow organizations

to take advantage of MongoDB while protecting

investments in existing frameworks and workflows.

• Download MongoDB 3.2 today.

• Evaluate MongoDB Enterprise, along with the

Connector for BI, MongoDB Compass and Ops

Manager by heading to the MongoDB download center.

To start using MongoDB 3.2 as quickly and efficiently as

possible, bring in the experts. MongoDB’s consulting

engineers can deliver a private training on 3.2 features

tailored to your needs, then work with you to develop a

customized upgrade plan for your deployment. Learn more

on the MongoDB 3.2 Upgrade Services.

We Can Help

We are the MongoDB experts. Over 2,000 organizations

rely on our commercial products, including startups and

more than a third of the Fortune 100. We offer software

and services to make your life easier:

MongoDB Enterprise Advanced is the best way to run

MongoDB in your data center. It's a finely-tuned package

of advanced software, support, certifications, and other

services designed for the way you do business.

MongoDB Atlas is a database as a service for MongoDB,

letting you focus on apps instead of ops. With MongoDB

Atlas, you only pay for what you use with a convenient

hourly billing model. With the click of a button, you can

scale up and down when you need to, with no downtime,

full security, and high performance.

MongoDB Cloud Manager is a cloud-based tool that helps

you manage MongoDB on your own infrastructure. With

automated provisioning, fine-grained monitoring, and

continuous backups, you get a full management suite that

reduces operational overhead, while maintaining full control

over your databases.

MongoDB Professional helps you manage your

deployment and keep it running smoothly. It includes

support from MongoDB engineers, as well as access to

MongoDB Cloud Manager.

Development Support helps you get up and running quickly.

It gives you a complete package of software and services

for the early stages of your project.

MongoDB Consulting packages get you to production

faster, help you tune performance in production, help you

scale, and free you up to focus on your next release.

MongoDB Training helps you become a MongoDB expert,

from design to operating mission-critical systems at scale.

Whether you're a developer, DBA, or architect, we can

make you better at MongoDB.

14

https://www.mongodb.com/cloud
https://www.mongodb.com/downloads#production
https://www.mongodb.com/download-center#enterprise
https://www.mongodb.com/contact/mongodb-3-2-upgrade-services
https://www.mongodb.com/products/mongodb-enterprise-advanced
https://www.mongodb.com/atlas
https://www.mongodb.com/products/cloud-manager
https://www.mongodb.com/products/mongodb-professional
https://www.mongodb.com/products/development-support
https://www.mongodb.com/products/consulting
https://university.mongodb.com/private_training

Resources

For more information, please visit mongodb.com or contact

us at sales@mongodb.com.

Case Studies (mongodb.com/customers)

Presentations (mongodb.com/presentations)

Free Online Training (university.mongodb.com)

Webinars and Events (mongodb.com/events)

Documentation (docs.mongodb.com)

MongoDB Enterprise Download (mongodb.com/download)

MongoDB Atlas database as a service for MongoDB

(mongodb.com/cloud)

New York • Palo Alto • Washington, D.C. • London • Dublin • Barcelona • Sydney • Tel Aviv
US 866-237-8815 • INTL +1-650-440-4474 • info@mongodb.com
© 2016 MongoDB, Inc. All rights reserved.

15

http://www.mongodb.com
mailto:sales@mongodb.com
http://mongodb.com/customers
http://mongodb.com/presentations
http://university.mongodb.com
http://mongodb.com/events
http://docs.mongodb.com
http://mongodb.com/download
https://www.mongodb.com/cloud

	Table of Contents
	Introduction1
	New Use Cases Served by MongoDB2
	New Default MongoDB Storage Engine: WiredTiger2
	New MongoDB Encrypted Storage Engine3
	Flexible In-Memory Computing with MongoDB4

	Mission-Critical Deployments5
	Document Validation: Data Governance for Dynamic Schema6
	Enhanced Replication Protocol: Fast Failover6
	Simplified Sharded Cluster Management7

	New Users7
	Data Analysts and Scientists7
	MongoDB Connector for BI7
	Dynamic Lookup: Left Outer JOINs8
	Real-Time Analytics and Search9

	DBAs: MongoDB Compass10
	Querying Data10

	Operations Teams11
	APM Integration: New Relic & AppDynamics11
	Query Performance Visualization11
	Index Suggestions & Automated Index Builds12
	New Indexing Option: Partial Indexes13
	Additional Ops Manager Enhancements13

	MongoDB Atlas: Database as a Service For MongoDB13
	Summary14
	We Can Help14
	Resources15
	Introduction
	New Use Cases Served by MongoDB
	New Default MongoDB Storage Engine: WiredTiger
	New MongoDB Encrypted Storage Engine
	Flexible In-Memory Computing with MongoDB

	Mission-Critical Deployments
	Document Validation: Data Governance for Dynamic Schema
	Validating Documents in MongoDB 3.2

	Enhanced Replication Protocol: Fast Failover and Stricter Durability Guarantees
	Durability Guarantees

	Simplified Sharded Cluster Management

	New Users
	Data Analysts and Scientists
	MongoDB Connector for BI
	MongoDB Connector for BI Implementation

	Dynamic Lookup: Bringing Left Outer JOINs to MongoDB
	Real-Time Analytics and Search
	Improved Aggregation
	Improved Text Search

	DBAs: MongoDB Compass
	Querying Data

	Operations Teams
	APM Integration: New Relic & AppDynamics
	Query Performance Visualization: Enabling Fast and Simple Query Optimization
	Index Suggestions & Automated Index Builds
	New Indexing Option: Partial Indexes
	Additional Ops Manager Enhancements

	MongoDB Atlas: Database as a Service For MongoDB
	Summary
	We Can Help
	Resources

